Search results for: classifier algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1741

Search results for: classifier algorithms

1651 Learning Classifier Systems Approach for Automated Discovery of Censored Production Rules

Authors: Suraiya Jabin, Kamal K. Bharadwaj

Abstract:

In the recent past Learning Classifier Systems have been successfully used for data mining. Learning Classifier System (LCS) is basically a machine learning technique which combines evolutionary computing, reinforcement learning, supervised or unsupervised learning and heuristics to produce adaptive systems. A LCS learns by interacting with an environment from which it receives feedback in the form of numerical reward. Learning is achieved by trying to maximize the amount of reward received. All LCSs models more or less, comprise four main components; a finite population of condition–action rules, called classifiers; the performance component, which governs the interaction with the environment; the credit assignment component, which distributes the reward received from the environment to the classifiers accountable for the rewards obtained; the discovery component, which is responsible for discovering better rules and improving existing ones through a genetic algorithm. The concatenate of the production rules in the LCS form the genotype, and therefore the GA should operate on a population of classifier systems. This approach is known as the 'Pittsburgh' Classifier Systems. Other LCS that perform their GA at the rule level within a population are known as 'Mitchigan' Classifier Systems. The most predominant representation of the discovered knowledge is the standard production rules (PRs) in the form of IF P THEN D. The PRs, however, are unable to handle exceptions and do not exhibit variable precision. The Censored Production Rules (CPRs), an extension of PRs, were proposed by Michalski and Winston that exhibit variable precision and supports an efficient mechanism for handling exceptions. A CPR is an augmented production rule of the form: IF P THEN D UNLESS C, where Censor C is an exception to the rule. Such rules are employed in situations, in which conditional statement IF P THEN D holds frequently and the assertion C holds rarely. By using a rule of this type we are free to ignore the exception conditions, when the resources needed to establish its presence are tight or there is simply no information available as to whether it holds or not. Thus, the IF P THEN D part of CPR expresses important information, while the UNLESS C part acts only as a switch and changes the polarity of D to ~D. In this paper Pittsburgh style LCSs approach is used for automated discovery of CPRs. An appropriate encoding scheme is suggested to represent a chromosome consisting of fixed size set of CPRs. Suitable genetic operators are designed for the set of CPRs and individual CPRs and also appropriate fitness function is proposed that incorporates basic constraints on CPR. Experimental results are presented to demonstrate the performance of the proposed learning classifier system.

Keywords: Censored Production Rule, Data Mining, GeneticAlgorithm, Learning Classifier System, Machine Learning, PittsburgApproach, , Reinforcement learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530
1650 Multilevel Classifiers in Recognition of Handwritten Kannada Numerals

Authors: Dinesh Acharya U., N. V. Subba Reddy, Krishnamoorthi Makkithaya

Abstract:

The recognition of handwritten numeral is an important area of research for its applications in post office, banks and other organizations. This paper presents automatic recognition of handwritten Kannada numerals based on structural features. Five different types of features, namely, profile based 10-segment string, water reservoir; vertical and horizontal strokes, end points and average boundary length from the minimal bounding box are used in the recognition of numeral. The effect of each feature and their combination in the numeral classification is analyzed using nearest neighbor classifiers. It is common to combine multiple categories of features into a single feature vector for the classification. Instead, separate classifiers can be used to classify based on each visual feature individually and the final classification can be obtained based on the combination of separate base classification results. One popular approach is to combine the classifier results into a feature vector and leaving the decision to next level classifier. This method is extended to extract a better information, possibility distribution, from the base classifiers in resolving the conflicts among the classification results. Here, we use fuzzy k Nearest Neighbor (fuzzy k-NN) as base classifier for individual feature sets, the results of which together forms the feature vector for the final k Nearest Neighbor (k-NN) classifier. Testing is done, using different features, individually and in combination, on a database containing 1600 samples of different numerals and the results are compared with the results of different existing methods.

