Search results for: teaching-learning based optimization
11157 A New Multi-Target, Multi-Agent Search-and-Rescue Path Planning Approach
Authors: Jean Berger, Nassirou Lo, Martin Noel
Abstract:
Perfectly suited for natural or man-made emergency and disaster management situations such as flood, earthquakes, tornadoes, or tsunami, multi-target search path planning for a team of rescue agents is known to be computationally hard, and most techniques developed so far come short to successfully estimate optimality gap. A novel mixed-integer linear programming (MIP) formulation is proposed to optimally solve the multi-target multi-agent discrete search and rescue (SAR) path planning problem. Aimed at maximizing cumulative probability of successful target detection, it captures anticipated feedback information associated with possible observation outcomes resulting from projected path execution, while modeling agent discrete actions over all possible moving directions. Problem modeling further takes advantage of network representation to encompass decision variables, expedite compact constraint specification, and lead to substantial problem-solving speed-up. The proposed MIP approach uses CPLEX optimization machinery, efficiently computing near-optimal solutions for practical size problems, while giving a robust upper bound obtained from Lagrangean integrality constraint relaxation. Should eventually a target be positively detected during plan execution, a new problem instance would simply be reformulated from the current state, and then solved over the next decision cycle. A computational experiment shows the feasibility and the value of the proposed approach.
Keywords: Search path planning, search and rescue, multi-agent, mixed-integer linear programming, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 248011156 Performance Analysis of Digital Signal Processors Using SMV Benchmark
Authors: Erh-Wen Hu, Cyril S. Ku, Andrew T. Russo, Bogong Su, Jian Wang
Abstract:
Unlike general-purpose processors, digital signal processors (DSP processors) are strongly application-dependent. To meet the needs for diverse applications, a wide variety of DSP processors based on different architectures ranging from the traditional to VLIW have been introduced to the market over the years. The functionality, performance, and cost of these processors vary over a wide range. In order to select a processor that meets the design criteria for an application, processor performance is usually the major concern for digital signal processing (DSP) application developers. Performance data are also essential for the designers of DSP processors to improve their design. Consequently, several DSP performance benchmarks have been proposed over the past decade or so. However, none of these benchmarks seem to have included recent new DSP applications. In this paper, we use a new benchmark that we recently developed to compare the performance of popular DSP processors from Texas Instruments and StarCore. The new benchmark is based on the Selectable Mode Vocoder (SMV), a speech-coding program from the recent third generation (3G) wireless voice applications. All benchmark kernels are compiled by the compilers of the respective DSP processors and run on their simulators. Weighted arithmetic mean of clock cycles and arithmetic mean of code size are used to compare the performance of five DSP processors. In addition, we studied how the performance of a processor is affected by code structure, features of processor architecture and optimization of compiler. The extensive experimental data gathered, analyzed, and presented in this paper should be helpful for DSP processor and compiler designers to meet their specific design goals.Keywords: digital signal processors, DSP benchmark, instruction level parallelism, modified cyclomatic complexity, performance analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 160811155 Enhancing Hand Efficiency of Smart Glass Cleaning Robot through Generative Design Module
Authors: Pankaj Gupta, Amit Kumar Srivastava, Nitesh Pandey
Abstract:
This article explores the domain of generative design in order to enhance the development of robot designs for innovative and efficient maintenance approaches for tall buildings. This study aims to optimize the design of robotic hands by focusing on minimizing mass and volume while ensuring they can withstand the specified pressure with equal strength. The research procedure is structured and systematic. The purpose of optimization is to enhance the efficiency of the robot and reduce the manufacturing expenses. The project seeks to investigate the application of generative design in order to optimize products. Autodesk Fusion 360 offers the capability to immediately apply the generative design functionality to the solid model. The effort involved creating a solid model of the Smart Glass Cleaning Robot and optimizing one of its components, the Hand, using generative techniques. The article has thoroughly examined the designs, outcomes, and procedure. These loads serve as a benchmark for creating designs that can endure the necessary level of pressure and preserve their structural integrity. The efficacy of the generative design process is contingent upon the selection of materials, as different materials possess distinct physical attributes. The study utilizes five different materials, namely Steel, Stainless Steel, Titanium, Aluminum, and CFRP (Carbon Fiber Reinforced Polymer), in order to investigate a range of design possibilities.
