Search results for: topological optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1917

Search results for: topological optimization

1827 The Synthetic T2 Quality Control Chart and its Multi-Objective Optimization

Authors: Francisco Aparisi, Marco A. de Luna

Abstract:

In some real applications of Statistical Process Control it is necessary to design a control chart to not detect small process shifts, but keeping a good performance to detect moderate and large shifts in the quality. In this work we develop a new quality control chart, the synthetic T2 control chart, that can be designed to cope with this objective. A multi-objective optimization is carried out employing Genetic Algorithms, finding the Pareto-optimal front of non-dominated solutions for this optimization problem.

Keywords: Multi-objective optimization, Quality Control, SPC, Synthetic T2 control chart.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558
1826 Improvement of Gregory's formula using Particle Swarm Optimization

Authors: N. Khelil. L. Djerou , A. Zerarka, M. Batouche

Abstract:

Consider the Gregory integration (G) formula with end corrections where h Δ is the forward difference operator with step size h. In this study we prove that can be optimized by minimizing some of the coefficient k a in the remainder term by particle swarm optimization. Experimental tests prove that can be rendered a powerful formula for library use.

Keywords: Numerical integration, Gregory Formula, Particle Swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1379
1825 A Hybrid Particle Swarm Optimization-Nelder- Mead Algorithm (PSO-NM) for Nelson-Siegel- Svensson Calibration

Authors: Sofia Ayouche, Rachid Ellaia, Rajae Aboulaich

Abstract:

Today, insurers may use the yield curve as an indicator evaluation of the profit or the performance of their portfolios; therefore, they modeled it by one class of model that has the ability to fit and forecast the future term structure of interest rates. This class of model is the Nelson-Siegel-Svensson model. Unfortunately, many authors have reported a lot of difficulties when they want to calibrate the model because the optimization problem is not convex and has multiple local optima. In this context, we implement a hybrid Particle Swarm optimization and Nelder Mead algorithm in order to minimize by least squares method, the difference between the zero-coupon curve and the NSS curve.

Keywords: Optimization, zero-coupon curve, Nelson-Siegel- Svensson, Particle Swarm Optimization, Nelder-Mead Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
1824 Performance Comparison of Prim’s and Ant Colony Optimization Algorithm to Select Shortest Path in Case of Link Failure

Authors: Rimmy Yadav, Avtar Singh

Abstract:

Ant Colony Optimization (ACO) is a promising modern approach to the unused combinatorial optimization. Here ACO is applied to finding the shortest during communication link failure. In this paper, the performances of the prim’s and ACO algorithm are made. By comparing the time complexity and program execution time as set of parameters, we demonstrate the pleasant performance of ACO in finding excellent solution to finding shortest path during communication link failure.

Keywords: Ant colony optimization, link failure, prim’s algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184
1823 Combined Simulated Annealing and Genetic Algorithm to Solve Optimization Problems

Authors: Younis R. Elhaddad

Abstract:

Combinatorial optimization problems arise in many scientific and practical applications. Therefore many researchers try to find or improve different methods to solve these problems with high quality results and in less time. Genetic Algorithm (GA) and Simulated Annealing (SA) have been used to solve optimization problems. Both GA and SA search a solution space throughout a sequence of iterative states. However, there are also significant differences between them. The GA mechanism is parallel on a set of solutions and exchanges information using the crossover operation. SA works on a single solution at a time. In this work SA and GA are combined using new technique in order to overcome the disadvantages' of both algorithms.

Keywords: Genetic Algorithm, Optimization problems, Simulated Annealing, Traveling Salesman Problem

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3440
1822 Cognitive Virtual Exploration for Optimization Model Reduction

Authors: Livier Serna, Xavier Fischer, Fouad Bennis

Abstract:

In this paper, a decision aid method for preoptimization is presented. The method is called “negotiation", and it is based on the identification, formulation, modeling and use of indicators defined as “negotiation indicators". These negotiation indicators are used to explore the solution space by means of a classbased approach. The classes are subdomains for the negotiation indicators domain. They represent equivalent cognitive solutions in terms of the negotiation indictors being used. By this method, we reduced the size of the solution space and the criteria, thus aiding the optimization methods. We present an example to show the method.

