Search results for: monsoon seasons
25 Surface and Drinking Water Quality Monitoring of Thomas Reservoir, Kano State, Nigeria
Authors: G. A. Adamu, M. S. Sallau, S. O. Idris, E. B. Agbaji
Abstract:
Drinking water is supplied to Danbatta, Makoda and some parts of Minjibir local government areas of Kano State from the surface water of Thomas Reservoir. The present land use in the catchment area of the reservoir indicates high agricultural activities, fishing, as well as domestic and small scale industrial activities. To study and monitor the quality of surface and drinking water of the area, water samples were collected from the reservoir, treated water at the treatment plant and potable water at the consumer end in three seasons November - February (cold season), March - June (dry season) and July - September (rainy season). The samples were analyzed for physical and chemical parameters, pH, temperature, total dissolved solids (TDS), conductivity, turbidity, total hardness, suspended solids, total solids, colour, dissolved oxygen (DO), biological oxygen demand (BOD), chloride ion (Cl-) nitrite (NO2-), nitrate (NO3-), chemical oxygen demand (COD) and phosphate (PO43-). The higher values obtained in some parameters with respect to the acceptable standard set by World Health Organization (WHO) and Nigerian Industrial Standards (NIS) indicate the pollution of both the surface and drinking water. These pollutants were observed to have a negative impact on water quality in terms of eutrophication, largely due to anthropogenic activities in the watershed.
Keywords: Surface water, drinking water, water quality, pollution, Thomas reservoir, Kano.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153124 Long-Term Monitoring and Seasonal Analysis of PM10-Bound Benzo(a)pyrene in the Ambient Air of Northwestern Hungary
Authors: Zs. Csanádi, A. Szabó Nagy, J. Szabó, J. Erdős
Abstract:
Atmospheric aerosols have several important environmental impacts and health effects in point of air quality. Monitoring the PM10-bound polycyclic aromatic hydrocarbons (PAHs) could have important environmental significance and health protection aspects. Benzo(a)pyrene (BaP) is the most relevant indicator of these PAH compounds. In Hungary, the Hungarian Air Quality Network provides air quality monitoring data for several air pollutants including BaP, but these data show only the annual mean concentrations and maximum values. Seasonal variation of BaP concentrations comparing the heating and non-heating periods could have important role and difference as well. For this reason, the main objective of this study was to assess the annual concentration and seasonal variation of BaP associated with PM10 in the ambient air of Northwestern Hungary seven different sampling sites (six urban and one rural) in the sampling period of 2008–2013. A total of 1475 PM10 aerosol samples were collected in the different sampling sites and analyzed for BaP by gas chromatography method. The BaP concentrations ranged from undetected to 8 ng/m3 with the mean value range of 0.50-0.96 ng/m3 referring to all sampling sites. Relatively higher concentrations of BaP were detected in samples collected in each sampling site in the heating seasons compared with non-heating periods. The annual mean BaP concentrations were comparable with the published data of the other Hungarian sites.Keywords: Air quality, benzo(a)pyrene, PAHs, polycyclic aromatic hydrocarbons.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 140423 Effects of Sole and Integrated Application of Cocoa Pod Ash and Poultry Manure on Soil Properties and Leaf Nutrient Composition and Performance of White Yam
Authors: T. M. Agbede, A. O. Adekiya
Abstract:
Field experiments were conducted during 2013, 2014 and 2015 cropping seasons at Rufus Giwa Polytechnic, Owo, Ondo State, southwest Nigeria. The objective of the investigation was to determine the effect of Cocoa Pod Ash (CPA) and Poultry Manure (PM) applied solely and their combined form, as sources of fertilizers on soil properties, leaf nutrient composition, growth and yield of yam. Three soil amendments: CPA, PM (sole forms), CPA and PM (mixture), were applied at 20 t ha-1 with an inorganic fertilizer (NPK 15-15-15) at 400 kg ha-1 as a reference and a natural soil fertility, NSF (control). The five treatments were arranged in a randomized complete block design with three replications. The test soil was slightly acidic, low in organic carbon (OC), N, P, K, Ca and Mg. Results showed that soil amendments significantly increased (p = 0.05) tuber weights and growth of yam, soil and leaf N, P, K, Ca and Mg, soil pH and OC concentrations compared with the NSF (control). The mixture of CPA+PM treatment increased tuber weights of yam by 36%, compared with inorganic fertilizer (NPK) and 19%, compared with PM alone. Sole PM increased tuber weight of yam by 15%, compared with NPK. Sole or mixed forms of soil amendments showed remarkable improvement in soil physical properties, nutrient availability, compared with NPK and the NSF (control). Integrated application of CPA at 10 t ha-1 + PM at 10 t ha-1 was the most effective treatment in improving soil physical properties, increasing nutrient availability and yam performance than sole application of any of the fertilizer materials.