Keywords: Fuzzy k Nearest Neighbor, Multiple Classifiers, Numeral Recognition, Structural features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
1649 Investigation on Bio-Inspired Population Based Metaheuristic Algorithms for Optimization Problems in Ad Hoc Networks

Authors: C. Rajan, K. Geetha, C. Rasi Priya, R. Sasikala

Abstract:

Nature is a great source of inspiration for solving complex problems in networks. It helps to find the optimal solution. Metaheuristic algorithm is one of the nature-inspired algorithm which helps in solving routing problem in networks. The dynamic features, changing of topology frequently and limited bandwidth make the routing, challenging in MANET. Implementation of appropriate routing algorithms leads to the efficient transmission of data in mobile ad hoc networks. The algorithms that are inspired by the principles of naturally-distributed/collective behavior of social colonies have shown excellence in dealing with complex optimization problems. Thus some of the bio-inspired metaheuristic algorithms help to increase the efficiency of routing in ad hoc networks. This survey work presents the overview of bio-inspired metaheuristic algorithms which support the efficiency of routing in mobile ad hoc networks.

Keywords: Ant colony optimization algorithm, Genetic algorithm, naturally inspired algorithms and particle swarm optimization algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3610
1648 Application of Genetic Algorithms to Feature Subset Selection in a Farsi OCR

Authors: M. Soryani, N. Rafat

Abstract:

Dealing with hundreds of features in character recognition systems is not unusual. This large number of features leads to the increase of computational workload of recognition process. There have been many methods which try to remove unnecessary or redundant features and reduce feature dimensionality. Besides because of the characteristics of Farsi scripts, it-s not possible to apply other languages algorithms to Farsi directly. In this paper some methods for feature subset selection using genetic algorithms are applied on a Farsi optical character recognition (OCR) system. Experimental results show that application of genetic algorithms (GA) to feature subset selection in a Farsi OCR results in lower computational complexity and enhanced recognition rate.

Keywords: Feature Subset Selection, Genetic Algorithms, Optical Character Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1980
1647 Making Data Structures and Algorithms more Understandable by Programming Sudoku the Human Way

Authors: Roelien Goede

Abstract:

Data Structures and Algorithms is a module in most Computer Science or Information Technology curricula. It is one of the modules most students identify as being difficult. This paper demonstrates how programming a solution for Sudoku can make abstract concepts more concrete. The paper relates concepts of a typical Data Structures and Algorithms module to a step by step solution for Sudoku in a human type as opposed to a computer oriented solution.

Keywords: Data Structures, Algorithms, Sudoku, ObjectOriented Programming, Programming Teaching, Education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3097
1646 A Kernel Classifier using Linearised Bregman Iteration

Authors: K. A. D. N. K Wimalawarne

Abstract:

In this paper we introduce a novel kernel classifier based on a iterative shrinkage algorithm developed for compressive sensing. We have adopted Bregman iteration with soft and hard shrinkage functions and generalized hinge loss for solving l1 norm minimization problem for classification. Our experimental results with face recognition and digit classification using SVM as the benchmark have shown that our method has a close error rate compared to SVM but do not perform better than SVM. We have found that the soft shrinkage method give more accuracy and in some situations more sparseness than hard shrinkage methods.

Keywords: Compressive sensing, Bregman iteration, Generalisedhinge loss, sparse, kernels, shrinkage functions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378
1645 Comparative Analysis of Different Page Ranking Algorithms

Authors: S. Prabha, K. Duraiswamy, J. Indhumathi

Abstract:

Search engine plays an important role in internet, to retrieve the relevant documents among the huge number of web pages. However, it retrieves more number of documents, which are all relevant to your search topics. To retrieve the most meaningful documents related to search topics, ranking algorithm is used in information retrieval technique. One of the issues in data miming is ranking the retrieved document. In information retrieval the ranking is one of the practical problems. This paper includes various Page Ranking algorithms, page segmentation algorithms and compares those algorithms used for Information Retrieval. Diverse Page Rank based algorithms like Page Rank (PR), Weighted Page Rank (WPR), Weight Page Content Rank (WPCR), Hyperlink Induced Topic Selection (HITS), Distance Rank, Eigen Rumor, Distance Rank Time Rank, Tag Rank, Relational Based Page Rank and Query Dependent Ranking algorithms are discussed and compared.

Keywords: Information Retrieval, Web Page Ranking, search engine, web mining, page segmentations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4289
1644 Design of a Neural Networks Classifier for Face Detection

Authors: F. Smach, M. Atri, J. Mitéran, M. Abid

Abstract:

Face detection and recognition has many applications in a variety of fields such as security system, videoconferencing and identification. Face classification is currently implemented in software. A hardware implementation allows real-time processing, but has higher cost and time to-market. The objective of this work is to implement a classifier based on neural networks MLP (Multi-layer Perceptron) for face detection. The MLP is used to classify face and non-face patterns. The systm is described using C language on a P4 (2.4 Ghz) to extract weight values. Then a Hardware implementation is achieved using VHDL based Methodology. We target Xilinx FPGA as the implementation support.