Keywords: Optimization Model Reduction, Pre-Optimization, Negotiation Process, Class-Making, Cognition Based VirtualExploration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
1821 Rational Structure of Panel with Curved Plywood Ribs

Authors: Janis Šliseris, Karlis Rocens

Abstract:

Optimization of rational geometrical and mechanical parameters of panel with curved plywood ribs is considered in this paper. The panel consists of cylindrical plywood ribs manufactured from Finish plywood, upper and bottom plywood flange, stiffness diaphragms. Panel is filled with foam. Minimal ratio of structure self weight and load that could be applied to structure is considered as rationality criteria. Optimization is done, by using classical beam theory without nonlinearities. Optimization of discreet design variables is done by Genetic algorithm.

Keywords: Curved plywood ribs, genetic algorithm, rationalparameters of ribbed panel, structure optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1737
1820 Thermodynamic Optimization of Turboshaft Engine using Multi-Objective Genetic Algorithm

Authors: S. Farahat, E. Khorasani Nejad, S. M. Hoseini Sarvari

Abstract:

In this paper multi-objective genetic algorithms are employed for Pareto approach optimization of ideal Turboshaft engines. In the multi-objective optimization a number of conflicting objective functions are to be optimized simultaneously. The important objective functions that have been considered for optimization are specific thrust (F/m& 0), specific fuel consumption ( P S ), output shaft power 0 (& /&) shaft W m and overall efficiency( ) O η . These objectives are usually conflicting with each other. The design variables consist of thermodynamic parameters (compressor pressure ratio, turbine temperature ratio and Mach number). At the first stage single objective optimization has been investigated and the method of NSGA-II has been used for multiobjective optimization. Optimization procedures are performed for two and four objective functions and the results are compared for ideal Turboshaft engine. In order to investigate the optimal thermodynamic behavior of two objectives, different set, each including two objectives of output parameters, are considered individually. For each set Pareto front are depicted. The sets of selected decision variables based on this Pareto front, will cause the best possible combination of corresponding objective functions. There is no superiority for the points on the Pareto front figure, but they are superior to any other point. In the case of four objective optimization the results are given in tables.

Keywords: Multi-objective, Genetic algorithm, Turboshaft Engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
1819 Engineering Optimization Using Two-Stage Differential Evolution

Authors: K. Y. Tseng, C. Y. Wu

Abstract:

This paper employs a heuristic algorithm to solve engineering problems including truss structure optimization and optimal chiller loading (OCL) problems. Two different type algorithms, real-valued differential evolution (DE) and modified binary differential evolution (MBDE), are successfully integrated and then can obtain better performance in solving engineering problems. In order to demonstrate the performance of the proposed algorithm, this study adopts each one testing case of truss structure optimization and OCL problems to compare the results of other heuristic optimization methods. The result indicates that the proposed algorithm can obtain similar or better solution in comparing with previous studies.

Keywords: Differential evolution, truss structure optimization, optimal chiller loading, modified binary differential evolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 707
1818 Experimental Modal Analysis and Model Validation of Antenna Structures

Authors: B.R. Potgieter, G. Venter

Abstract:

Numerical design optimization is a powerful tool that can be used by engineers during any stage of the design process. There are many different applications for structural optimization. A specific application that will be discussed in the following paper is experimental data matching. Data obtained through tests on a physical structure will be matched with data from a numerical model of that same structure. The data of interest will be the dynamic characteristics of an antenna structure focusing on the mode shapes and modal frequencies. The structure used was a scaled and simplified model of the Karoo Array Telescope-7 (KAT-7) antenna structure. This kind of data matching is a complex and difficult task. This paper discusses how optimization can assist an engineer during the process of correlating a finite element model with vibration test data.