Keywords: Generative design, mass and volume optimization, material strength analysis, generative design, smart glass cleaning robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20311154 A Fuzzy Time Series Forecasting Model for Multi-Variate Forecasting Analysis with Fuzzy C-Means Clustering
Authors: Emrah Bulut, Okan Duru, Shigeru Yoshida
Abstract:
In this study, a fuzzy integrated logical forecasting method (FILF) is extended for multi-variate systems by using a vector autoregressive model. Fuzzy time series forecasting (FTSF) method was recently introduced by Song and Chissom [1]-[2] after that Chen improved the FTSF method. Rather than the existing literature, the proposed model is not only compared with the previous FTS models, but also with the conventional time series methods such as the classical vector autoregressive model. The cluster optimization is based on the C-means clustering method. An empirical study is performed for the prediction of the chartering rates of a group of dry bulk cargo ships. The root mean squared error (RMSE) metric is used for the comparing of results of methods and the proposed method has superiority than both traditional FTS methods and also the classical time series methods.
Keywords: C-means clustering, Fuzzy time series, Multi-variate design
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 230111153 Design and Implementation of an AI-Enabled Task Assistance and Management System
Authors: Arun Prasad Jaganathan
Abstract:
In today's dynamic industrial world, traditional task allocation methods often fall short in adapting to evolving operational conditions. This paper presents an AI-enabled task assistance and management system designed to overcome the limitations of conventional approaches. By using artificial intelligence (AI) and machine learning (ML), the system intelligently interprets user instructions, analyzes tasks, and allocates resources based on real-time data and environmental factors. Additionally, geolocation tracking enables proactive identification of potential delays, ensuring timely interventions. With its transparent reporting mechanisms, the system provides stakeholders with clear insights into task progress, fostering accountability and informed decision-making. The paper presents a comprehensive overview of the system architecture, algorithm, and implementation, highlighting its potential to revolutionize task management across diverse industries.
Keywords: Artificial intelligence, machine learning, task allocation, operational efficiency, resource optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7611152 Reversible Binary Arithmetic for Integrated Circuit Design
Authors: D. Krishnaveni, M. Geetha Priya
Abstract:
Application of reversible logic in integrated circuits results in the improved optimization of power consumption. This technology can be put into use in a variety of low power applications such as quantum computing, optical computing, nano-technology, and Complementary Metal Oxide Semiconductor (CMOS) Very Large Scale Integrated (VLSI) design etc. Logic gates are the basic building blocks in the design of any logic network and thus integrated circuits. In this paper, reversible Dual Key Gate (DKG) and Dual key Gate Pair (DKGP) gates that work singly as full adder/full subtractor are used to realize the basic building blocks of logic circuits. Reversible full adder/subtractor and parallel adder/ subtractor are designed using other reversible gates available in the literature and compared with that of DKG & DKGP gates. Efficient performance of reversible logic circuits relies on the optimization of the key parameters viz number of constant inputs, garbage outputs and number of reversible gates. The full adder/subtractor and parallel adder/subtractor design with reversible DKGP and DKG gates results in least number of constant inputs, garbage outputs, and number of reversible gates compared to the other designs. Thus, this paper provides a threshold to build more complex arithmetic systems using these reversible logic gates, leading to the enhanced performance of computing systems.