Keywords: Cocoa pod ash, leaf nutrient composition, poultry manure, soil properties, yam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 139922 Analysis of Highway Slope Failure by an Application of the Stereographic Projection
Authors: Chin-Yu Lee, Iau-Teh Wang
Abstract:
The mountain road slope failures triggered by earthquake activities and torrential rain namely to create the disaster. Province Road No. 24 is a main route to the Wutai Township. The area of the study is located at the mileages between 46K and 47K along the road. However, the road has been suffered frequent damages as a result of landslide and slope failures during typhoon seasons. An understanding of the sliding behaviors in the area appears to be necessary. Slope failures triggered by earthquake activities and heavy rainfalls occur frequently. The study is to understand the mechanism of slope failures and to look for the way to deal with the situation. In order to achieve these objectives, this paper is based on theoretical and structural geology data interpretation program to assess the potential slope sliding behavior. The study showed an intimate relationship between the landslide behavior of the slopes and the stratum materials, based on structural geology analysis method to analysis slope stability and finds the slope safety coefficient to predict the sites of destroyed layer. According to the case study and parameter analyses results, the slope mainly slips direction compared to the site located in the southeast area. Find rainfall to result in the rise of groundwater level is main reason of the landslide mechanism. Future need to set up effective horizontal drain at corrective location, that can effective restrain mountain road slope failures and increase stability of slope.Keywords: slope stability analysis, Stereographic Projection, wedge Failure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 468721 Use of GIS for the Performance Evaluation of Canal Irrigation System in Rice Wheat Cropping Zone
Authors: Umm-e- Kalsoom, M. Arshad, Sadia Iqbal, M. Usman, M. Adnan
Abstract:
The research study evaluated the performance of irrigation system by using special scientific tools like Remote Sensing and GIS technology, so that proper measurements could be taken for the sustainable agriculture and water management. Different performance evaluation parameters had been calculated for the purposed data was gathered from field investigation and different government and private organizations. According to the calculations, organic matter ranges from 0.19% (low value) to 0.76% (high value). In flat irrigation system for wheat yield ranges from 3347.16 to 5260.39 kg/ha, while the total water applied to wheat crop ranges from 252.94 to 279.19 mm and WUE ranges from 13.07 to 18.37 kg/ha/mm. For rice yield ranges from 3347.47 to 5433.07 kg/ha with total water supplied to rice crop ranges from 764.71 to 978.15 mm and WUE ranges from 3.49 to 5.71 kg/ha/mm. Similarly, in raised bed system wheat yield ranges from 4569.13 to 6008.60 kg/ha, total water supplied ranges from 158.87 to 185.09 mm and WUE ranges from 27.20 to 33.54 kg/ha/mm while in rice crop, yield ranges from 5285.04 to 6716.69 kg/ha, total water supplied ranges from 600.72 to 755.06 mm and WUE ranges from 6.41 to 10.05 kg/ha/mm. Almost 51.3% water saving is observed in bed irrigation system as compared to flat system. Less water supplied to beds is more affective as its WUE value is higher than flat system where more water is supplied in both the seasons. Similarly, RWS values show that maximum water deficit while minimum area is getting adequate water supply. Greater yield is recorded in bed system as plant per square meter is more in bed system in comparison of flat system Thus, the integration of GIS tools to regularly compute performance indices could provide irrigation managers with the means for managing efficiently the irrigation system.Keywords: Field survey, Relative Water Supply (RWS), Remote sensing maps, Water Use Efficiency (WUE).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 241820 Spatio-temporal Variations in Heavy Metal Concentrations in Sediment of Qua Iboe River Estuary, Nigeria
Authors: Justina I. R. Udotong, Ime R. Udotong, Offiong U. Eka
Abstract:
The concentrations of heavy metals in sediments of Qua Iboe River Estuary (QIRE) were monitored at four different sampling locations in wet and dry seasons. A preliminary survey to determine the four sampling stations along the river continuum showed that the area spanned between <0.1‰ salinity at the control station and 21.5‰ at the fourth station along the river continuum. A preliminary survey to determine the four sampling locations along the river estuary showed variations in salinity and other physicochemical parameters. The estuary was found to be polluted with heavy metals from point and nonpoint sources at varying degrees. Mean values of 7.80 mg/kg, 4.97 mg/kg and 2.80 mg/kg of nickel were obtained for sediment samples from Douglas creek, Qua Iboe and Atlantic sampling locations, respectively in the dry season. The wet season nickel concentrations were however lower. The entire study area was grossly contaminated by iron. At Douglas creek, the concentration of iron in sediment was 9274 ± 9.54mg/kg while copper, nickel, lead and vanadium were <0.5mg/kg each as compared to iron. Bioaccumulation was therefore suspected within the study area as values of 31.00 ± 0.79, 36.00 ± 0.10 and 55.00 ± 0.05 mg/kg of zinc were recorded in sediment at Douglas creek, Atlantic and the control sampling locations. The results from this study showed that the source of these heavy metals were from point sources like the corrosion of metal steel pipes from old bridges as well as oily sludge wastes from the Qua Iboe Terminal / tank farm located within the vicinity of the study area.Keywords: Heavy metal, Qua Iboe River Estuary, seasonal variations, sediment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 212219 Comparative Analysis of the Third Generation of Research Data for Evaluation of Solar Energy Potential
Authors: Claudineia Brazil, Elison Eduardo Jardim Bierhals, Luciane Teresa Salvi, Rafael Haag
Abstract:
Renewable energy sources are dependent on climatic variability, so for adequate energy planning, observations of the meteorological variables are required, preferably representing long-period series. Despite the scientific and technological advances that meteorological measurement systems have undergone in the last decades, there is still a considerable lack of meteorological observations that form series of long periods. The reanalysis is a system of assimilation of data prepared using general atmospheric circulation models, based on the combination of data collected at surface stations, ocean buoys, satellites and radiosondes, allowing the production of long period data, for a wide gamma. The third generation of reanalysis data emerged in 2010, among them is the Climate Forecast System Reanalysis (CFSR) developed by the National Centers for Environmental Prediction (NCEP), these data have a spatial resolution of 0.50 x 0.50. In order to overcome these difficulties, it aims to evaluate the performance of solar radiation estimation through alternative data bases, such as data from Reanalysis and from meteorological satellites that satisfactorily meet the absence of observations of solar radiation at global and/or regional level. The results of the analysis of the solar radiation data indicated that the reanalysis data of the CFSR model presented a good performance in relation to the observed data, with determination coefficient around 0.90. Therefore, it is concluded that these data have the potential to be used as an alternative source in locations with no seasons or long series of solar radiation, important for the evaluation of solar energy potential.