Keywords: Classification, Face Detection, FPGA Hardware description, MLP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2282
1643 OCR for Script Identification of Hindi (Devnagari) Numerals using Error Diffusion Halftoning Algorithm with Neural Classifier

Authors: Banashree N. P., Andhe Dharani, R. Vasanta, P. S. Satyanarayana

Abstract:

The applications on numbers are across-the-board that there is much scope for study. The chic of writing numbers is diverse and comes in a variety of form, size and fonts. Identification of Indian languages scripts is challenging problems. In Optical Character Recognition [OCR], machine printed or handwritten characters/numerals are recognized. There are plentiful approaches that deal with problem of detection of numerals/character depending on the sort of feature extracted and different way of extracting them. This paper proposes a recognition scheme for handwritten Hindi (devnagiri) numerals; most admired one in Indian subcontinent our work focused on a technique in feature extraction i.e. Local-based approach, a method using 16-segment display concept, which is extracted from halftoned images & Binary images of isolated numerals. These feature vectors are fed to neural classifier model that has been trained to recognize a Hindi numeral. The archetype of system has been tested on varieties of image of numerals. Experimentation result shows that recognition rate of halftoned images is 98 % compared to binary images (95%).

Keywords: OCR, Halftoning, Neural classifier, 16-segmentdisplay concept.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716
1642 A Survey in Techniques for Imbalanced Intrusion Detection System Datasets

Authors: Najmeh Abedzadeh, Matthew Jacobs

Abstract:

An intrusion detection system (IDS) is a software application that monitors malicious activities and generates alerts if any are detected. However, most network activities in IDS datasets are normal, and the relatively few numbers of attacks make the available data imbalanced. Consequently, cyber-attacks can hide inside a large number of normal activities, and machine learning algorithms have difficulty learning and classifying the data correctly. In this paper, a comprehensive literature review is conducted on different types of algorithms for both implementing the IDS and methods in correcting the imbalanced IDS dataset. The most famous algorithms are machine learning (ML), deep learning (DL), synthetic minority over-sampling technique (SMOTE), and reinforcement learning (RL). Most of the research use the CSE-CIC-IDS2017, CSE-CIC-IDS2018, and NSL-KDD datasets for evaluating their algorithms.

Keywords: IDS, intrusion detection system, imbalanced datasets, sampling algorithms, big data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1126
1641 Time Comparative Simulator for Distributed Process Scheduling Algorithms

Authors: Nazleeni Samiha Haron, Anang Hudaya Muhamad Amin, Mohd Hilmi Hasan, Izzatdin Abdul Aziz, Wirdhayu Mohd Wahid

Abstract:

In any distributed systems, process scheduling plays a vital role in determining the efficiency of the system. Process scheduling algorithms are used to ensure that the components of the system would be able to maximize its utilization and able to complete all the processes assigned in a specified period of time. This paper focuses on the development of comparative simulator for distributed process scheduling algorithms. The objectives of the works that have been carried out include the development of the comparative simulator, as well as to implement a comparative study between three distributed process scheduling algorithms; senderinitiated, receiver-initiated and hybrid sender-receiver-initiated algorithms. The comparative study was done based on the Average Waiting Time (AWT) and Average Turnaround Time (ATT) of the processes involved. The simulation results show that the performance of the algorithms depends on the number of nodes in the system.

Keywords: Distributed Systems, Load Sharing, Process Scheduling, AWT and ATT

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
1640 An Improved k Nearest Neighbor Classifier Using Interestingness Measures for Medical Image Mining

Authors: J. Alamelu Mangai, Satej Wagle, V. Santhosh Kumar

Abstract:

The exponential increase in the volume of medical image database has imposed new challenges to clinical routine in maintaining patient history, diagnosis, treatment and monitoring. With the advent of data mining and machine learning techniques it is possible to automate and/or assist physicians in clinical diagnosis. In this research a medical image classification framework using data mining techniques is proposed. It involves feature extraction, feature selection, feature discretization and classification. In the classification phase, the performance of the traditional kNN k nearest neighbor classifier is improved using a feature weighting scheme and a distance weighted voting instead of simple majority voting. Feature weights are calculated using the interestingness measures used in association rule mining. Experiments on the retinal fundus images show that the proposed framework improves the classification accuracy of traditional kNN from 78.57 % to 92.85 %.