Keywords: Low power CMOS, quantum computing, reversible logic gates, full adder, full subtractor, parallel adder/subtractor, basic gates, universal gates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143811151 Insight-Based Evaluation of a Map-based Dashboard
Authors: Anna Fredriksson Häägg, Charlotte Weil, Niklas Rönnberg
Abstract:
Map-based dashboards are used for data exploration every day. The present study used an insight-based methodology for evaluating a map-based dashboard that presents research findings of water management and ecosystem services in the Amazon. In addition to analyzing the insights gained from using the dashboard, the evaluation method was compared to standardized questionnaires and task-based evaluations. The result suggests that the dashboard enabled the participants to gain domain-relevant, complex insights regarding the topic presented. Furthermore, the insight-based analysis highlighted unexpected insights and hypotheses regarding causes and potential adaptation strategies for remediation. Although time- and resource-consuming, the insight-based methodology was shown to have the potential of thoroughly analyzing how end users can utilize map-based dashboards for data exploration and decision making. Finally, the insight-based methodology is argued to evaluate tools in scenarios more similar to real-life usage, compared to task-based evaluation methods.
Keywords: Visual analytics, dashboard, insight-based evaluation, geographic visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41011150 Kinetic and Optimization Studies on Ethanol Production from Corn Flour
Authors: K. Manikandan, T. Viruthagiri
Abstract:
Studies on Simultaneous Saccharification and Fermentation (SSF) of corn flour, a major agricultural product as the substrate using starch digesting glucoamylase enzyme derived from Aspergillus niger and non starch digesting and sugar fermenting Saccharomyces cerevisiae in a batch fermentation. Experiments based on Central Composite Design (CCD) were conducted to study the effect of substrate concentration, pH, temperature, enzyme concentration on Ethanol Concentration and the above parameters were optimized using Response Surface Methodology (RSM). The optimum values of substrate concentration, pH, temperature and enzyme concentration were found to be 160 g/l, 5.5, 30°C and 50 IU respectively. The effect of inoculums age on ethanol concentration was also investigated. The corn flour solution equivalent to 16% initial starch concentration gave the highest ethanol concentration of 63.04 g/l after 48 h of fermentation at optimum conditions of pH and temperature. Monod model and Logistic model were used for growth kinetics and Leudeking – Piret model was used for product formation kinetics.
Keywords: Simultaneous Saccharification and Fermentation(SSF), Corn Starch, Ethanol, Logisitic Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 391411149 Computational Fluid Dynamics Expert System using Artificial Neural Networks
Authors: Gonzalo Rubio, Eusebio Valero, Sven Lanzan
Abstract:
The design of a modern aircraft is based on three pillars: theoretical results, experimental test and computational simulations. As a results of this, Computational Fluid Dynamic (CFD) solvers are widely used in the aeronautical field. These solvers require the correct selection of many parameters in order to obtain successful results. Besides, the computational time spent in the simulation depends on the proper choice of these parameters. In this paper we create an expert system capable of making an accurate prediction of the number of iterations and time required for the convergence of a computational fluid dynamic (CFD) solver. Artificial neural network (ANN) has been used to design the expert system. It is shown that the developed expert system is capable of making an accurate prediction the number of iterations and time required for the convergence of a CFD solver.Keywords: Artificial Neural Network, Computational Fluid Dynamics, Optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 295711148 Standard and Processing of Photodegradable Polyethylene
Authors: Nurul-Akidah M. Yusak, Rahmah Mohamed, Noor Zuhaira Abd Aziz
Abstract:
The introduction of degradable plastic materials into agricultural sectors has represented a promising alternative to promote green agriculture and environmental friendly of modern farming practices. Major challenges of developing degradable agricultural films are to identify the most feasible types of degradation mechanisms, composition of degradable polymers and related processing techniques. The incorrect choice of degradable mechanisms to be applied during the degradation process will cause premature losses of mechanical performance and strength. In order to achieve controlled process of agricultural film degradation, the compositions of degradable agricultural film also important in order to stimulate degradation reaction at required interval of time and to achieve sustainability of the modern agricultural practices. A set of photodegradable polyethylene based agricultural film was developed and produced, following the selective optimization of processing parameters of the agricultural film manufacturing system. Example of agricultural films application for oil palm seedlings cultivation is presented.