Keywords: Climate, reanalysis, renewable energy, solar radiation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 90618 The Solar Wall in the Italian Climates
Authors: F. Stazi, C. Di Perna, C. Filiaci, A. Stazi
Abstract:
Passive systems were born with the purpose of the greatest exploitation of solar energy in cold climates and high altitudes. They spread themselves until the 80-s all over the world without any attention to the specific climate and the summer behavior; this caused the deactivation of the systems due to a series of problems connected to the summer overheating, the complex management and the rising of the dust. Until today the European regulation limits only the winter consumptions without any attention to the summer behavior but, the recent European EN 15251 underlines the relevance of the indoor comfort, and the necessity of the analytic studies validation by monitoring case studies. In the porpose paper we demonstrate that the solar wall is an efficient system both from thermal comfort and energy saving point of view and it is the most suitable for our temperate climates because it can be used as a passive cooling sistem too. In particular the paper present an experimental and numerical analisys carried out on a case study with nine different solar passive systems in Ancona, Italy. We carried out a detailed study of the lodging provided by the solar wall by the monitoring and the evaluation of the indoor conditions. Analyzing the monitored data, on the base of recognized models of comfort (ISO, ASHRAE, Givoni-s BBCC), is emerged that the solar wall has an optimal behavior in the middle seasons. In winter phase this passive system gives more advantages in terms of energy consumptions than the other systems, because it gives greater heat gain and therefore smaller consumptions. In summer, when outside air temperature return in the mean seasonal value, the indoor comfort is optimal thanks to an efficient transversal ventilation activated from the same wall.Keywords: Building envelope, energy saving, passive solarwall, thermal comfort.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165417 A Model to Determine Atmospheric Stability and its Correlation with CO Concentration
Authors: Kh. Ashrafi, Gh. A. Hoshyaripour
Abstract:
Atmospheric stability plays the most important role in the transport and dispersion of air pollutants. Different methods are used for stability determination with varying degrees of complexity. Most of these methods are based on the relative magnitude of convective and mechanical turbulence in atmospheric motions. Richardson number, Monin-Obukhov length, Pasquill-Gifford stability classification and Pasquill–Turner stability classification, are the most common parameters and methods. The Pasquill–Turner Method (PTM), which is employed in this study, makes use of observations of wind speed, insolation and the time of day to classify atmospheric stability with distinguishable indices. In this study, a model is presented to determination of atmospheric stability conditions using PTM. As a case study, meteorological data of Mehrabad station in Tehran from 2000 to 2005 is applied to model. Here, three different categories are considered to deduce the pattern of stability conditions. First, the total pattern of stability classification is obtained and results show that atmosphere is 38.77%, 27.26%, 33.97%, at stable, neutral and unstable condition, respectively. It is also observed that days are mostly unstable (66.50%) while nights are mostly stable (72.55%). Second, monthly and seasonal patterns are derived and results indicate that relative frequency of stable conditions decrease during January to June and increase during June to December, while results for unstable conditions are exactly in opposite manner. Autumn is the most stable season with relative frequency of 50.69% for stable condition, whilst, it is 42.79%, 34.38% and 27.08% for winter, summer and spring, respectively. Hourly stability pattern is the third category that points out that unstable condition is dominant from approximately 03-15 GTM and 04-12 GTM for warm and cold seasons, respectively. Finally, correlation between atmospheric stability and CO concentration is achieved.Keywords: Atmospheric stability, Pasquill-Turner classification, convective turbulence, mechanical turbulence, Tehran.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 645316 Multilayer Thermal Screens for Greenhouse Insulation
Authors: Clara Shenderey, Helena Vitoshkin, Mordechai Barak, Avraham Arbel
Abstract:
Greenhouse cultivation is an energy-intensive process due to the high demands on cooling or heating according to external climatic conditions, which could be extreme in the summer or winter seasons. The thermal radiation rate inside a greenhouse depends mainly on the type of covering material and greenhouse construction. Using additional thermal screens under a greenhouse covering combined with a dehumidification system improves the insulation and could be cost-effective. Greenhouse covering material usually contains protective ultraviolet (UV) radiation additives to prevent the film wear, insect harm, and crop diseases. This paper investigates the overall heat transfer coefficient, or U-value, for greenhouse polyethylene covering contains UV-additives and glass covering with or without a thermal screen supplement. The hot-box method was employed to evaluate overall heat transfer coefficients experimentally as a function of the type and number of the thermal screens. The results show that the overall heat transfer coefficient decreases with increasing the number of thermal screens as a hyperbolic function. The overall heat transfer coefficient highly depends on the ability of the material to reflect thermal radiation. Using a greenhouse covering, i.e., polyethylene films or glass, in combination with high reflective thermal screens, i.e., containing about 98% of aluminum stripes or aluminum foil, the U-value reduces by 61%-89% in the first case, whereas by 70%-92% in the second case, depending on the number of the thermal screen. Using thermal screens made from low reflective materials may reduce the U-value by 30%-57%. The heat transfer coefficient is an indicator of the thermal insulation properties of the materials, which allows farmers to make decisions on the use of appropriate thermal screens depending on the external and internal climate conditions in a greenhouse.
Keywords: Energy-saving thermal screen, greenhouse covering material, heat transfer coefficient, hot box.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 62315 Application of an Analytical Model to Obtain Daily Flow Duration Curves for Different Hydrological Regimes in Switzerland
Authors: Ana Clara Santos, Maria Manuela Portela, Bettina Schaefli
Abstract:
This work assesses the performance of an analytical model framework to generate daily flow duration curves, FDCs, based on climatic characteristics of the catchments and on their streamflow recession coefficients. According to the analytical model framework, precipitation is considered to be a stochastic process, modeled as a marked Poisson process, and recession is considered to be deterministic, with parameters that can be computed based on different models. The analytical model framework was tested for three case studies with different hydrological regimes located in Switzerland: pluvial, snow-dominated and glacier. For that purpose, five time intervals were analyzed (the four meteorological seasons and the civil year) and two developments of the model were tested: one considering a linear recession model and the other adopting a nonlinear recession model. Those developments were combined with recession coefficients obtained from two different approaches: forward and inverse estimation. The performance of the analytical framework when considering forward parameter estimation is poor in comparison with the inverse estimation for both, linear and nonlinear models. For the pluvial catchment, the inverse estimation shows exceptional good results, especially for the nonlinear model, clearing suggesting that the model has the ability to describe FDCs. For the snow-dominated and glacier catchments the seasonal results are better than the annual ones suggesting that the model can describe streamflows in those conditions and that future efforts should focus on improving and combining seasonal curves instead of considering single annual ones.Keywords: Analytical streamflow distribution, stochastic process, linear and non-linear recession, hydrological modelling, daily discharges.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 64614 Effects of Irrigation Scheduling and Soil Management on Maize (Zea mays L.) Yield in Guinea Savannah Zone of Nigeria
Authors: I. Alhassan, A. M. Saddiq, A. G. Gashua, K. K. Gwio-Kura
Abstract:
The main objective of any irrigation program is the development of an efficient water management system to sustain crop growth and development and avoid physiological water stress in the growing plants. Field experiment to evaluate the effects of some soil moisture conservation practices on yield and water use efficiency (WUE) of maize was carried out in three locations (i.e. Mubi and Yola in the northern Guinea Savannah and Ganye in the southern Guinea Savannah of Adamawa State, Nigeria) during the dry seasons of 2013 and 2014. The experiment consisted of three different irrigation levels (7, 10 and 12 day irrigation intervals), two levels of mulch (mulch and un-mulched) and two tillage practices (no tillage and minimum tillage) arranged in a randomized complete block design with split-split plot arrangement and replicated three times. The Blaney-Criddle method was used for measuring crop evapotranspiration. The results indicated that seven-day irrigation intervals and mulched treatment were found to have significant effect (P>0.05) on grain yield and water use efficiency in all the locations. The main effect of tillage was non-significant (P<0.05) on grain yield and WUE. The interaction effects of irrigation and mulch were significant (P>0.05) on grain yield and WUE at Mubi and Yola. Generally, higher grain yield and WUE were recorded on mulched and seven-day irrigation intervals, whereas lower values were recorded on un-mulched with 12-day irrigation intervals. Tillage exerts little influence on the yield and WUE. Results from Ganye were found to be generally higher than those recorded in Mubi and Yola; it also showed that an irrigation interval of 10 days with mulching could be adopted for the Ganye area, while seven days interval is more appropriate for Mubi and Yola.