Keywords: Medical Image Mining, Data Mining, Feature Weighting, Association Rule Mining, k nearest neighbor classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3308
1639 Combining Variable Ordering Heuristics for Improving Search Algorithms Performance

Authors: Abdolreza Hatamlou, Yusef Farhang, Mohammad Reza Meybodi

Abstract:

Variable ordering heuristics are used in constraint satisfaction algorithms. Different characteristics of various variable ordering heuristics are complementary. Therefore we have tried to get the advantages of all heuristics to improve search algorithms performance for solving constraint satisfaction problems. This paper considers combinations based on products and quotients, and then a newer form of combination based on weighted sums of ratings from a set of base heuristics, some of which result in definite improvements in performance.

Keywords: Constraint Satisfaction Problems, Variable Ordering Heuristics, Combination, Search Algorithms

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1368
1638 Algorithms for the Fast Computation of PWL and PHL Transforms

Authors: Fituri H Belgassem, Abdulbasit Nigrat, Seddeeq Ghrari

Abstract:

In this paper, the construction of fast algorithms for the computation of Periodic Walsh Piecewise-Linear PWL transform and the Periodic Haar Piecewise-Linear PHL transform will be presented. Algorithms for the computation of the inverse transforms are also proposed. The matrix equation of the PWL and PHL transforms are introduced. Comparison of the computational requirements for the periodic piecewise-linear transforms and other orthogonal transforms shows that the periodic piecewise-linear transforms require less number of operations than some orthogonal transforms such as the Fourier, Walsh and the Discrete Cosine transforms.

Keywords: Piece wise linear transforms, Fast transforms, Fast algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
1637 Classification Influence Index and its Application for k-Nearest Neighbor Classifier

Authors: Sejong Oh

Abstract:

Classification is an important topic in machine learning and bioinformatics. Many datasets have been introduced for classification tasks. A dataset contains multiple features, and the quality of features influences the classification accuracy of the dataset. The power of classification for each feature differs. In this study, we suggest the Classification Influence Index (CII) as an indicator of classification power for each feature. CII enables evaluation of the features in a dataset and improved classification accuracy by transformation of the dataset. By conducting experiments using CII and the k-nearest neighbor classifier to analyze real datasets, we confirmed that the proposed index provided meaningful improvement of the classification accuracy.

Keywords: accuracy, classification, dataset, data preprocessing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
1636 A Genetic Algorithm Approach for Solving Fuzzy Linear and Quadratic Equations

Authors: M. Hadi Mashinchi, M. Reza Mashinchi, Siti Mariyam H. J. Shamsuddin

Abstract:

In this paper a genetic algorithms approach for solving the linear and quadratic fuzzy equations Ãx̃=B̃ and Ãx̃2 + B̃x̃=C̃ , where Ã, B̃, C̃ and x̃ are fuzzy numbers is proposed by genetic algorithms. Our genetic based method initially starts with a set of random fuzzy solutions. Then in each generation of genetic algorithms, the solution candidates converge more to better fuzzy solution x̃b . In this proposed method the final reached x̃b is not only restricted to fuzzy triangular and it can be fuzzy number.

Keywords: Fuzzy coefficient, fuzzy equation, genetic algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2190
1635 Judges System for Classifiers Specialization

Authors: Abdel Rodríguez, Isis Bonet, Ricardo Grau, María M. García

Abstract:

In this paper we designed and implemented a new ensemble of classifiers based on a sequence of classifiers which were specialized in regions of the training dataset where errors of its trained homologous are concentrated. In order to separate this regions, and to determine the aptitude of each classifier to properly respond to a new case, it was used another set of classifiers built hierarchically. We explored a selection based variant to combine the base classifiers. We validated this model with different base classifiers using 37 training datasets. It was carried out a statistical comparison of these models with the well known Bagging and Boosting, obtaining significantly superior results with the hierarchical ensemble using Multilayer Perceptron as base classifier. Therefore, we demonstrated the efficacy of the proposed ensemble, as well as its applicability to general problems.