Keywords: Photodegradable polyethylene, plasticulture, processing schemes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 304811147 Parallel Priority Region Approach to Detect Background
Authors: Sallama Athab, Hala Bahjat, Zhang Yinghui
Abstract:
Background detection is essential in video analyses; optimization is often needed in order to achieve real time calculation. Information gathered by dual cameras placed in the front and rear part of an Autonomous Vehicle (AV) is integrated for background detection. In this paper, real time calculation is achieved on the proposed technique by using Priority Regions (PR) and Parallel Processing together where each frame is divided into regions then and each region process is processed in parallel. PR division depends upon driver view limitations. A background detection system is built on the Temporal Difference (TD) and Gaussian Filtering (GF). Temporal Difference and Gaussian Filtering with multi threshold and sigma (weight) value are be based on PR characteristics. The experiment result is prepared on real scene. Comparison of the speed and accuracy with traditional background detection techniques, the effectiveness of PR and parallel processing are also discussed in this paper.
Keywords: Autonomous Vehicle, Background Detection, Dual Camera, Gaussian Filtering, Parallel Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169711146 Solar Tracking System: More Efficient Use of Solar Panels
Abstract:
This paper shows the potential system benefits of simple tracking solar system using a stepper motor and light sensor. This method is increasing power collection efficiency by developing a device that tracks the sun to keep the panel at a right angle to its rays. A solar tracking system is designed, implemented and experimentally tested. The design details and the experimental results are shown.Keywords: Renewable Energy, Power Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 779211145 Stability Analysis of a Tricore
Authors: C. M. De Marco Muscat-Fenech, A.M. Grech La Rosa
Abstract:
The application of stability theory has led to detailed studies of different types of vessels; however, the shortage of information relating to multihull vessels demanded further investigation. This study shows that the position of the hulls has a very influential effect on both the transverse and longitudinal stability of the tricore. HSC stability code is applied for the optimisation of the hull configurations. Such optimization criteria would undoubtedly aid the performance of the vessel for both commercial or leisure purposes
Keywords: Stability, Multihull, Tricore
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 290311144 A Quality Optimization Approach: An Application on Next Generation Networks
Authors: Gülfem I. Alptekin, S. Emre Alptekin
Abstract:
The next generation wireless systems, especially the cognitive radio networks aim at utilizing network resources more efficiently. They share a wide range of available spectrum in an opportunistic manner. In this paper, we propose a quality management model for short-term sub-lease of unutilized spectrum bands to different service providers. We built our model on competitive secondary market architecture. To establish the necessary conditions for convergent behavior, we utilize techniques from game theory. Our proposed model is based on potential game approach that is suitable for systems with dynamic decision making. The Nash equilibrium point tells the spectrum holders the ideal price values where profit is maximized at the highest level of customer satisfaction. Our numerical results show that the price decisions of the network providers depend on the price and QoS of their own bands as well as the prices and QoS levels of their opponents- bands.Keywords: cognitive radio networks, game theory, nextgeneration wireless networks, spectrum management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 151211143 Quantum Computing: A New Era of Computing
Authors: Jyoti Chaturvedi Gursaran
Abstract:
Nature conducts its action in a very private manner. To reveal these actions classical science has done a great effort. But classical science can experiment only with the things that can be seen with eyes. Beyond the scope of classical science quantum science works very well. It is based on some postulates like qubit, superposition of two states, entanglement, measurement and evolution of states that are briefly described in the present paper. One of the applications of quantum computing i.e. implementation of a novel quantum evolutionary algorithm(QEA) to automate the time tabling problem of Dayalbagh Educational Institute (Deemed University) is also presented in this paper. Making a good timetable is a scheduling problem. It is NP-hard, multi-constrained, complex and a combinatorial optimization problem. The solution of this problem cannot be obtained in polynomial time. The QEA uses genetic operators on the Q-bit as well as updating operator of quantum gate which is introduced as a variation operator to converge toward better solutions.