Keywords: Finite Element Model (FEM), Karoo Array Telescope(KAT-7), modal frequencies, mode shapes, optimization, shape optimization, size optimization, vibration tests

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851
1817 Chemical Reaction Algorithm for Expectation Maximization Clustering

Authors: Li Ni, Pen ManMan, Li KenLi

Abstract:

Clustering is an intensive research for some years because of its multifaceted applications, such as biology, information retrieval, medicine, business and so on. The expectation maximization (EM) is a kind of algorithm framework in clustering methods, one of the ten algorithms of machine learning. Traditionally, optimization of objective function has been the standard approach in EM. Hence, research has investigated the utility of evolutionary computing and related techniques in the regard. Chemical Reaction Optimization (CRO) is a recently established method. So the property embedded in CRO is used to solve optimization problems. This paper presents an algorithm framework (EM-CRO) with modified CRO operators based on EM cluster problems. The hybrid algorithm is mainly to solve the problem of initial value sensitivity of the objective function optimization clustering algorithm. Our experiments mainly take the EM classic algorithm:k-means and fuzzy k-means as an example, through the CRO algorithm to optimize its initial value, get K-means-CRO and FKM-CRO algorithm. The experimental results of them show that there is improved efficiency for solving objective function optimization clustering problems.

Keywords: Chemical reaction optimization, expectation maximization, initial, objective function clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293
1816 Engineering Topology of Photonic Systems for Sustainable Molecular Structure: Autopoiesis Systems

Authors: Moustafa Osman Mohammed

Abstract:

This paper introduces topological order in descried social systems starting with the original concept of autopoiesis by biologists and scientists, including the modification of general systems based on socialized medicine. Topological order is important in describing the physical systems for exploiting optical systems and improving photonic devices. The stats of topologically order have some interesting properties of topological degeneracy and fractional statistics that reveal the entanglement origin of topological order, etc. Topological ideas in photonics form exciting developments in solid-state materials, that being; insulating in the bulk, conducting electricity on their surface without dissipation or back-scattering, even in the presence of large impurities. A specific type of autopoiesis system is interrelated to the main categories amongst existing groups of the ecological phenomena interaction social and medical sciences. The hypothesis, nevertheless, has a nonlinear interaction with its natural environment ‘interactional cycle’ for exchange photon energy with molecules without changes in topology (i.e., chemical transformation into products do not propagate any changes or variation in the network topology of physical configuration). The engineering topology of a biosensor is based on the excitation boundary of surface electromagnetic waves in photonic band gap multilayer films. The device operation is similar to surface Plasmonic biosensors in which a photonic band gap film replaces metal film as the medium when surface electromagnetic waves are excited. The use of photonic band gap film offers sharper surface wave resonance leading to the potential of greatly enhanced sensitivity. So, the properties of the photonic band gap material are engineered to operate a sensor at any wavelength and conduct a surface wave resonance that ranges up to 470 nm. The wavelength is not generally accessible with surface Plasmon sensing. Lastly, the photonic band gap films have robust mechanical functions that offer new substrates for surface chemistry to understand the molecular design structure, and create sensing chips surface with different concentrations of DNA sequences in the solution to observe and track the surface mode resonance under the influences of processes that take place in the spectroscopic environment. These processes led to the development of several advanced analytical technologies, which are automated, real-time, reliable, reproducible and cost-effective. This results in faster and more accurate monitoring and detection of biomolecules on refractive index sensing, antibody–antigen reactions with a DNA or protein binding. Ultimately, the controversial aspect of molecular frictional properties is adjusted to each other in order to form unique spatial structure and dynamics of biological molecules for providing the environment mutual contribution in investigation of changes due the pathogenic archival architecture of cell clusters.

Keywords: autopoiesis, engineering topology, photonic system molecular structure, biosensor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 474
1815 Performance Analysis of MATLAB Solvers in the Case of a Quadratic Programming Generation Scheduling Optimization Problem

Authors: Dávid Csercsik, Péter Kádár

Abstract:

In the case of the proposed method, the problem is parallelized by considering multiple possible mode of operation profiles, which determine the range in which the generators operate in each period. For each of these profiles, the optimization is carried out independently, and the best resulting dispatch is chosen. For each such profile, the resulting problem is a quadratic programming (QP) problem with a potentially negative definite Q quadratic term, and constraints depending on the actual operation profile. In this paper we analyze the performance of available MATLAB optimization methods and solvers for the corresponding QP.