Keywords: classifiers, delegation, ensemble

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1306
1634 Enhancement Approaches for Supporting Default Hierarchies Formation for Robot Behaviors

Authors: Saeed Mohammed Baneamoon, Rosalina Abdul Salam

Abstract:

Robotic system is an important area in artificial intelligence that aims at developing the performance techniques of the robot and making it more efficient and more effective in choosing its correct behavior. In this paper the distributed learning classifier system is used for designing a simulated control system for robot to perform complex behaviors. A set of enhanced approaches that support default hierarchies formation is suggested and compared with each other in order to make the simulated robot more effective in mapping the input to the correct output behavior.

Keywords: Learning Classifier System, Default Hierarchies, Robot Behaviors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
1633 Use of Novel Algorithms MAJE4 and MACJER-320 for Achieving Confidentiality and Message Authentication in SSL and TLS

Authors: Sheena Mathew, K. Poulose Jacob

Abstract:

Extensive use of the Internet coupled with the marvelous growth in e-commerce and m-commerce has created a huge demand for information security. The Secure Socket Layer (SSL) protocol is the most widely used security protocol in the Internet which meets this demand. It provides protection against eaves droppings, tampering and forgery. The cryptographic algorithms RC4 and HMAC have been in use for achieving security services like confidentiality and authentication in the SSL. But recent attacks against RC4 and HMAC have raised questions in the confidence on these algorithms. Hence two novel cryptographic algorithms MAJE4 and MACJER-320 have been proposed as substitutes for them. The focus of this work is to demonstrate the performance of these new algorithms and suggest them as dependable alternatives to satisfy the need of security services in SSL. The performance evaluation has been done by using practical implementation method.

Keywords: Confidentiality, HMAC, Integrity, MACJER-320, MAJE4, RC4, Secure Socket Layer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1879
1632 Performance Analysis of Artificial Neural Network with Decision Tree in Prediction of Diabetes Mellitus

Authors: J. K. Alhassan, B. Attah, S. Misra

Abstract:

Human beings have the ability to make logical decisions. Although human decision - making is often optimal, it is insufficient when huge amount of data is to be classified. Medical dataset is a vital ingredient used in predicting patient’s health condition. In other to have the best prediction, there calls for most suitable machine learning algorithms. This work compared the performance of Artificial Neural Network (ANN) and Decision Tree Algorithms (DTA) as regards to some performance metrics using diabetes data. WEKA software was used for the implementation of the algorithms. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) were the two algorithms used for ANN, while RegTree and LADTree algorithms were the DTA models used. From the results obtained, DTA performed better than ANN. The Root Mean Squared Error (RMSE) of MLP is 0.3913 that of RBF is 0.3625, that of RepTree is 0.3174 and that of LADTree is 0.3206 respectively.

Keywords: Artificial neural network, classification, decision tree, diabetes mellitus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2417
1631 Subjective Evaluation of Spectral and Time Domain Cascading Algorithm for Speech Enhancement for Mobile Communication

Authors: Harish Chander, Balwinder Singh, Ravinder Khanna

Abstract:

In this paper, we present the comparative subjective analysis of Improved Minima Controlled Recursive Averaging (IMCRA) Algorithm, the Kalman filter and the cascading of IMCRA and Kalman filter algorithms. Performance of speech enhancement algorithms can be predicted in two different ways. One is the objective method of evaluation in which the speech quality parameters are predicted computationally. The second is a subjective listening test in which the processed speech signal is subjected to the listeners who judge the quality of speech on certain parameters. The comparative objective evaluation of these algorithms was analyzed in terms of Global SNR, Segmental SNR and Perceptual Evaluation of Speech Quality (PESQ) by the authors and it was reported that with cascaded algorithms there is a substantial increase in objective parameters. Since subjective evaluation is the real test to judge the quality of speech enhancement algorithms, the authenticity of superiority of cascaded algorithms over individual IMCRA and Kalman algorithms is tested through subjective analysis in this paper. The results of subjective listening tests have confirmed that the cascaded algorithms perform better under all types of noise conditions.