Keywords: Quantum computing, qubit, superposition, entanglement, measurement of states, evolution of states, Scheduling problem, hard and soft constraints, evolutionary algorithm, quantum evolutionary algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 266211142 Aeration Optimization in an Activated Sludge Wastewater Treatment Plant Based on CFD Method: A Case Study
Authors: Seyed Sina Khamesi, Rana Rafiei
Abstract:
The extensive aeration process is widely used for wastewater treatment. However, due to the high energy consumption of this process, which is closely related to the issues of environmental sustainability and global climate change, this article presents a simple solution to reduce energy consumption in this process. The amount of required energy is one of the critical considerations for various wastewater treatment techniques. For this purpose, an industrial wastewater treatment plant and all energy-consumer equipment in terms of energy consumption have been analyzed. The investigations and measurements revealed that the aeration unit has the highest energy consumption rate. To address this, an innovative approach is proposed to reduce energy consumption in the identified high-consumer unit. The proposed solution involves introducing baffles to divide the tank into multiple parts and using a tank with a small width and long length to enhance the mixing process. This approach reduces the need for additional equipment and significantly lowers energy consumption. To thoroughly scrutinize the proposed solution and analyze the behavior of the multi-phase fluid inside the tank, the sewage flow has been modeled using the computational fluid dynamics (CFD) method. The study presents an optimal design for the aeration unit based on these findings. The results indicate that implementing the technique suggested in this article can decrease total energy consumption by 33.15% and can be applied to all types of biological treatment plants.
Keywords: Wastewater treatment, aeration, energy consumption, Computational Fluid Dynamics, activated sludge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31611141 Sparse-View CT Reconstruction Based on Nonconvex L1 − L2 Regularizations
Authors: Ali Pour Yazdanpanah, Farideh Foroozandeh Shahraki, Emma Regentova
Abstract:
The reconstruction from sparse-view projections is one of important problems in computed tomography (CT) limited by the availability or feasibility of obtaining of a large number of projections. Traditionally, convex regularizers have been exploited to improve the reconstruction quality in sparse-view CT, and the convex constraint in those problems leads to an easy optimization process. However, convex regularizers often result in a biased approximation and inaccurate reconstruction in CT problems. Here, we present a nonconvex, Lipschitz continuous and non-smooth regularization model. The CT reconstruction is formulated as a nonconvex constrained L1 − L2 minimization problem and solved through a difference of convex algorithm and alternating direction of multiplier method which generates a better result than L0 or L1 regularizers in the CT reconstruction. We compare our method with previously reported high performance methods which use convex regularizers such as TV, wavelet, curvelet, and curvelet+TV (CTV) on the test phantom images. The results show that there are benefits in using the nonconvex regularizer in the sparse-view CT reconstruction.Keywords: Computed tomography, sparse-view reconstruction, L1 −L2 minimization, non-convex, difference of convex functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 203311140 MIMO System Order Reduction Using Real-Coded Genetic Algorithm
Authors: Swadhin Ku. Mishra, Sidhartha Panda, Simanchala Padhy, C. Ardil
Abstract:
In this paper, real-coded genetic algorithm (RCGA) optimization technique has been applied for large-scale linear dynamic multi-input-multi-output (MIMO) system. The method is based on error minimization technique where the integral square error between the transient responses of original and reduced order models has been minimized by RCGA. The reduction procedure is simple computer oriented and the approach is comparable in quality with the other well-known reduction techniques. Also, the proposed method guarantees stability of the reduced model if the original high-order MIMO system is stable. The proposed approach of MIMO system order reduction is illustrated with the help of an example and the results are compared with the recently published other well-known reduction techniques to show its superiority.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 226211139 Numerical Optimization of Pin-Fin Heat Sink with Forced Cooling
Authors: Y. T. Yang, H. S. Peng, H. T. Hsu
Abstract:
This study presents the numerical simulation of optimum pin-fin heat sink with air impinging cooling by using Taguchi method. 9 L ( 4 3 ) orthogonal array is selected as a plan for the four design-parameters with three levels. The governing equations are discretized by using the control-volume-based-finite-difference method with a power-law scheme on the non-uniform staggered grid. We solved the coupling of the velocity and the pressure terms of momentum equations using SIMPLEC algorithm. We employ the k −ε two-equations turbulence model to describe the turbulent behavior. The parameters studied include fin height H (35mm-45mm), inter-fin spacing a , b , and c (2 mm-6.4 mm), and Reynolds number ( Re = 10000- 25000). The objective of this study is to examine the effects of the fin spacings and fin height on the thermal resistance and to find the optimum group by using the Taguchi method. We found that the fin spacings from the center to the edge of the heat sink gradually extended, and the longer the fin’s height the better the results. The optimum group is 3 1 2 3 H a b c . In addition, the effects of parameters are ranked by importance as a , H , c , and b .