Keywords: Irrigation, maize, mulching, tillage, guinea savannah.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 109213 Yield Performance of Two Locally Adapted and Two Introductions of Common Cowpea in Response to Amended In-Row-Spaces and Planting Dates
Authors: Mohamed M. A. Abdalla, M. F Mohamed, A. M. A. Rashwan
Abstract:
A field experiment was conducted in the Agricultural Research Station, at El-Ghoraieb, Assiut to study dry seed yield performance of two locally adapted cultivars (‘Azmerly’ and ‘Cream 7’) and two line introductions (IT81D-1032 and IT82D-812) of common cowpea (Vigna unguiculata (L.) Walp) grown at three different within-row spaces (20, 30 and 40 cm) and two planting dates in the summer (April 15th and 30th) and in the fall season (Aug. 12th and 27th) of two successive seasons. The data showed that total dry-seed yield produced by plants grown at 20 cm was greater than at 30 cm in all cvs/lines in both years. Increases in 1000-seed weight were detected in cv ‘Azmerly’ and line IT82D-812 when they were grown at 30 cm as compared with 20 cm in the summer season. However, in the fall season such increases were found in all cvs/lines. Planting at 40 cm produced seeds of greater weight than planting at 30 cm for all cvs/lines in the fall season and also in cv. Cream 7 and line IT82D-812 in the summer season, while all cvs/lines in the fall Planting on April 15th in the summer and also planting on Aug. 12th in the fall had plants which showed increases in 1000-seed weight and total dry-seed yield. The greatest 1000-seed weight was found in the line IT81D-1032 in the summer season and in the line IT82D-812 in the fall season. The sum up results revealed that ‘Azmerly’ produced greater dry-seed yield than ‘Cream 7’ and both of them were superior to the line IT82D-812 and IT81D-1032 in the summer season. In the fall, however, the line IT82D-812 produced greater dry-seed yield than the other cultivars/lines.
Keywords: Cowpea, Assiut, fall, planting dates, El-Ghoraieb.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 124612 Study the Efficacies of Green Manure Application as Chickpea Pre Plant
Authors: Khosro Mohammadi, Amir Ghalavand, Majid Aghaalikhani
Abstract:
In order to Study the efficacy application of green manure as chickpea pre plant, field experiments were carried out in 2007 and 2008 growing seasons. In this research the effects of different strategies for soil fertilization were investigated on grain yield and yield component, minerals, organic compounds and cooking time of chickpea. Experimental units were arranged in splitsplit plots based on randomized complete blocks with three replications. Main plots consisted of (G1): establishing a mixed vegetation of Vicia panunica and Hordeum vulgare and (G2): control, as green manure levels. Also, five strategies for obtaining the base fertilizer requirement including (N1): 20 t.ha-1 farmyard manure; (N2): 10 t.ha-1 compost; (N3): 75 kg.ha-1 triple super phosphate; (N4): 10 t.ha-1 farmyard manure + 5 t.ha-1 compost and (N5): 10 t.ha-1 farmyard manure + 5 t.ha-1 compost + 50 kg.ha-1 triple super phosphate were considered in sub plots. Furthermoree four levels of biofertilizers consisted of (B1): Bacillus lentus + Pseudomonas putida; (B2): Trichoderma harzianum; (B3): Bacillus lentus + Pseudomonas putida + Trichoderma harzianum; and (B4): control (without biofertilizers) were arranged in sub-sub plots. Results showed that integrating biofertilizers (B3) and green manure (G1) produced the highest grain yield. The highest amounts of yield were obtained in G1×N5 interaction. Comparison of all 2-way and 3-way interactions showed that G1N5B3 was determined as the superior treatment. Significant increasing of N, P2O5, K2O, Fe and Mg content in leaves and grains emphasized on superiority of mentioned treatment because each one of these nutrients has an approved role in chlorophyll synthesis and photosynthesis abilities of the crops. The combined application of compost, farmyard manure and chemical phosphorus (N5) in addition to having the highest yield, had the best grain quality due to high protein, starch and total sugar contents, low crude fiber and reduced cooking time.Keywords: chickpea, biofertilizer, nitrogen fixation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 238811 Energy Loss Reduction in Oil Refineries through Flare Gas Recovery Approaches
Authors: Majid Amidpour, Parisa Karimi, Marzieh Joda
Abstract:
For the last few years, release of burned undesirable by-products has become a challenging issue in oil industries. Flaring, as one of the main sources of air contamination, involves detrimental and long-lasting effects on human health and is considered a substantial reason for energy losses worldwide. This research involves studying the implications of two main flare gas recovery methods at three oil refineries, all in Iran as the case I, case II, and case III in which the production capacities are increasing respectively. In the proposed methods, flare gases are converted into more valuable products, before combustion by the flare networks. The first approach involves collecting, compressing and converting the flare gas to smokeless fuel which can be used in the fuel gas system of the refineries. The other scenario includes utilizing the flare gas as a feed into liquefied petroleum gas (LPG) production unit already established in the refineries. The processes of these scenarios are simulated, and the capital investment is calculated for each procedure. The cumulative profits of the scenarios are evaluated using Net Present Value method. Furthermore, the sensitivity analysis based on total propane and butane mole fraction is carried out to make a rational comparison for LPG production approach, and the results are illustrated for different mole fractions of propane and butane. As the mole fraction of propane and butane contained in LPG differs in summer and winter seasons, the results corresponding to LPG scenario are demonstrated for each season. The results of the simulations show that cumulative profit in fuel gas production scenario and LPG production rate increase with the capacity of the refineries. Moreover, the investment return time in LPG production method experiences a decline, followed by a rising trend with an increase in C3 and C4 content. The minimum value of time return occurs at propane and butane sum concentration values of 0.7, 0.6, and 0.7 in case I, II, and III, respectively. Based on comparison of the time of investment return and cumulative profit, fuel gas production is the superior scenario for three case studies.