Keywords: Speech enhancement, spectral domain, time domain, PESQ, subjective analysis, objective analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1231
1630 Speech Data Compression using Vector Quantization

Authors: H. B. Kekre, Tanuja K. Sarode

Abstract:

Mostly transforms are used for speech data compressions which are lossy algorithms. Such algorithms are tolerable for speech data compression since the loss in quality is not perceived by the human ear. However the vector quantization (VQ) has a potential to give more data compression maintaining the same quality. In this paper we propose speech data compression algorithm using vector quantization technique. We have used VQ algorithms LBG, KPE and FCG. The results table shows computational complexity of these three algorithms. Here we have introduced a new performance parameter Average Fractional Change in Speech Sample (AFCSS). Our FCG algorithm gives far better performance considering mean absolute error, AFCSS and complexity as compared to others.

Keywords: Vector Quantization, Data Compression, Encoding, , Speech coding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2404
1629 Ranking and Unranking Algorithms for k-ary Trees in Gray Code Order

Authors: Fateme Ashari-Ghomi, Najme Khorasani, Abbas Nowzari-Dalini

Abstract:

In this paper, we present two new ranking and unranking algorithms for k-ary trees represented by x-sequences in Gray code order. These algorithms are based on a gray code generation algorithm developed by Ahrabian et al.. In mentioned paper, a recursive backtracking generation algorithm for x-sequences corresponding to k-ary trees in Gray code was presented. This generation algorithm is based on Vajnovszki-s algorithm for generating binary trees in Gray code ordering. Up to our knowledge no ranking and unranking algorithms were given for x-sequences in this ordering. we present ranking and unranking algorithms with O(kn2) time complexity for x-sequences in this Gray code ordering

Keywords: k-ary Tree Generation, Ranking, Unranking, Gray Code.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2107
1628 Designing and Implementing a Novel Scheduler for Multiprocessor System using Genetic Algorithm

Authors: Iman Zangeneh, Mostafa Moradi, Mazyar Baranpouyan

Abstract:

System is using multiple processors for computing and information processing, is increasing rapidly speed operation of these systems compared with single processor systems, very significant impact on system performance is increased .important differences to yield a single multi-processor cpu, the scheduling policies, to reduce the implementation time of all processes. Notwithstanding the famous algorithms such as SPT, LPT, LSPT and RLPT for scheduling and there, but none led to the answer are not optimal.In this paper scheduling using genetic algorithms and innovative way to finish the whole process faster that we do and the result compared with three algorithms we mentioned.

Keywords: Multiprocessor system, genetic algorithms, time implementation process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
1627 Least-Squares Support Vector Machine for Characterization of Clusters of Microcalcifications

Authors: Baljit Singh Khehra, Amar Partap Singh Pharwaha

Abstract:

Clusters of Microcalcifications (MCCs) are most frequent symptoms of Ductal Carcinoma in Situ (DCIS) recognized by mammography. Least-Square Support Vector Machine (LS-SVM) is a variant of the standard SVM. In the paper, LS-SVM is proposed as a classifier for classifying MCCs as benign or malignant based on relevant extracted features from enhanced mammogram. To establish the credibility of LS-SVM classifier for classifying MCCs, a comparative evaluation of the relative performance of LS-SVM classifier for different kernel functions is made. For comparative evaluation, confusion matrix and ROC analysis are used. Experiments are performed on data extracted from mammogram images of DDSM database. A total of 380 suspicious areas are collected, which contain 235 malignant and 145 benign samples, from mammogram images of DDSM database. A set of 50 features is calculated for each suspicious area. After this, an optimal subset of 23 most suitable features is selected from 50 features by Particle Swarm Optimization (PSO). The results of proposed study are quite promising.

Keywords: Clusters of Microcalcifications, Ductal Carcinoma in Situ, Least-Square Support Vector Machine, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
1626 Evaluation of Ensemble Classifiers for Intrusion Detection

Authors: M. Govindarajan

Abstract:

One of the major developments in machine learning in the past decade is the ensemble method, which finds highly accurate classifier by combining many moderately accurate component classifiers. In this research work, new ensemble classification methods are proposed with homogeneous ensemble classifier using bagging and heterogeneous ensemble classifier using arcing and their performances are analyzed in terms of accuracy. A Classifier ensemble is designed using Radial Basis Function (RBF) and Support Vector Machine (SVM) as base classifiers. The feasibility and the benefits of the proposed approaches are demonstrated by the means of standard datasets of intrusion detection. The main originality of the proposed approach is based on three main parts: preprocessing phase, classification phase, and combining phase. A wide range of comparative experiments is conducted for standard datasets of intrusion detection. The performance of the proposed homogeneous and heterogeneous ensemble classifiers are compared to the performance of other standard homogeneous and heterogeneous ensemble methods. The standard homogeneous ensemble methods include Error correcting output codes, Dagging and heterogeneous ensemble methods include majority voting, stacking. The proposed ensemble methods provide significant improvement of accuracy compared to individual classifiers and the proposed bagged RBF and SVM performs significantly better than ECOC and Dagging and the proposed hybrid RBF-SVM performs significantly better than voting and stacking. Also heterogeneous models exhibit better results than homogeneous models for standard datasets of intrusion detection. 