Keywords: Heat sink, Optimum, Electronics cooling, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 370511138 Maximizing Nitrate Absorption of Agricultural Waste Water in a Tubular Microalgae Reactor by Adapting the Illumination Spectrum
Authors: J. Martin, A. Dannenberg, G. Detrell, R. Ewald, S. Fasoulas
Abstract:
Microalgae-based photobioreactors (PBR) for Life Support Systems (LSS) are currently being investigated for future space missions such as a crewed base on planets or moons. Biological components may help reducing resupply masses by closing material mass flows with the help of regenerative components. Via photosynthesis, the microalgae use CO2, water, light and nutrients to provide oxygen and biomass for the astronauts. These capabilities could have synergies with Earth applications that tackle current problems and the developed technologies can be transferred. For example, a current worldwide discussed issue is the increased nitrate and phosphate pollution of ground water from agricultural waste waters. To investigate the potential use of a biological system based on the ability of the microalgae to extract and use nitrate and phosphate for the treatment of polluted ground water from agricultural applications, a scalable test stand is being developed. This test stand investigates the maximization of intake rates of nitrate and quantifies the produced biomass and oxygen. To minimize the required energy, for the uptake of nitrate from artificial waste water (AWW) the Flashing Light Effect (FLE) and the adaption of the illumination spectrum were realized. This paper describes the composition of the AWW, the development of the illumination unit and the possibility of non-invasive process optimization and control via the adaption of the illumination spectrum and illumination cycles. The findings were a doubling of the energy related growth rate by adapting the illumination setting.
Keywords: Microalgae, illumination, nitrate uptake, flashing light effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 64811137 The Benefits of End-To-End Integrated Planning from the Mine to Client Supply for Minimizing Penalties
Authors: G. Martino, F. Silva, E. Marchal
Abstract:
The control over delivered iron ore blend characteristics is one of the most important aspects of the mining business. The iron ore price is a function of its composition, which is the outcome of the beneficiation process. So, end-to-end integrated planning of mine operations can reduce risks of penalties on the iron ore price. In a standard iron mining company, the production chain is composed of mining, ore beneficiation, and client supply. When mine planning and client supply decisions are made uncoordinated, the beneficiation plant struggles to deliver the best blend possible. Technological improvements in several fields allowed bridging the gap between departments and boosting integrated decision-making processes. Clusterization and classification algorithms over historical production data generate reasonable previsions for quality and volume of iron ore produced for each pile of run-of-mine (ROM) processed. Mathematical modeling can use those deterministic relations to propose iron ore blends that better-fit specifications within a delivery schedule. Additionally, a model capable of representing the whole production chain can clearly compare the overall impact of different decisions in the process. This study shows how flexibilization combined with a planning optimization model between the mine and the ore beneficiation processes can reduce risks of out of specification deliveries. The model capabilities are illustrated on a hypothetical iron ore mine with magnetic separation process. Finally, this study shows ways of cost reduction or profit increase by optimizing process indicators across the production chain and integrating the different plannings with the sales decisions.Keywords: Clusterization and classification algorithms, integrated planning, optimization, mathematical modeling, penalty minimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 64511136 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition
Authors: Yalong Jiang, Zheru Chi
Abstract:
In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.Keywords: CNN, capsule network, capacity optimization, character recognition, data augmentation; semantic segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 70111135 An Improved Greedy Routing Algorithm for Grid using Pheromone-Based Landmarks
Authors: Lada-On Lertsuwanakul, Herwig Unger
Abstract:
This paper objects to extend Jon Kleinberg-s research. He introduced the structure of small-world in a grid and shows with a greedy algorithm using only local information able to find route between source and target in delivery time O(log2n). His fundamental model for distributed system uses a two-dimensional grid with longrange random links added between any two node u and v with a probability proportional to distance d(u,v)-2. We propose with an additional information of the long link nearby, we can find the shorter path. We apply the ant colony system as a messenger distributed their pheromone, the long-link details, in surrounding area. The subsequence forwarding decision has more option to move to, select among local neighbors or send to node has long link closer to its target. Our experiment results sustain our approach, the average routing time by Color Pheromone faster than greedy method.