Keywords: Economic dispatch, optimization, quadratic programming, MATLAB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948
1814 Non-Convex Multi Objective Economic Dispatch Using Ramp Rate Biogeography Based Optimization

Authors: Susanta Kumar Gachhayat, S. K. Dash

Abstract:

Multi objective non-convex economic dispatch problems of a thermal power plant are of grave concern for deciding the cost of generation and reduction of emission level for diminishing the global warming level for improving green-house effect. This paper deals with ramp rate constraints for achieving better inequality constraints so as to incorporate valve point loading for cost of generation in thermal power plant through ramp rate biogeography based optimization involving mutation and migration. Through 50 out of 100 trials, the cost function and emission objective function were found to have outperformed other classical methods such as lambda iteration method, quadratic programming method and many heuristic methods like particle swarm optimization method, weight improved particle swarm optimization method, constriction factor based particle swarm optimization method, moderate random particle swarm optimization method etc. Ramp rate biogeography based optimization applications prove quite advantageous in solving non convex multi objective economic dispatch problems subjected to nonlinear loads that pollute the source giving rise to third harmonic distortions and other such disturbances.

Keywords: Economic load dispatch, Biogeography based optimization, Ramp rate biogeography based optimization, Valve Point loading, Moderate random particle swarm optimization method, Weight improved particle swarm optimization method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1050
1813 Slime Mould Optimization Algorithms for Optimal Distributed Generation Integration in Distribution Electrical Network

Authors: F. Fissou Amigue, S. Ndjakomo Essiane, S. Pérabi Ngoffé, G. Abessolo Ondoa, G. Mengata Mengounou, T. P. Nna Nna

Abstract:

This document proposes a method for determining the optimal point of integration of distributed generation (DG) in distribution grid. Slime mould optimization is applied to determine best node in case of one and two injection point. Problem has been modeled as an optimization problem where the objective is to minimize joule loses and main constraint is to regulate voltage in each point. The proposed method has been implemented in MATLAB and applied in IEEE network 33 and 69 nodes. Comparing results obtained with other algorithms showed that slime mould optimization algorithms (SMOA) have the best reduction of power losses and good amelioration of voltage profile.

Keywords: Optimization, distributed generation, integration, slime mould algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 643
1812 Improved Hill Climbing and Simulated Annealing Algorithms for Size Optimization of Trusses

Authors: Morteza Kazemi Torbaghan, Seyed Mehran Kazemi, Rahele Zhiani, Fakhriye Hamed

Abstract:

Truss optimization problem has been vastly studied during the past 30 years and many different methods have been proposed for this problem. Even though most of these methods assume that the design variables are continuously valued, in reality, the design variables of optimization problems such as cross-sectional areas are discretely valued. In this paper, an improved hill climbing and an improved simulated annealing algorithm have been proposed to solve the truss optimization problem with discrete values for crosssectional areas. Obtained results have been compared to other methods in the literature and the comparison represents that the proposed methods can be used more efficiently than other proposed methods

Keywords: Size Optimization of Trusses, Hill Climbing, Simulated Annealing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3715
1811 A Simple Adaptive Algorithm for Norm-Constrained Optimization

Authors: Hyun-Chool Shin

Abstract:

In this paper we propose a simple adaptive algorithm iteratively solving the unit-norm constrained optimization problem. Instead of conventional parameter norm based normalization, the proposed algorithm incorporates scalar normalization which is computationally much simpler. The analysis of stationary point is presented to show that the proposed algorithm indeed solves the constrained optimization problem. The simulation results illustrate that the proposed algorithm performs as good as conventional ones while being computationally simpler.

Keywords: constrained optimization, unit-norm, LMS, principle component analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127
1810 Towards Growing Self-Organizing Neural Networks with Fixed Dimensionality

Authors: Guojian Cheng, Tianshi Liu, Jiaxin Han, Zheng Wang

Abstract:

The competitive learning is an adaptive process in which the neurons in a neural network gradually become sensitive to different input pattern clusters. The basic idea behind the Kohonen-s Self-Organizing Feature Maps (SOFM) is competitive learning. SOFM can generate mappings from high-dimensional signal spaces to lower dimensional topological structures. The main features of this kind of mappings are topology preserving, feature mappings and probability distribution approximation of input patterns. To overcome some limitations of SOFM, e.g., a fixed number of neural units and a topology of fixed dimensionality, Growing Self-Organizing Neural Network (GSONN) can be used. GSONN can change its topological structure during learning. It grows by learning and shrinks by forgetting. To speed up the training and convergence, a new variant of GSONN, twin growing cell structures (TGCS) is presented here. This paper first gives an introduction to competitive learning, SOFM and its variants. Then, we discuss some GSONN with fixed dimensionality, which include growing cell structures, its variants and the author-s model: TGCS. It is ended with some testing results comparison and conclusions.

