Search results for: process mining.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5895

Search results for: process mining.

4755 Road Accidents Bigdata Mining and Visualization Using Support Vector Machines

Authors: Usha Lokala, Srinivas Nowduri, Prabhakar K. Sharma

Abstract:

Useful information has been extracted from the road accident data in United Kingdom (UK), using data analytics method, for avoiding possible accidents in rural and urban areas. This analysis make use of several methodologies such as data integration, support vector machines (SVM), correlation machines and multinomial goodness. The entire datasets have been imported from the traffic department of UK with due permission. The information extracted from these huge datasets forms a basis for several predictions, which in turn avoid unnecessary memory lapses. Since data is expected to grow continuously over a period of time, this work primarily proposes a new framework model which can be trained and adapt itself to new data and make accurate predictions. This work also throws some light on use of SVM’s methodology for text classifiers from the obtained traffic data. Finally, it emphasizes the uniqueness and adaptability of SVMs methodology appropriate for this kind of research work.

Keywords: Road accident, machine learning, support vector machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1131
4754 Implementing Delivery Drones in Logistics Business Process: Case of Pharmaceutical Industry

Authors: Nikola Vlahovic, Blazenka Knezevic, Petra Batalic

Abstract:

In this paper, we will present a research about feasibility of implementing unmanned aerial vehicles, also known as 'drones', in logistics. Research is based on available information about current incentives and experiments in application of delivery drones in commercial use. Overview of current pilot projects and literature, as well as an overview of detected challenges, will be compiled and presented. Based on these findings, we will present a conceptual model of business process that implements delivery drones in business to business logistic operations. Business scenario is based on a pharmaceutical supply chain. Simulation modeling will be used to create models for running experiments and collecting performance data. Comparative study of the presented conceptual model will be given. The work will outline the main advantages and disadvantages of implementing unmanned aerial vehicles in delivery services as a supplementary distribution channel along the supply chain.

Keywords: Business process, delivery drones, logistics, simulation modelling, unmanned aerial vehicles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3724
4753 Nickel Electroplating in Post Supercritical CO2 Mixed Watts Bath under Different Agitations

Authors: Chun-Ying Lee, Kun-Hsien Lee, Bor-Wei Wang

Abstract:

The process of post-supercritical CO2 electroplating uses the electrolyte solution after being mixed with supercritical CO2 and released to atmospheric pressure. It utilizes the microbubbles that form when oversaturated CO2 in the electrolyte returns to gaseous state, which gives the similar effect of pulsed electroplating. Under atmospheric pressure, the CO2 bubbles gradually diffuse. Therefore, the introduction of ultrasound and/or other agitation can potentially excite the CO2 microbubbles to achieve an electroplated surface of even higher quality. In this study, during the electroplating process, three different modes of agitation: magnetic stirrer agitation, ultrasonic agitation and a combined mode (magnetic + ultrasonic) were applied, respectively, in order to obtain an optimal surface morphology and mechanical properties for the electroplated Ni coating. It is found that the combined agitation mode at a current density of 40 A/dm2 achieved the smallest grain size, lower surface roughness, and produced an electroplated Ni layer that achieved hardness of 320 HV, much higher when compared with conventional method, which were usually in the range of 160 to 300 HV. However, at the same time, the electroplating with combined agitation developed a higher internal stress of 320 MPa due to the lower current efficiency of the process and finer grain in the coating. Moreover, a new control methodology for tailoring the coating’s mechanical property through its thickness was demonstrated by the timely introduction of ultrasonic agitation during the electroplating process with post supercritical CO2 mixed electrolyte.

Keywords: Nickel electroplating, micro-bubbles, supercritical carbon dioxide, ultrasonic agitation, magnetic stirring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 868
4752 Architecture Exception Governance

Authors: Ondruska Marek

Abstract:

The article presents the whole model of IS/IT architecture exception governance. As first, the assumptions of presented model are set. As next, there is defined a generic governance model that serves as a basis for the architecture exception governance. The architecture exception definition and its attributes follow. The model respects well known approaches to the area that are described in the text, but it adopts higher granularity in description and expands the process view with all the next necessary governance components as roles, principles and policies, tools to enable the implementation of the model into organizations. The architecture exception process is decomposed into a set of processes related to the architecture exception lifecycle consisting of set of phases and architecture exception states. Finally, there is information about my future research related to this area.