Keywords: Routing algorithm, Small-World network, Ant Colony Optimization, and Peer-to-peer System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 186111134 Evaluation of Model Evaluation Criterion for Software Development Effort Estimation
Authors: S. K. Pillai, M. K. Jeyakumar
Abstract:
Estimation of model parameters is necessary to predict the behavior of a system. Model parameters are estimated using optimization criteria. Most algorithms use historical data to estimate model parameters. The known target values (actual) and the output produced by the model are compared. The differences between the two form the basis to estimate the parameters. In order to compare different models developed using the same data different criteria are used. The data obtained for short scale projects are used here. We consider software effort estimation problem using radial basis function network. The accuracy comparison is made using various existing criteria for one and two predictors. Then, we propose a new criterion based on linear least squares for evaluation and compared the results of one and two predictors. We have considered another data set and evaluated prediction accuracy using the new criterion. The new criterion is easy to comprehend compared to single statistic. Although software effort estimation is considered, this method is applicable for any modeling and prediction.
Keywords: Software effort estimation, accuracy, Radial Basis Function, linear least squares.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 204111133 Mapping Soil Fertility at Different Scales to Support Sustainable Brazilian Agriculture
Authors: Rachel Bardy Prado, Vinícius de Melo Benites, José Carlos Polidoro, Carlos Eduardo Gonçalves, Alexey Naumov
Abstract:
Most agricultural crops cultivated in Brazil are highly nutrient demanding. Brazilian soils are generally acidic with low base saturation and available nutrients. Demand for fertilizer application has increased because the national agricultural sector expansion. To improve productivity without environmental impact, there is the need for the utilization of novel procedures and techniques to optimize fertilizer application. This includes the digital soil mapping and GIS application applied to mapping in different scales. This paper is based on research, realized during 2005 to 2010 by Brazilian Corporation for Agricultural Research (EMBRAPA) and its partners. The purpose was to map soil fertility in national and regional scales. A soil profile data set in national scale (1:5,000,000) was constructed from the soil archives of Embrapa Soils, Rio de Janeiro and in the regional scale (1:250,000) from COMIGO Cooperative soil data set, Rio Verde, Brazil. The mapping was doing using ArcGIS 9.1 tools from ESRI.Keywords: agricultural sustainability, fertilizer optimization, GIS, soil attributes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 261811132 Accurate Calculation of Free Frequencies of Beams and Rectangular Plates
Authors: R .Lassoued, M. Guenfoud
Abstract:
An accurate procedure to determine free vibrations of beams and plates is presented. The natural frequencies are exact solutions of governing vibration equations witch load to a nonlinear homogeny system. The bilinear and linear structures considered simulate a bridge. The dynamic behavior of this one is analyzed by using the theory of the orthotropic plate simply supported on two sides and free on the two others. The plate can be excited by a convoy of constant or harmonic loads. The determination of the dynamic response of the structures considered requires knowledge of the free frequencies and the shape modes of vibrations. Our work is in this context. Indeed, we are interested to develop a self-consistent calculation of the Eigen frequencies. The formulation is based on the determination of the solution of the differential equations of vibrations. The boundary conditions corresponding to the shape modes permit to lead to a homogeneous system. Determination of the noncommonplace solutions of this system led to a nonlinear problem in Eigen frequencies. We thus, develop a computer code for the determination of the eigenvalues. It is based on a method of bisection with interpolation whose precision reaches 10 -12. Moreover, to determine the corresponding modes, the calculation algorithm that we develop uses the method of Gauss with a partial optimization of the "pivots" combined with an inverse power procedure. The Eigen frequencies of a plate simply supported along two opposite sides while considering the two other free sides are thus analyzed. The results could be generalized with the case of a beam by regarding it as a plate with low width. We give, in this paper, some examples of treated cases. The comparison with results presented in the literature is completely satisfactory.Keywords: Free frequencies, beams, rectangular plates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 219311131 Application of Feed Forward Neural Networks in Modeling and Control of a Fed-Batch Crystallization Process