Keywords: Flare gas reduction, liquefied petroleum gas, fuel gas, net present value method, sensitivity analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 77210 Description of Reported Foodborne Diseases in Selected Communities within the Greater Accra Region-Ghana: Epidemiological Review of Surveillance Data
Authors: Benjamin Osei-Tutu, Henrietta Awewole Kolson
Abstract:
Background: Acute gastroenteritis is one of the frequently reported Out-Patient Department (OPD) cases. However, the causative pathogens of these cases are rarely identified at the OPD due to delay in laboratory results or failure to obtain specimens before antibiotics is administered. Method: A retrospective review of surveillance data from the Adentan Municipality, Accra, Ghana that were recorded in the National foodborne disease surveillance system of Ghana, was conducted with the main aim of describing the epidemiology and food practice of cases reported from the Adentan Municipality. The study involved a retrospective review of surveillance data kept on patients who visited health facilities that are involved in foodborne disease surveillance in Ghana, from January 2015 to December 2016. Results: A total of 375 cases were reviewed and these were classified as viral hepatitis (hepatitis A and E), cholera (Vibrio cholerae), dysentery (Shigella sp.), typhoid fever (Salmonella sp.) or gastroenteritis. Cases recorded were all suspected case and the average cases recorded per week was 3. Typhoid fever and dysentery were the two main clinically diagnosed foodborne illnesses. The highest number of cases were observed during the late dry season (Feb to April), which marks the end of the dry season and the beginning of the rainy season. Relatively high number of cases was also observed during the late wet seasons (Jul to Oct) when the rainfall is the heaviest. Home-made food and street vended food were the major sources of suspected etiological food, recording 49.01% and 34.87% of the cases respectively. Conclusion: Majority of cases recorded were classified as gastroenteritis due to the absence of laboratory confirmation. Few cases were classified as typhoid fever and dysentery based on clinical symptoms presented. Patients reporting with foodborne diseases were found to consume home meal and street vended foods as their predominant source of food.
Keywords: Accra, etiologic food, food poisoning, gastroenteritis, illness, surveillance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7249 Effect of Organic Matter and Biofertilizers on Chickpea Quality and Biological Nitrogen Fixation
Authors: Khosro Mohammadi, Amir Ghalavand, Majid Aghaalikhani
Abstract:
In order to evaluation the effects of soil organic matter and biofertilizer on chickpea quality and biological nitrogen fixation, field experiments were carried out in 2007 and 2008 growing seasons. In this research the effects of different strategies for soil fertilization were investigated on grain yield and yield component, minerals, organic compounds and cooking time of chickpea. Experimental units were arranged in split-split plots based on randomized complete blocks with three replications. Main plots consisted of (G1): establishing a mixed vegetation of Vicia panunica and Hordeum vulgare and (G2): control, as green manure levels. Also, five strategies for obtaining the base fertilizer requirement including (N1): 20 t.ha-1 farmyard manure; (N2): 10 t.ha-1 compost; (N3): 75 kg.ha-1 triple super phosphate; (N4): 10 t.ha-1 farmyard manure + 5 t.ha-1 compost and (N5): 10 t.ha-1 farmyard manure + 5 t.ha-1 compost + 50 kg.ha-1 triple super phosphate were considered in sub plots. Furthermoree four levels of biofertilizers consisted of (B1): Bacillus lentus + Pseudomonas putida; (B2): Trichoderma harzianum; (B3): Bacillus lentus + Pseudomonas putida + Trichoderma harzianum; and (B4): control (without biofertilizers) were arranged in sub-sub plots. Results showed that integrating biofertilizers (B3) and green manure (G1) produced the highest grain yield. The highest amounts of yield were obtained in G1×N5 interaction. Comparison of all 2-way and 3-way interactions showed that G1N5B3 was determined as the superior treatment. Significant increasing of N, P2O5, K2O, Fe and Mg content in leaves and grains emphasized on superiority of mentioned treatment because each one of these nutrients has an approved role in chlorophyll synthesis and photosynthesis abilities of the crops. The combined application of compost, farmyard manure and chemical phosphorus (N5) in addition to having the highest yield, had the best grain quality due to high protein, starch and total sugar contents, low crude fiber and reduced cooking time.Keywords: chickpea, biofertilizer, nitrogen fixation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33758 Wind Energy Development in the African Great Lakes Region to Supplement the Hydroelectricity in the Locality: A Case Study from Tanzania
Authors: R.M. Kainkwa
Abstract:
The African Great Lakes Region refers to the zone around lakes Victoria, Tanganyika, Albert, Edward, Kivu, and Malawi. The main source of electricity in this region is hydropower whose systems are generally characterized by relatively weak, isolated power schemes, poor maintenance and technical deficiencies with limited electricity infrastructures. Most of the hydro sources are rain fed, and as such there is normally a deficiency of water during the dry seasons and extended droughts. In such calamities fossil fuels sources, in particular petroleum products and natural gas, are normally used to rescue the situation but apart from them being nonrenewable, they also release huge amount of green house gases to our environment which in turn accelerates the global warming that has at present reached an amazing stage. Wind power is ample, renewable, widely distributed, clean, and free energy source that does not consume or pollute water. Wind generated electricity is one of the most practical and commercially viable option for grid quality and utility scale electricity production. However, the main shortcoming associated with electric wind power generation is fluctuation in its output both