Keywords: Artificial neural networks, Competitive learning, Growing cell structures, Self-organizing feature maps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
1809 Phase Control Array Synthesis Using Constrained Accelerated Particle Swarm Optimization

Authors: Mohammad Taha, Dia abu al Nadi

Abstract:

In this paper, the phase control antenna array synthesis is presented. The problem is formulated as a constrained optimization problem that imposes nulls with prescribed level while maintaining the sidelobe at a prescribed level. For efficient use of the algorithm memory, compared to the well known Particle Swarm Optimization (PSO), the Accelerated Particle Swarm Optimization (APSO) is used to estimate the phase parameters of the synthesized array. The objective function is formed using a main objective and set of constraints with penalty factors that measure the violation of each feasible solution in the search space to each constraint. In this case the obtained feasible solution is guaranteed to satisfy all the constraints. Simulation results have shown significant performance increases and a decreased randomness in the parameter search space compared to a single objective conventional particle swarm optimization.

Keywords: Array synthesis, Sidelobe level control, Constrainedoptimization, Accelerated Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
1808 Stock Portfolio Selection Using Chemical Reaction Optimization

Authors: Jin Xu, Albert Y.S. Lam, Victor O.K. Li

Abstract:

Stock portfolio selection is a classic problem in finance, and it involves deciding how to allocate an institution-s or an individual-s wealth to a number of stocks, with certain investment objectives (return and risk). In this paper, we adopt the classical Markowitz mean-variance model and consider an additional common realistic constraint, namely, the cardinality constraint. Thus, stock portfolio optimization becomes a mixed-integer quadratic programming problem and it is difficult to be solved by exact optimization algorithms. Chemical Reaction Optimization (CRO), which mimics the molecular interactions in a chemical reaction process, is a population-based metaheuristic method. Two different types of CRO, named canonical CRO and Super Molecule-based CRO (S-CRO), are proposed to solve the stock portfolio selection problem. We test both canonical CRO and S-CRO on a benchmark and compare their performance under two criteria: Markowitz efficient frontier (Pareto frontier) and Sharpe ratio. Computational experiments suggest that S-CRO is promising in handling the stock portfolio optimization problem.

Keywords: Stock portfolio selection, Markowitz model, Chemical Reaction Optimization, Sharpe ratio

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074
1807 Operating Conditions Optimization of Steam Injection in Enhanced Oil Recovery Using Duelist Algorithm

Authors: Totok R. Biyanto, Sonny Irawan, Hiskia J. Ginting, Matradji, Ya’umar, A. I. Fitri

Abstract:

Steam injection is the most suitable of Enhanced Oil Recovery (EOR) methods to recover high viscosity oil. This is due to the capabilities of steam to reduce oil viscosity and increase the sweep capability of oil from the injection well toward the production well. Oil operating conditions in production should be match well with the operating condition target at the bottom of the production well. It is influenced by oil properties and reservoir rock properties. Hence, the operating condition should be optimized. Optimization requires three components i.e., objective function, model, and optimization technique. In this paper, the objective function is to obtain the optimum operating condition at the production well. The model was built using Darcy equation and mass-energy balance. The optimization technique utilizes Duelist Algorithm due to the effectiveness of its algorithm to obtain the desirable optimization results at the optimum operating condition.

Keywords: Enhanced oil recovery, steam injection, operating conditions, modeling, optimization, Duelist algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576
1806 Optimization of Passive Vibration Damping of Space Structures

Authors: Emad Askar, Eldesoky Elsoaly, Mohamed Kamel, Hisham Kamel

Abstract:

The objective of this article is to improve the passive vibration damping of solar array (SA) used in space structures, by the effective application of numerical optimization. A case study of a SA is used for demonstration. A finite element (FE) model was created and verified by experimental testing. Optimization was then conducted by implementing the FE model with the genetic algorithm, to find the optimal placement of aluminum circular patches, to suppress the first two bending mode shapes. The results were verified using experimental testing. Finally, a parametric study was conducted using the FE model where patch locations, material type, and shape were varied one at a time, and the results were compared with the optimal ones. The results clearly show that through the proper application of FE modeling and numerical optimization, passive vibration damping of space structures has been successfully achieved.