Authors: Petia Georgieva, Sebastião Feyo de Azevedo
Abstract:
This paper is focused on issues of nonlinear dynamic process modeling and model-based predictive control of a fed-batch sugar crystallization process applying the concept of artificial neural networks as computational tools. The control objective is to force the operation into following optimal supersaturation trajectory. It is achieved by manipulating the feed flow rate of sugar liquor/syrup, considered as the control input. A feed forward neural network (FFNN) model of the process is first built as part of the controller structure to predict the process response over a specified (prediction) horizon. The predictions are supplied to an optimization procedure to determine the values of the control action over a specified (control) horizon that minimizes a predefined performance index. The control task is rather challenging due to the strong nonlinearity of the process dynamics and variations in the crystallization kinetics. However, the simulation results demonstrated smooth behavior of the control actions and satisfactory reference tracking.
Keywords: Feed forward neural network, process modelling, model predictive control, crystallization process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 187511130 Dynamic Programming Based Algorithm for the Unit Commitment of the Transmission-Constrained Multi-Site Combined Heat and Power System
Authors: A. Rong, P. B. Luh, R. Lahdelma
Abstract:
High penetration of intermittent renewable energy sources (RES) such as solar power and wind power into the energy system has caused temporal and spatial imbalance between electric power supply and demand for some countries and regions. This brings about the critical need for coordinating power production and power exchange for different regions. As compared with the power-only systems, the combined heat and power (CHP) systems can provide additional flexibility of utilizing RES by exploiting the interdependence of power and heat production in the CHP plant. In the CHP system, power production can be influenced by adjusting heat production level and electric power can be used to satisfy heat demand by electric boiler or heat pump in conjunction with heat storage, which is much cheaper than electric storage. This paper addresses multi-site CHP systems without considering RES, which lay foundation for handling penetration of RES. The problem under study is the unit commitment (UC) of the transmission-constrained multi-site CHP systems. We solve the problem by combining linear relaxation of ON/OFF states and sequential dynamic programming (DP) techniques, where relaxed states are used to reduce the dimension of the UC problem and DP for improving the solution quality. Numerical results for daily scheduling with realistic models and data show that DP-based algorithm is from a few to a few hundred times faster than CPLEX (standard commercial optimization software) with good solution accuracy (less than 1% relative gap from the optimal solution on the average).Keywords: Dynamic programming, multi-site combined heat and power system, relaxed states, transmission-constrained generation unit commitment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 168511129 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks
Authors: Wang Yichen, Haruka Yamashita
Abstract:
In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.Keywords: Recurrent Neural Network, players lineup, basketball data, decision making model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 82911128 A Geospatial Consumer Marketing Campaign Optimization Strategy: Case of Fuzzy Approach in Nigeria Mobile Market
Authors: Adeolu O. Dairo
Abstract:
Getting the consumer marketing strategy right is a crucial and complex task for firms with a large customer base such as mobile operators in a competitive mobile market. While empirical studies have made efforts to identify key constructs, no geospatial model has been developed to comprehensively assess the viability and interdependency of ground realities regarding the customer, competition, channel and the network quality of mobile operators. With this research, a geo-analytic framework is proposed for strategy formulation and allocation for mobile operators. Firstly, a fuzzy analytic network using a self-organizing feature map clustering technique based on inputs from managers and literature, which depicts the interrelationships amongst ground realities is developed. The model is tested with a mobile operator in the Nigeria mobile market. As a result, a customer-centric geospatial and visualization solution is developed. This provides a consolidated and integrated insight that serves as a transparent, logical and practical guide for strategic, tactical and operational decision making.
Keywords: Geospatial, geo-analytics, self-organizing map, customer-centric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 813