Search results for: Kernel Methods.
4036 Medical Image Segmentation Using Deformable Models and Local Fitting Binary
Authors: B. Bagheri Nakhjavanlo, T. J. Ellis, P. Raoofi, J. Dehmeshki
Abstract:
This paper presents a customized deformable model for the segmentation of abdominal and thoracic aortic aneurysms in CTA datasets. An important challenge in reliably detecting aortic aneurysm is the need to overcome problems associated with intensity inhomogeneities and image noise. Level sets are part of an important class of methods that utilize partial differential equations (PDEs) and have been extensively applied in image segmentation. A Gaussian kernel function in the level set formulation, which extracts the local intensity information, aids the suppression of noise in the extracted regions of interest and then guides the motion of the evolving contour for the detection of weak boundaries. The speed of curve evolution has been significantly improved with a resulting decrease in segmentation time compared with previous implementations of level sets. The results indicate the method is more effective than other approaches in coping with intensity inhomogeneities.Keywords: Abdominal and thoracic aortic aneurysms, intensityinhomogeneity, level sets, local fitting binary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18164035 A Hybrid Scheme for on-Line Diagnostic Decision Making Using Optimal Data Representation and Filtering Technique
Authors: Hyun-Woo Cho
Abstract:
The early diagnostic decision making in industrial processes is absolutely necessary to produce high quality final products. It helps to provide early warning for a special event in a process, and finding its assignable cause can be obtained. This work presents a hybrid diagnostic schmes for batch processes. Nonlinear representation of raw process data is combined with classification tree techniques. The nonlinear kernel-based dimension reduction is executed for nonlinear classification decision boundaries for fault classes. In order to enhance diagnosis performance for batch processes, filtering of the data is performed to get rid of the irrelevant information of the process data. For the diagnosis performance of several representation, filtering, and future observation estimation methods, four diagnostic schemes are evaluated. In this work, the performance of the presented diagnosis schemes is demonstrated using batch process data.
Keywords: Diagnostics, batch process, nonlinear representation, data filtering, multivariate statistical approach
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13174034 Detecting Remote Protein Evolutionary Relationships via String Scoring Method
Authors: Nazar Zaki, Safaai Deris
Abstract:
The amount of the information being churned out by the field of biology has jumped manifold and now requires the extensive use of computer techniques for the management of this information. The predominance of biological information such as protein sequence similarity in the biological information sea is key information for detecting protein evolutionary relationship. Protein sequence similarity typically implies homology, which in turn may imply structural and functional similarities. In this work, we propose, a learning method for detecting remote protein homology. The proposed method uses a transformation that converts protein sequence into fixed-dimensional representative feature vectors. Each feature vector records the sensitivity of a protein sequence to a set of amino acids substrings generated from the protein sequences of interest. These features are then used in conjunction with support vector machines for the detection of the protein remote homology. The proposed method is tested and evaluated on two different benchmark protein datasets and it-s able to deliver improvements over most of the existing homology detection methods.