Keywords: Damping optimization, genetic algorithm optimization, passive vibration damping, solar array vibration damping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1197
1805 Optimal DG Allocation in Distribution Network

Authors: A. Safari, R. Jahani, H. A. Shayanfar, J. Olamaei

Abstract:

This paper shows the results obtained in the analysis of the impact of distributed generation (DG) on distribution losses and presents a new algorithm to the optimal allocation of distributed generation resources in distribution networks. The optimization is based on a Hybrid Genetic Algorithm and Particle Swarm Optimization (HGAPSO) aiming to optimal DG allocation in distribution network. Through this algorithm a significant improvement in the optimization goal is achieved. With a numerical example the superiority of the proposed algorithm is demonstrated in comparison with the simple genetic algorithm.

Keywords: Distributed Generation, Distribution Networks, Genetic Algorithm, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2703
1804 Community Detection-based Analysis of the Human Interactome Network

Authors: Razvan Bocu, Sabin Tabirca

Abstract:

The study of proteomics reached unexpected levels of interest, as a direct consequence of its discovered influence over some complex biological phenomena, such as problematic diseases like cancer. This paper presents a new technique that allows for an accurate analysis of the human interactome network. It is basically a two-step analysis process that involves, at first, the detection of each protein-s absolute importance through the betweenness centrality computation. Then, the second step determines the functionallyrelated communities of proteins. For this purpose, we use a community detection technique that is based on the edge betweenness calculation. The new technique was thoroughly tested on real biological data and the results prove some interesting properties of those proteins that are involved in the carcinogenesis process. Apart from its experimental usefulness, the novel technique is also computationally effective in terms of execution times. Based on the analysis- results, some topological features of cancer mutated proteins are presented and a possible optimization solution for cancer drugs design is suggested.

Keywords: Betweenness centrality, interactome networks, proteinprotein interactions, protein communities, cancer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1292
1803 An Intelligent Optimization Model for Multi-objective Order Allocation Planning

Authors: W. K. Wong, Z. X. Guo, P.Y. Mok

Abstract:

This paper presents a multi-objective order allocation planning problem with the consideration of various real-world production features. A novel hybrid intelligent optimization model, integrating a multi-objective memetic optimization process, a Monte Carlo simulation technique and a heuristic pruning technique, is proposed to handle this problem. Experiments based on industrial data are conducted to validate the proposed model. Results show that (1) the proposed model can effectively solve the investigated problem by providing effective production decision-making solutions, which outperformsan NSGA-II-based optimization process and an industrial method.

Keywords: Multi-objective order allocation planning, Pareto optimization, Memetic algorithm, Mento Carlo simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
1802 PID Parameter Optimization of an UAV Longitudinal Flight Control System

Authors: Kamran Turkoglu, Ugur Ozdemir, Melike Nikbay, Elbrous M. Jafarov

Abstract:

In this paper, an automatic control system design based on Integral Squared Error (ISE) parameter optimization technique has been implemented on longitudinal flight dynamics of an UAV. It has been aimed to minimize the error function between the reference signal and the output of the plant. In the following parts, objective function has been defined with respect to error dynamics. An unconstrained optimization problem has been solved analytically by using necessary and sufficient conditions of optimality, optimum PID parameters have been obtained and implemented in control system dynamics.

Keywords: Optimum Design, KKT Conditions, UAV, Longitudinal Flight Dynamics, ISE Parameter Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3745
1801 Structural Design Strategy of Double-Eccentric Butterfly Valve using Topology Optimization Techniques

Authors: Jun-Oh Kim, Seol-Min Yang, Seok-Heum Baek, Sangmo Kang

Abstract:

In this paper, the shape design process is briefly discussed emphasizing the use of topology optimization in the conceptual design stage. The basic idea is to view feasible domains for sensitivity region concepts. In this method, the main process consists of two steps: as the design moves further inside the feasible domain using Taguchi method, and thus becoming more successful topology optimization, the sensitivity region becomes larger. In designing a double-eccentric butterfly valve, related to hydrodynamic performance and disc structure, are discussed where the use of topology optimization has proven to dramatically improve an existing design and significantly decrease the development time of a shape design. Computational Fluid Dynamics (CFD) analysis results demonstrate the validity of this approach.