Keywords: Data mining, ensemble, radial basis function, support vector machine, accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702
1625 Steganalysis of Data Hiding via Halftoning and Coordinate Projection

Authors: Woong Hee Kim, Ilhwan Park

Abstract:

Steganography is the art of hiding and transmitting data through apparently innocuous carriers in an effort to conceal the existence of the data. A lot of steganography algorithms have been proposed recently. Many of them use the digital image data as a carrier. In data hiding scheme of halftoning and coordinate projection, still image data is used as a carrier, and the data of carrier image are modified for data embedding. In this paper, we present three features for analysis of data hiding via halftoning and coordinate projection. Also, we present a classifier using the proposed three features.

Keywords: Steganography, steganalysis, digital halftoning, data hiding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
1624 Comparative study of the Genetic Algorithms and Hessians Method for Minimization of the Electric Power Production Cost

Authors: L. Abdelmalek, M. Zerikat, M. Rahli

Abstract:

In this paper, we present a comparative study of the genetic algorithms and Hessian-s methods for optimal research of the active powers in an electric network of power. The objective function which is the performance index of production of electrical energy is minimized by satisfying the constraints of the equality type and inequality type initially by the Hessian-s methods and in the second time by the genetic Algorithms. The results found by the application of AG for the minimization of the electric production costs of power are very encouraging. The algorithms seem to be an effective technique to solve a great number of problems and which are in constant evolution. Nevertheless it should be specified that the traditional binary representation used for the genetic algorithms creates problems of optimization of management of the large-sized networks with high numerical precision.

Keywords: Genetic algorithm, Flow of optimum loadimpedances, Hessians method, Optimal distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1290
1623 Data Structures and Algorithms of Intelligent Web-Based System for Modular Design

Authors: Ivan C. Mustakerov, Daniela I. Borissova

Abstract:

In recent years, new product development became more and more competitive and globalized, and the designing phase is critical for the product success. The concept of modularity can provide the necessary foundation for organizations to design products that can respond rapidly to market needs. The paper describes data structures and algorithms of intelligent Web-based system for modular design taking into account modules compatibility relationship and given design requirements. The system intelligence is realized by developed algorithms for choice of modules reflecting all system restrictions and requirements. The proposed data structure and algorithms are illustrated by case study of personal computer configuration. The applicability of the proposed approach is tested through a prototype of Web-based system.

Keywords: Data structures, algorithms, intelligent web-based system, modular design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
1622 Isolation and Classification of Red Blood Cells in Anemic Microscopic Images

Authors: Jameela Ali Alkrimi, Loay E. George, Azizah Suliman, Abdul Rahim Ahmad, Karim Al-Jashamy

Abstract:

Red blood cells (RBCs) are among the most commonly and intensively studied type of blood cells in cell biology. Anemia is a lack of RBCs is characterized by its level compared to the normal hemoglobin level. In this study, a system based image processing methodology was developed to localize and extract RBCs from microscopic images. Also, the machine learning approach is adopted to classify the localized anemic RBCs images. Several textural and geometrical features are calculated for each extracted RBCs. The training set of features was analyzed using principal component analysis (PCA). With the proposed method, RBCs were isolated in 4.3secondsfrom an image containing 18 to 27 cells. The reasons behind using PCA are its low computation complexity and suitability to find the most discriminating features which can lead to accurate classification decisions. Our classifier algorithm yielded accuracy rates of 100%, 99.99%, and 96.50% for K-nearest neighbor (K-NN) algorithm, support vector machine (SVM), and neural network RBFNN, respectively. Classification was evaluated in highly sensitivity, specificity, and kappa statistical parameters. In conclusion, the classification results were obtained within short time period, and the results became better when PCA was used.

Keywords: Red blood cells, pre-processing image algorithms, classification algorithms, principal component analysis PCA, confusion matrix, kappa statistical parameters, ROC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3199