Keywords: Protein homology detection; support vectormachine; string kernel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13924033 A Novel Recursive Multiplierless Algorithm for 2-D DCT
Authors: V.K.Ananthashayana, Geetha.K.S
Abstract:
In this paper, a recursive algorithm for the computation of 2-D DCT using Ramanujan Numbers is proposed. With this algorithm, the floating-point multiplication is completely eliminated and hence the multiplierless algorithm can be implemented using shifts and additions only. The orthogonality of the recursive kernel is well maintained through matrix factorization to reduce the computational complexity. The inherent parallel structure yields simpler programming and hardware implementation and provides log 1 2 3 2 N N-N+ additions and N N 2 log 2 shifts which is very much less complex when compared to other recent multiplierless algorithms.Keywords: DCT, Multilplerless, Ramanujan Number, Recursive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15454032 Some Third Order Methods for Solving Systems of Nonlinear Equations
Authors: Janak Raj Sharma, Rajni Sharma
Abstract:
Based on Traub-s methods for solving nonlinear equation f(x) = 0, we develop two families of third-order methods for solving system of nonlinear equations F(x) = 0. The families include well-known existing methods as special cases. The stability is corroborated by numerical results. Comparison with well-known methods shows that the present methods are robust. These higher order methods may be very useful in the numerical applications requiring high precision in their computations because these methods yield a clear reduction in number of iterations.Keywords: Nonlinear equations and systems, Newton's method, fixed point iteration, order of convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22074031 Certain Estimates of Oscillatory Integrals and Extrapolation
Authors: Hussain Al-Qassem
Abstract:
In this paper we study the boundedness properties of certain oscillatory integrals with polynomial phase. We obtain sharp estimates for these oscillatory integrals. By the virtue of these estimates and extrapolation we obtain Lp boundedness for these oscillatory integrals under rather weak size conditions on the kernel function.Keywords: Fourier transform, oscillatory integrals, Orlicz spaces, Block spaces, Extrapolation, Lp boundedness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13004030 On a Way for Constructing Numerical Methods on the Joint of Multistep and Hybrid Methods
Authors: G.Mehdiyeva, M.Imanova, V.Ibrahimov
Abstract:
Taking into account that many problems of natural sciences and engineering are reduced to solving initial-value problem for ordinary differential equations, beginning from Newton, the scientists investigate approximate solution of ordinary differential equations. There are papers of different authors devoted to the solution of initial value problem for ODE. The Euler-s known method that was developed under the guidance of the famous scientists Adams, Runge and Kutta is the most popular one among these methods. Recently the scientists began to construct the methods preserving some properties of Adams and Runge-Kutta methods and called them hybrid methods. The constructions of such methods are investigated from the middle of the XX century. Here we investigate one generalization of multistep and hybrid methods and on their base we construct specific methods of accuracy order p = 5 and p = 6 for k = 1 ( k is the order of the difference method).Keywords: Multistep and hybrid methods, initial value problem, degree and stability of hybrid methods
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15974029 A Survey of Response Generation of Dialogue Systems
Authors: Yifan Fan, Xudong Luo, Pingping Lin
Abstract:
An essential task in the field of artificial intelligence is to allow computers to interact with people through natural language. Therefore, researches such as virtual assistants and dialogue systems have received widespread attention from industry and academia. The response generation plays a crucial role in dialogue systems, so to push forward the research on this topic, this paper surveys various methods for response generation. We sort out these methods into three categories. First one includes finite state machine methods, framework methods, and instance methods. The second contains full-text indexing methods, ontology methods, vast knowledge base method, and some other methods. The third covers retrieval methods and generative methods. We also discuss some hybrid methods based knowledge and deep learning. We compare their disadvantages and advantages and point out in which ways these studies can be improved further. Our discussion covers some studies published in leading conferences such as IJCAI and AAAI in recent years.Keywords: Retrieval, generative, deep learning, response generation, knowledge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12044028 Multigrid Bilateral Filter
Authors: Zongqing Lu
Abstract:
It has proved that nonlinear diffusion and bilateral filtering (BF) have a closed connection. Early effort and contribution are to find a generalized representation to link them by using adaptive filtering. In this paper a new further relationship between nonlinear diffusion and bilateral filtering is explored which pays more attention to numerical calculus. We give a fresh idea that bilateral filtering can be accelerated by multigrid (MG) scheme which likes the nonlinear diffusion, and show that a bilateral filtering process with large kernel size can be approximated by a nonlinear diffusion process based on full multigrid (FMG) scheme.Keywords: Bilateral filter, multigrid
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18634027 Mixtures of Monotone Networks for Prediction
Authors: Marina Velikova, Hennie Daniels, Ad Feelders
Abstract:
In many data mining applications, it is a priori known that the target function should satisfy certain constraints imposed by, for example, economic theory or a human-decision maker. In this paper we consider partially monotone prediction problems, where the target variable depends monotonically on some of the input variables but not on all. We propose a novel method to construct prediction models, where monotone dependences with respect to some of the input variables are preserved by virtue of construction. Our method belongs to the class of mixture models. The basic idea is to convolute monotone neural networks with weight (kernel) functions to make predictions. By using simulation and real case studies, we demonstrate the application of our method. To obtain sound assessment for the performance of our approach, we use standard neural networks with weight decay and partially monotone linear models as benchmark methods for comparison. The results show that our approach outperforms partially monotone linear models in terms of accuracy. Furthermore, the incorporation of partial monotonicity constraints not only leads to models that are in accordance with the decision maker's expertise, but also reduces considerably the model variance in comparison to standard neural networks with weight decay.Keywords: mixture models, monotone neural networks, partially monotone models, partially monotone problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12464026 Numerical Solution of Infinite Boundary Integral Equation by Using Galerkin Method with Laguerre Polynomials
Authors: N. M. A. Nik Long, Z. K. Eshkuvatov, M. Yaghobifar, M. Hasan
Abstract:
In this paper the exact solution of infinite boundary integral equation (IBIE) of the second kind with degenerate kernel is presented. Moreover Galerkin method with Laguerre polynomial is applied to get the approximate solution of IBIE. Numerical examples are given to show the validity of the method presented.
Keywords: Approximation, Galerkin method, Integral equations, Laguerre polynomial.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21814025 Comparison of Performance between Different SVM Kernels for the Identification of Adult Video
Authors: Hajar Bouirouga, Sanaa El Fkihi , Abdeilah Jilbab, Driss Aboutajdine
Abstract:
In this paper we propose a method for recognition of adult video based on support vector machine (SVM). Different kernel features are proposed to classify adult videos. SVM has an advantage that it is insensitive to the relative number of training example in positive (adult video) and negative (non adult video) classes. This advantage is illustrated by comparing performance between different SVM kernels for the identification of adult video.Keywords: Skin detection, Support vector machine, Pornographic videos, Feature extraction, Video filtering, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23064024 A Comparison of Software Analysis and Design Methods for Real Time Systems
Authors: Anthony Spiteri Staines
Abstract:
This paper examines and compares several of the most common real time methods. These methods are CORE, YSM, MASCOT, JSD, DARTS, RTSAD, ADARTS, CODARTS, HOOD, HRT-HOOD, ROOM, UML, UML-RT. The methods are compared using attributes like i) usability, ii) compositionality and iii) proper RT notations available. Finally some comparison results are given and discussed.Keywords: Software Engineering Methods, MethodComparison, Real Time Analysis and Design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36994023 On One Application of Hybrid Methods For Solving Volterra Integral Equations
Authors: G.Mehdiyeva, V.Ibrahimov, M.Imanova
Abstract:
As is known, one of the priority directions of research works of natural sciences is introduction of applied section of contemporary mathematics as approximate and numerical methods to solving integral equation into practice. We fare with the solving of integral equation while studying many phenomena of nature to whose numerically solving by the methods of quadrature are mainly applied. Taking into account some deficiency of methods of quadrature for finding the solution of integral equation some sciences suggested of the multistep methods with constant coefficients. Unlike these papers, here we consider application of hybrid methods to the numerical solution of Volterra integral equation. The efficiency of the suggested method is proved and a concrete method with accuracy order p = 4 is constructed. This method in more precise than the corresponding known methods.Keywords: Volterra integral equation, hybrid methods, stability and degree, methods of quadrature
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13944022 Correspondence Theorem for Anti L-fuzzy Normal Subgroups
Authors: Jian Tang, Yunfei Yao
Abstract:
In this paper the concept of the cosets of an anti Lfuzzy normal subgroup of a group is given. Furthermore, the group G/A of cosets of an anti L-fuzzy normal subgroup A of a group G is shown to be isomorphic to a factor group of G in a natural way. Finally, we prove that if f : G1 -→ G2 is an epimorphism of groups, then there is a one-to-one order-preserving correspondence between the anti L-fuzzy normal subgroups of G2 and those of G1 which are constant on the kernel of f. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17014021 New PTH Moment Stable Criteria of Stochastic Neural Networks
Authors: Zixin Liu, Huawei Yang, Fangwei Chen
Abstract:
In this paper, the issue of pth moment stability of a class of stochastic neural networks with mixed delays is investigated. By establishing two integro-differential inequalities, some new sufficient conditions ensuring pth moment exponential stability are obtained. Compared with some previous publications, our results generalize some earlier works reported in the literature, and remove some strict constraints of time delays and kernel functions. Two numerical examples are presented to illustrate the validity of the main results.