in space and time. Before making a decision to establish a wind park at a site, the wind speed features there should therefore be known thoroughly as well as local demand or transmission capacity. The main objective of this paper is to utilise monthly average wind speed data collected from one prospective site within the African Great Lakes Region to demonstrate that the available wind power there is high enough to generate electricity. The mean monthly values were calculated from records gathered on hourly basis for a period of 5 years (2001 to 2005) from a site in Tanzania. The documentations that were collected at a height of 2 m were projected to a height of 50 m which is the standard hub height of wind turbines. The overall monthly average wind speed was found to be 12.11 m/s whereas June to November was established to be the windy season as the wind speed during the session is above the overall monthly wind speed. The available wind power density corresponding to the overall mean monthly wind speed was evaluated to be 1072 W/m2, a potential that is worthwhile harvesting for the purpose of electric generation.Keywords: Hydro power, windy season, available wind powerdensity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16327 Biological Hotspots in the Galápagos Islands: Exploring Seasonal Trends of Ocean Climate Drivers to Monitor Algal Blooms
Authors: Emily Kislik, Gabriel Mantilla Saltos, Gladys Torres, Mercy Borbor-Córdova
Abstract:
The Galápagos Marine Reserve (GMR) is an internationally-recognized region of consistent upwelling events, high productivity, and rich biodiversity. Despite its high-nutrient, low-chlorophyll condition, the archipelago has experienced phytoplankton blooms, especially in the western section between Isabela and Fernandina Islands. However, little is known about how climate variability will affect future phytoplankton standing stock in the Galápagos, and no consistent protocols currently exist to quantify phytoplankton biomass, identify species, or monitor for potential harmful algal blooms (HABs) within the archipelago. This analysis investigates physical, chemical, and biological oceanic variables that contribute to algal blooms within the GMR, using 4 km Aqua MODIS satellite imagery and 0.125-degree wind stress data from January 2003 to December 2016. Furthermore, this study analyzes chlorophyll-a concentrations at varying spatial scales— within the greater archipelago, as well as within five smaller bioregions based on species biodiversity in the GMR. Seasonal and interannual trend analyses, correlations, and hotspot identification were performed. Results demonstrate that chlorophyll-a is expressed in two seasons throughout the year in the GMR, most frequently in September and March, with a notable hotspot in the Elizabeth Bay bioregion. Interannual chlorophyll-a trend analyses revealed highest peaks in 2003, 2007, 2013, and 2016, and variables that correlate highly with chlorophyll-a include surface temperature and particulate organic carbon. This study recommends future in situ sampling locations for phytoplankton monitoring, including the Elizabeth Bay bioregion. Conclusions from this study contribute to the knowledge of oceanic drivers that catalyze primary productivity and consequently affect species biodiversity within the GMR. Additionally, this research can inform policy and decision-making strategies for species conservation and management within bioregions of the Galápagos.
Keywords: Bioregions, ecological monitoring, phytoplankton, remote sensing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13846 Adaptation Measures for Sustainable Development of the Agricultural Potential of the Flood-Risk Zones of Ghareb Lowland, Morocco
Authors: R. Bourziza, W. El Khoumsi, I. Mghabbar, I. Rahou
Abstract:
The flood-risk zones called Merjas are lowlands that are flooded during the rainy season. Indeed, these depressed areas were reclaimed to dry them out in order to exploit their agricultural potential. Thus, farmers were able to start exploiting these drained lands. As the development of modern agriculture in Morocco progressed, farmers began to practice irrigated agriculture. In a context of vulnerability to floods and the need for optimal exploitation of the agricultural potential of the flood-risk zones, the question of how farmers are adapting to this context and the degree of exploitation of this potential arises. It is in these circumstances that this work was initiated, aiming at the characterization of irrigation practices in the flood-risk zones of the Ghareb lowland (Morocco). This characterization is based on two main axes: the characterization of irrigation techniques used, as well as the management of irrigation in these areas. In order to achieve our objective, two complementary approaches have been adopted; the first one is based on interviews with administrative agents and on farmer surveys, and the second one is based on field measurements of a few parameters, such as flow rate, pressure, uniformity coefficient of drippers and salinity. The results of this work led to conclude that the choice of the practiced crop (crop resistant to excess water in winter and vegetable crops during other seasons) and the availability and nature of water resources are the main criteria that determine the choice of the irrigation system. Even if irrigation management is imprecise, farmers are able to achieve agricultural yields that are comparable to those recorded in the entire irrigated perimeter. However, agricultural yields in these areas are still threatened by climate change, since these areas play the role of water retaining basins during floods by protecting the downstream areas, which can also damage the crops there instilled during the autumn. This work has also noted that the predominance of private pumping in flood-risk zones in the coastal zone creates a risk of marine intrusion, which risks endangering the groundwater table. Thus, this work enabled us to understand the functioning and the adaptation measures of these vulnerable zones for the sustainability of the Merjas and a better valorization of these marginalized lowlands.