Keywords: Double-eccentric butterfly valve, CFD, Topology optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3543
1800 Optimization for Reducing Handoff Latency and Utilization of Bandwidth in ATM Networks

Authors: Pooja, Megha Kulshrestha, V. K. Banga, Parvinder S. Sandhu

Abstract:

To support mobility in ATM networks, a number of technical challenges need to be resolved. The impact of handoff schemes in terms of service disruption, handoff latency, cost implications and excess resources required during handoffs needs to be addressed. In this paper, a one phase handoff and route optimization solution using reserved PVCs between adjacent ATM switches to reroute connections during inter-switch handoff is studied. In the second phase, a distributed optimization process is initiated to optimally reroute handoff connections. The main objective is to find the optimal operating point at which to perform optimization subject to cost constraint with the purpose of reducing blocking probability of inter-switch handoff calls for delay tolerant traffic. We examine the relation between the required bandwidth resources and optimization rate. Also we calculate and study the handoff blocking probability due to lack of bandwidth for resources reserved to facilitate the rapid rerouting.

Keywords: Wireless ATM, Mobility, Latency, Optimization rateand Blocking Probability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443
1799 Comparison of Particle Swarm Optimization and Genetic Algorithm for TCSC-based Controller Design

Authors: Sidhartha Panda, N. P. Padhy

Abstract:

Recently, genetic algorithms (GA) and particle swarm optimization (PSO) technique have attracted considerable attention among various modern heuristic optimization techniques. Since the two approaches are supposed to find a solution to a given objective function but employ different strategies and computational effort, it is appropriate to compare their performance. This paper presents the application and performance comparison of PSO and GA optimization techniques, for Thyristor Controlled Series Compensator (TCSC)-based controller design. The design objective is to enhance the power system stability. The design problem of the FACTS-based controller is formulated as an optimization problem and both the PSO and GA optimization techniques are employed to search for optimal controller parameters. The performance of both optimization techniques in terms of computational time and convergence rate is compared. Further, the optimized controllers are tested on a weakly connected power system subjected to different disturbances, and their performance is compared with the conventional power system stabilizer (CPSS). The eigenvalue analysis and non-linear simulation results are presented and compared to show the effectiveness of both the techniques in designing a TCSC-based controller, to enhance power system stability.

Keywords: Thyristor Controlled Series Compensator, geneticalgorithm; particle swarm optimization; Phillips-Heffron model;power system stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3152
1798 Hybrid Adaptive Modeling to Enhance Robustness of Real-Time Optimization

Authors: Hussain Syed Asad, Richard Kwok Kit Yuen, Gongsheng Huang

Abstract:

Real-time optimization has been considered an effective approach for improving energy efficient operation of heating, ventilation, and air-conditioning (HVAC) systems. In model-based real-time optimization, model mismatches cannot be avoided. When model mismatches are significant, the performance of the real-time optimization will be impaired and hence the expected energy saving will be reduced. In this paper, the model mismatches for chiller plant on real-time optimization are considered. In the real-time optimization of the chiller plant, simplified semi-physical or grey box model of chiller is always used, which should be identified using available operation data. To overcome the model mismatches associated with the chiller model, hybrid Genetic Algorithms (HGAs) method is used for online real-time training of the chiller model. HGAs combines Genetic Algorithms (GAs) method (for global search) and traditional optimization method (i.e. faster and more efficient for local search) to avoid conventional hit and trial process of GAs. The identification of model parameters is synthesized as an optimization problem; and the objective function is the Least Square Error between the output from the model and the actual output from the chiller plant. A case study is used to illustrate the implementation of the proposed method. It has been shown that the proposed approach is able to provide reliability in decision making, enhance the robustness of the real-time optimization strategy and improve on energy performance.

Keywords: Energy performance, hybrid adaptive modeling, hybrid genetic algorithms, real-time optimization, heating, ventilation, and air-conditioning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1139