Keywords: Neural networks, stochastic, PTH moment stable, time varying delays, distributed delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14704020 Quadrature Formula for Sampled Functions
Authors: Khalid Minaoui, Thierry Chonavel, Benayad Nsiri, Driss Aboutajdine
Abstract:
This paper deals with efficient quadrature formulas involving functions that are observed only at fixed sampling points. The approach that we develop is derived from efficient continuous quadrature formulas, such as Gauss-Legendre or Clenshaw-Curtis quadrature. We select nodes at sampling positions that are as close as possible to those of the associated classical quadrature and we update quadrature weights accordingly. We supply the theoretical quadrature error formula for this new approach. We show on examples the potential gain of this approach.
Keywords: Gauss-Legendre, Clenshaw-Curtis, quadrature, Peano kernel, irregular sampling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14164019 Mass Transfer Modeling in a Packed Bed of Palm Kernels under Supercritical Conditions
Authors: I. Norhuda, A. K. Mohd Omar
Abstract:
Studies on gas solid mass transfer using Supercritical fluid CO2 (SC-CO2) in a packed bed of palm kernels was investigated at operating conditions of temperature 50 °C and 70 °C and pressures ranges from 27.6 MPa, 34.5 MPa, 41.4 MPa and 48.3 MPa. The development of mass transfer models requires knowledge of three properties: the diffusion coefficient of the solute, the viscosity and density of the Supercritical fluids (SCF). Matematical model with respect to the dimensionless number of Sherwood (Sh), Schmidt (Sc) and Reynolds (Re) was developed. It was found that the model developed was found to be in good agreement with the experimental data within the system studied.
Keywords: Mass Transfer, Palm Kernel, Supercritical fluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18174018 An Architecture for High Performance File SystemI/O
Authors: Mikulas Patocka
Abstract:
This paper presents an architecture of current filesystem implementations as well as our new filesystem SpadFS and operating system Spad with rewritten VFS layer targeted at high performance I/O applications. The paper presents microbenchmarks and real-world benchmarks of different filesystems on the same kernel as well as benchmarks of the same filesystem on different kernels – enabling the reader to make conclusion how much is the performance of various tasks affected by operating system and how much by physical layout of data on disk. The paper describes our novel features–most notably continuous allocation of directories and cross-file readahead – and shows their impact on performance.Keywords: Filesystem, operating system, VFS, performance, readahead
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14474017 Development of a Biomechanical Method for Ergonomic Evaluation: Comparison with Observational Methods
Authors: M. Zare, S. Biau, M. Croq, Y. Roquelaure
Abstract:
A wide variety of observational methods have been developed to evaluate the ergonomic workloads in manufacturing. However, the precision and accuracy of these methods remain a subject of debate. The aims of this study were to develop biomechanical methods to evaluate ergonomic workloads and to compare them with observational methods.
Two observational methods, i.e. SCANIA Ergonomic Standard (SES) and Rapid Upper Limb Assessment (RULA), were used to assess ergonomic workloads at two simulated workstations. They included four tasks such as tightening & loosening, attachment of tubes and strapping as well as other actions. Sensors were also used to measure biomechanical data (Inclinometers, Accelerometers, and Goniometers).