Keywords: Flood-risk zones, irrigation practices, climate change, adaptation measures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4355 Response of Local Cowpea to Intra Row Spacing and Weeding Regimes in Yobe State, Nigeria
Authors: A. G. Gashua, T. T. Bello, I. Alhassan, K. K. Gwiokura
Abstract:
Weeds are known to interfere seriously with crop growth, thereby affecting the productivity and quality of crops. Crops are also known to compete for natural growth resources if they are not adequately spaced, also affecting the performance of the growing crop. Farmers grow cowpea in mixtures with cereals and this is known to affect its yield. For this reason, a field experiment was conducted at Yobe State College of Agriculture Gujba, Damaturu station in the 2014 and 2015 rainy seasons to determine the appropriate intra row spacing and weeding regime for optimum growth and yield of cowpea (Vigna unguiculata L.) in pure stand in Sudan Savanna ecology. The treatments consist of three levels of spacing within rows (20 cm, 30 cm and 40 cm) and four weeding regimes (none, once at 3 weeks after sowing (WAS), twice at 3 and 6WAS, thrice at 3WAS, 6WAS and 9WAS); arranged in a Randomized Complete Block Design (RCBD) and replicated three times. The variety used was the local cowpea variety (white, early and spreading) commonly grown by farmers. The growth and yield data were collected and subjected to analysis of variance using SAS software, and the significant means were ranked by Students Newman Keul’s test (SNK). The findings of this study revealed better crop performance in 2015 than in 2014 despite poor soil condition. Intra row spacing significantly influenced vegetative growth especially the number of main branches, leaves and canopy spread at 6WAS and 9WAS with the highest values obtained at wider spacing (40 cm). The values obtained in 2015 doubled those obtained in 2014 in most cases. Spacing also significantly affected the number of pods in 2015, seed weight in both years and grain yield in 2014 with the highest values obtained when the crop was spaced at 30-40 cm. Similarly, weeding regime significantly influenced almost all the growth attributes of cowpea with higher values obtained from where cowpea was weeded three times at 3-week intervals, though statistically similar results were obtained even from where cowpea was weeded twice. Weeding also affected the entire yield and yield components in 2015 with the highest values obtained with increase weeding. Based on these findings, it is recommended that spreading cowpea varieties should be grown at 40 cm (or wider spacing) within rows and be weeded twice at three-week intervals for better crop performance in related ecologies.
Keywords: Intra row spacing, local cowpea, Nigeria, weeding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8724 Voyage Analysis of a Marine Gas Turbine Engine Installed to Power and Propel an Ocean-Going Cruise Ship
Authors: Mathias U. Bonet, Pericles Pilidis, Georgios Doulgeris
Abstract:
A gas turbine-powered cruise Liner is scheduled to transport pilgrim passengers from Lagos-Nigeria to the Islamic port city of Jeddah in Saudi Arabia. Since the gas turbine is an air breathing machine, changes in the density and/or mass flow at the compressor inlet due to an encounter with variations in weather conditions induce negative effects on the performance of the power plant during the voyage. In practice, all deviations from the reference atmospheric conditions of 15 oC and 1.103 bar tend to affect the power output and other thermodynamic parameters of the gas turbine cycle. Therefore, this paper seeks to evaluate how a simple cycle marine gas turbine power plant would react under a variety of scenarios that may be encountered during a voyage as the ship sails across the Atlantic Ocean and the Mediterranean Sea before arriving at its designated port of discharge. It is also an assessment that focuses on the effect of varying aerodynamic and hydrodynamic conditions which deteriorate the efficient operation of the propulsion system due to an increase in resistance that results from some projected levels of the ship hull fouling. The investigated passenger ship is designed to run at a service speed of 22 knots and cover a distance of 5787 nautical miles. The performance evaluation consists of three separate voyages that cover a variety of weather conditions in winter, spring and summer seasons. Real-time daily temperatures and the sea states for the selected transit route were obtained and used to simulate the voyage under the aforementioned operating conditions. Changes in engine firing temperature, power output as well as the total fuel consumed per voyage including other performance variables were separately predicted under both calm and adverse weather conditions. The collated data were obtained online from the UK Meteorological Office as well as the UK Hydrographic Office websites, while adopting the Beaufort scale for determining the magnitude of sea waves resulting from rough weather situations. The simulation of the gas turbine performance and voyage analysis was effected through the use of an integrated Cranfield-University-developed computer code known as ‘Turbomatch’ and ‘Poseidon’. It is a project that is aimed at developing a method for predicting the off design behavior of the marine gas turbine when installed and operated as the main prime mover for both propulsion and powering of all other auxiliary services onboard a passenger cruise liner. Furthermore, it is a techno-economic and environmental assessment that seeks to enable the forecast of the marine gas turbine part and full load performance as it relates to the fuel requirement for a complete voyage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8583 Physical Deterioration of Semi-Arid Soils as Affected by Land Use Change in North West of Iran
Authors: Ali Reza Vaezi, Fereshteh Haghshenas
Abstract:
Land use has generally been considered a local environmental issue, but it is becoming a force of global importance. Extensive changes to forests and pastures are being driven by the need to provide food, fiber, and shelter for people in recent decades. Land use is an important factor affecting soil organic carbon accumulation and storage in soils which influence directly on other physicochemical soil properties, soil productivity and soil’s susceptibility to water erosion. The change of pastures to the agricultural lands has been increasing rapidly in most semi-arid regions in Iran. Information on the effect of the land use change in these areas on the deterioration of soil physicochemical properties is limited. Therefore, this study was conducted to investigate the physical deterioration of soil as affected by land use change in semi-arid pastures in north west of Iran. Toward this, seven areas covering both pasture and rainfed lands with different soil textures (clay loam, silty clay loam, sandy clay loam, silt loam, loam, sandy loam and sandy loam) were selected in a semi-arid region in Zanjan, NW Iran. Pasture in the area is covered with poor vegetation and mostly grazed in wet seasons (end of winter and early spring and autumn). Rainfed lands resulting land use change are mostly planted for winter wheat production. In each area, soil samples (0-30 cm depth) were collected from the two land uses (pasture and rainfed land) at three replications. A total of 42 soil samples were taken from the study area. Various soil physical properties consisting of bulk density, total porosity, coarse pores volume, aggregate size, aggregate stability, water-holding capacity and saturated hydraulic conductivity were determined in the soil samples using the laboratory conventional methods. The results showed that the change of pastures to rainfeds is severely deteriorated soil physical properties. However, the variation rate of the physical soil properties is different. The loss of soil physical properties as a result of the land use change was in the following order: 61% water-stable aggregates, 60% aggregate size > 41% macroporosity > 28% bulk density > 22% total porosity > 11% water holding capacity > 5% saturated point. This result reveals that the structural characteristics of soils in this area are the most important soil physical characteristics that are affected by land use change. The deterioration of these soil properties influences negatively the pore size distribution and volume percentage of macroporosity. Effects of land use change on deterioration of soil physical properties were different in various soil textures. The highest mean loss of soil physical properties was found in loam (42%), whereas the lowest value was in silty clay loam (23%). As a consequence, loam is the most vulnerable soil to physical degradation caused by land use change in the pastures. This physical loss of soil is associated with its higher percentage of larger aggregates as well as water-stable aggregates.