Our findings showed that in assessment of some risk factors both RULA & SES were in agreement with the results of biomechanical methods. However, there was disagreement on neck and wrist postures. In conclusion, the biomechanical approach was more precise than observational methods, but some risk factors evaluated with observational methods were not measurable with the biomechanical techniques developed.
Keywords: Ergonomic, Observational Method, Biomechanical method, Workload.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50974016 An Experience Report on Course Teaching in Information Systems
Authors: Carlos Oliveira
Abstract:
This paper is a criticism of the traditional model of teaching and presents alternative teaching methods, different from the traditional lecture. These methods are accompanied by reports of experience of their application in a class. It was concluded that in the lecture, the student has a low learning rate and that other methods should be used to make the most engaging learning environment for the student, contributing (or facilitating) his learning process. However, the teacher should not use a single method, but rather a range of different methods to ensure the learning experience does not become repetitive and fatiguing for the student.
Keywords: Educational practices, experience report, IT in education, teaching methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11144015 4D Flight Trajectory Optimization Based on Pseudospectral Methods
Authors: Kouamana Bousson, Paulo Machado
Abstract:
The optimization and control problem for 4D trajectories is a subject rarely addressed in literature. In the 4D navigation problem we define waypoints, for each mission, where the arrival time is specified in each of them. One way to design trajectories for achieving this kind of mission is to use the trajectory optimization concepts. To solve a trajectory optimization problem we can use the indirect or direct methods. The indirect methods are based on maximum principle of Pontryagin, on the other hand, in the direct methods it is necessary to transform into a nonlinear programming problem. We propose an approach based on direct methods with a pseudospectral integration scheme built on Chebyshev polynomials.Keywords: Pseudospectral Methods, Trajectory Optimization, 4DTrajectories
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24114014 Multi-Channel Information Fusion in C-OTDR Monitoring Systems: Various Approaches to Classify of Targeted Events
Authors: Andrey V. Timofeev
Abstract:
The paper presents new results concerning selection of optimal information fusion formula for ensembles of C-OTDR channels. The goal of information fusion is to create an integral classificator designed for effective classification of seismoacoustic target events. The LPBoost (LP-β and LP-B variants), the Multiple Kernel Learning, and Weighing of Inversely as Lipschitz Constants (WILC) approaches were compared. The WILC is a brand new approach to optimal fusion of Lipschitz Classifiers Ensembles. Results of practical usage are presented.Keywords: Lipschitz Classifier, Classifiers Ensembles, LPBoost, C-OTDR systems, ν-OTDR systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16694013 Annual Power Load Forecasting Using Support Vector Regression Machines: A Study on Guangdong Province of China 1985-2008
Authors: Zhiyong Li, Zhigang Chen, Chao Fu, Shipeng Zhang
Abstract:
Load forecasting has always been the essential part of an efficient power system operation and planning. A novel approach based on support vector machines is proposed in this paper for annual power load forecasting. Different kernel functions are selected to construct a combinatorial algorithm. The performance of the new model is evaluated with a real-world dataset, and compared with two neural networks and some traditional forecasting techniques. The results show that the proposed method exhibits superior performance.Keywords: combinatorial algorithm, data mining, load forecasting, support vector machines
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16464012 Unit Commitment Solution Methods
Authors: Sayeed Salam
Abstract:
An effort to develop a unit commitment approach capable of handling large power systems consisting of both thermal and hydro generating units offers a large profitable return. In order to be feasible, the method to be developed must be flexible, efficient and reliable. In this paper, various proposed methods have been described along with their strengths and weaknesses. As all of these methods have some sort of weaknesses, a comprehensive algorithm that combines the strengths of different methods and overcomes each other-s weaknesses would be a suitable approach for solving industry-grade unit commitment problem.Keywords: Unit commitment, Solution methods, and Comprehensive algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 61724011 Web Service Security Method To SOA Development
Authors: Nafise Fareghzadeh
Abstract:
Web services provide significant new benefits for SOAbased applications, but they also expose significant new security risks. There are huge number of WS security standards and processes. At present, there is still a lack of a comprehensive approach which offers a methodical development in the construction of secure WS-based SOA. Thus, the main objective of this paper is to address this needs, presenting a comprehensive method for Web Services Security guaranty in SOA. The proposed method defines three stages, Initial Security Analysis, Architectural Security Guaranty and WS Security Standards Identification. These facilitate, respectively, the definition and analysis of WS-specific security requirements, the development of a WS-based security architecture and the identification of the related WS security standards that the security architecture must articulate in order to implement the security services.Keywords: Kernel, Repository, Security Standards, WS Security Policy, WS specification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14274010 Mechanical Quadrature Methods and Their Extrapolations for Solving First Kind Boundary Integral Equations of Anisotropic Darcy-s Equation
Authors: Xin Luo, Jin Huang, Chuan-Long Wang
Abstract:
The mechanical quadrature methods for solving the boundary integral equations of the anisotropic Darcy-s equations with Dirichlet conditions in smooth domains are presented. By applying the collectively compact theory, we prove the convergence and stability of approximate solutions. The asymptotic expansions for the error show that the methods converge with the order O (h3), where h is the mesh size. Based on these analysis, extrapolation methods can be introduced to achieve a higher convergence rate O (h5). An a posterior asymptotic error representation is derived in order to construct self-adaptive algorithms. Finally, the numerical experiments show the efficiency of our methods.
Keywords: Darcy's equation, anisotropic, mechanical quadrature methods, extrapolation methods, a posteriori error estimate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15654009 Two Fourth-order Iterative Methods Based on Continued Fraction for Root-finding Problems
Authors: Shengfeng Li, Rujing Wang
Abstract:
In this paper, we present two new one-step iterative methods based on Thiele-s continued fraction for solving nonlinear equations. By applying the truncated Thiele-s continued fraction twice, the iterative methods are obtained respectively. Analysis of convergence shows that the new methods are fourth-order convergent. Numerical tests verifying the theory are given and based on the methods, two new one-step iterations are developed.Keywords: Iterative method, Fixed-point iteration, Thiele's continued fraction, Order of convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18834008 Prediction of Writer Using Tamil Handwritten Document Image Based on Pooled Features
Authors: T. Thendral, M. S. Vijaya, S. Karpagavalli
Abstract:
Tamil handwritten document is taken as a key source of data to identify the writer. Tamil is a classical language which has 247 characters include compound characters, consonants, vowels and special character. Most characters of Tamil are multifaceted in nature. Handwriting is a unique feature of an individual. Writer may change their handwritings according to their frame of mind and this place a risky challenge in identifying the writer. A new discriminative model with pooled features of handwriting is proposed and implemented using support vector machine. It has been reported on 100% of prediction accuracy by RBF and polynomial kernel based classification model.
Keywords: Classification, Feature extraction, Support vector machine, Training, Writer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23124007 Prediction of Writer Using Tamil Handwritten Document Image Based on Pooled Features
Authors: T. Thendral, M. S. Vijaya, S. Karpagavalli
Abstract:
Tamil handwritten document is taken as a key source of data to identify the writer. Tamil is a classical language which has 247 characters include compound characters, consonants, vowels and special character. Most characters of Tamil are multifaceted in nature. Handwriting is a unique feature of an individual. Writer may change their handwritings according to their frame of mind and this place a risky challenge in identifying the writer. A new discriminative model with pooled features of handwriting is proposed and implemented using support vector machine. It has been reported on 100% of prediction accuracy by RBF and polynomial kernel based classification model.Keywords: Classification, Feature extraction, Support vector machine, Training, Writer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701