Keywords: Pasture, soil physical properties, soil structural characteristics, soil texture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 972 Malaria Prone Zones of West Bengal: A Spatio-Temporal Scenario
Authors: Meghna Maiti, Utpal Roy
Abstract:
In India, till today, malaria is considered to be one of the significant infectious diseases. Most of the cases regional geographical factors are the principal elements to let the places a unique identity. The incidence and intensity of infectious diseases are quite common and affect different places differently across the nation. The present study aims to identify spatial clusters of hot spots and cold spots of malaria incidence and their seasonal variation during the three periods of 2012-2014, 2015-2017 and 2018-20 in the state of West Bengal in India. As malaria is a vector-borne disease, numbers of positive test results are to be reported by the laboratories to the Department of Health, West Bengal (through the National Vector Borne Disease Control Programme). Data on block-wise monthly malaria positive cases are collected from Health Management Information System (HMIS), Ministry of Health and Family Welfare, Government of India. Moran’s I statistic is performed to assess the spatial autocorrelation of malaria incidence. The spatial statistical analysis mainly Local Indicators of Spatial Autocorrelation (LISA) cluster and Local Geary Cluster are applied to find the spatial clusters of hot spots and cold spots and seasonal variability of malaria incidence over the three periods. The result indicates that the spatial distribution of malaria is clustered during each of the three periods of 2012-2014, 2015-2017 and 2018-20. The analysis shows that in all the cases, high-high clusters are primarily concentrated in the western (Purulia, Paschim Medinipur districts), central (Maldah, Murshidabad districts) and the northern parts (Jalpaiguri, Kochbihar districts) and low-low clusters are found in the lower Gangetic plain (central-south) mainly and northern parts of West Bengal during the stipulated period. Apart from this seasonal variability inter-year variation is also visible. The results from different methods of this study indicate significant variation in the spatial distribution of malaria incidence in West Bengal and high incidence clusters are primarily persistently concentrated over the western part during 2012-2020 along with a strong seasonal pattern with a peak in rainy and autumn. By applying the different techniques in identifying the different degrees of incidence zones of malaria across West Bengal, some specific pockets or malaria hotspots are marked and identified where the incidence rates are quite harmonious over the different periods. From this analysis, it is clear that malaria is not a disease that is distributed uniformly across the state; some specific pockets are more prone to be affected in particular seasons of each year. Disease ecology and spatial patterns must be the factors in explaining the real factors for the higher incidence of this issue within those affected districts. The further study mainly by applying empirical approach is needed for discerning the strong relationship between communicable disease and other associated affecting factors.
Keywords: Malaria, infectious diseases, spatial statistics, spatial autocorrelation, LISA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5351 An Integrated Solid Waste Management Strategy for Semi-Urban and Rural Areas of Pakistan
Authors: Z. Zaman Asam, M. Ajmal, R. Saeed, H. Miraj, M. Muhammad Ahtisham, B. Hameed, A. -Sattar Nizami
Abstract:
In Pakistan, environmental degradation and consequent human health deterioration has rapidly accelerated in the past decade due to solid waste mismanagement. As the situation worsens with time, establishment of proper waste management practices is urgently needed especially in semi urban and rural areas of Pakistan. This study uses a concept of Waste Bank, which involves a transfer station for collection of sorted waste fractions and its delivery to the targeted market such as recycling industries, biogas plants, composting facilities etc. The management efficiency and effectiveness of Waste Bank depend strongly on the proficient sorting and collection of solid waste fractions at household level. However, the social attitude towards such a solution in semi urban/rural areas of Pakistan demands certain prerequisites to make it workable. Considering these factors the objectives of this study are to: [A] Obtain reliable data about quantity and characteristics of generated waste to define feasibility of business and design factors, such as required storage area, retention time, transportation frequency of the system etc. [B] Analyze the effects of various social factors on waste generation to foresee future projections. [C] Quantify the improvement in waste sorting efficiency after awareness campaign. We selected Gujrat city of Central Punjab province of Pakistan as it is semi urban adjoined by rural areas. A total of 60 houses (20 from each of the three selected colonies), belonging to different social status were selected. Awareness sessions about waste segregation were given through brochures and individual lectures in each selected household. Sampling of waste, that households had attempted to sort, was then carried out in the three colored bags that were provided as part of the awareness campaign. Finally, refined waste sorting, weighing of various fractions and measurement of dry mass was performed in environmental laboratory using standard methods. It was calculated that sorting efficiency of waste improved from 0 to 52% as a result of the awareness campaign. The generation of waste (dry mass basis) on average from one household was 460 kg/year whereas per capita generation was 68 kg/year. Extrapolating these values for Gujrat Tehsil, the total waste generation per year is calculated to be 101921 tons dry mass (DM). Characteristics found in waste were (i) organic decomposable (29.2%, 29710 tons/year DM), (ii) recyclables (37.0%, 37726 tons/year DM) that included plastic, paper, metal and glass, and (iii) trash (33.8%, 34485 tons/year DM) that mainly comprised of polythene bags, medicine packaging, pampers and wrappers. Waste generation was more in colonies with comparatively higher income and better living standards. In future, data collection for all four seasons and improvements due to expansion of awareness campaign to educational institutes will be quantified. This waste management system can potentially fulfill vital sustainable development goals (e.g. clean water and sanitation), reduce the need to harvest fresh resources from the ecosystem, create business and job opportunities and consequently solve one of the most pressing environmental issues of the country.
Keywords: Integrated solid waste management, waste segregation, waste bank, community development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1060