Keywords: Architecture, dispensation, exception, governance, model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2479
4751 Decolorization and COD Removal of Palm Oil Mill Wastewater by Electrocoagulation

Authors: K. Sontaya, B. Pitiyont, V. Punsuvon

Abstract:

The objective of this study is to investigate the performance of the electrocoagulation process for color and COD removal in palm oil wastewater using a 10 L batch reactor. Iron was used as electrodes and the distance between electrodes was 2 cm. The effects of operating parameters: current voltage (6, 12 and 18 volt), reaction time (5, 15, 30, 45 and 60 min) and initial pH (4 and 9) of treatment efficiency were examine. The result showed that decolorization and COD removal efficiency increased with the increase in current voltage and reaction time. The proper condition for decolorization achieved at initial pH 4 and 9 were current voltage of 12 volt, reaction time 30 min. The decolorization efficiency reached 90.4% and 88.9%, respectively. COD removal was achiveved at current voltage 12 volt, reaction time 15 min. COD removal efficiency was 89.2 % and 83.0%, respectively. From the results, to show electrocoagulation process can treat palm oil mill wastewater in both acidic and basic condition at high efficiency for color and COD removal. Consequently, electrocoagulation process can be used or applied as a post-treatment step to improve the quality of the final discharge in term of color and residual COD removal.

Keywords: COD removal, decolorizaton, electrocoagulation, iron electrode, palm oil mill wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3182
4750 Modeling the Uncertainty of the Remanufacturing Process for Consideration of Extended Producer Responsibility (EPR)

Authors: Michael R. Johnson, Ian P. McCarthy

Abstract:

There is a growing body of evidence to support the proposition of product take back for remanufacturing particularly within the context of Extended Producer Responsibility (EPR). Remanufacturing however presents challenges unlike that of traditional manufacturing environments due to its high levels of uncertainty which may further distract organizations from considering its potential benefits. This paper presents a novel modeling approach for evaluating the uncertainty of part failures within the remanufacturing process and its impact on economic and environmental performance measures. This paper presents both the theoretical modeling approach and an example of its use in application.

Keywords: Remanufacturing, Demanufacturing, Extended Producer Responsibility, Sustainability, Uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
4749 Mathematical Model of Smoking Time Temperature Effect on Ribbed Smoked Sheets Quality

Authors: Rifah Ediati, Jajang

Abstract:

The quality of Ribbed Smoked Sheets (RSS) primarily based on color, dryness, and the presence or absence of fungus and bubbles. This quality is strongly influenced by the drying and fumigation process namely smoking process. Smoking that is held in high temperature long time will result scorched dark brown sheets, whereas if the temperature is too low or slow drying rate would resulted in less mature sheets and growth of fungus. Therefore need to find the time and temperature for optimum quality of sheets. Enhance, unmonitored heat and mass transfer during smoking process lead to high losses of energy balance. This research aims to generate simple empirical mathematical model describing the effect of smoking time and temperature to RSS quality of color, water content, fungus and bubbles. The second goal of study was to analyze energy balance during smoking process. Experimental study was conducted by measuring temperature, residence time and quality parameters of 16 sheets sample in smoking rooms. Data for energy consumption balance such as mass of fuel wood, mass of sheets being smoked, construction temperature, ambient temperature and relative humidity were taken directly along the smoking process. It was found that mathematical model correlating smoking temperature and time with color is Color = -169 - 0.184 T4 - 0.193 T3 - 0.160 0.405 T1 + T2 + 0.388 t1 +3.11 t2 + 3.92t3 + 0.215 t4 with R square 50.8% and with moisture is Moisture = -1.40-0.00123 T4 + 0.00032 T3 + 0.00260 T2 - 0.00292 T1 - 0.0105 t1 + 0.0290 t2 + 0.0452 t3 + 0.00061 t4 with R square of 49.9%. Smoking room energy analysis found useful energy was 27.8%. The energy stored in the material construction 7.3%. Lost of energy in conversion of wood combustion, ventilation and others were 16.6%. The energy flowed out through the contact of material construction with the ambient air was found to be the highest contribution to energy losses, it reached 48.3%.

Keywords: RSS quality, temperature, time, smoking room, energy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2761
4748 Constructing a Suitable Model of Distance Training for Community Leader in the Upper Northeastern Region

Authors: Teerawach Khamkorn, Laongtip Mathurasa, Savittree Rochanasmita Arnold, Witthaya Mekhum

Abstract:

The objective of this research intends to create a suitable model of distance training for community leaders in the upper northeastern region of Thailand. The implementation of the research process is divided into four steps: The first step is to analyze relevant documents. The second step deals with an interview in depth with experts. The third step is concerned with constructing a model. And the fourth step takes aim at model validation by expert assessments. The findings reveal the two important components for constructing an appropriate model of distance training for community leaders in the upper northeastern region. The first component consists of the context of technology management, e.g., principle, policy and goals. The second component can be viewed in two ways. Firstly, there are elements comprising input, process, output and feedback. Secondly, the sub-components include steps and process in training. The result of expert assessments informs that the researcher-s constructed model is consistent and suitable and overall the most appropriate.

Keywords: Constructing, Distance Training, Management, Technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1346
4747 Power Reduction by Automatic Monitoring and Control System in Active Mode

Authors: Somaye Abdollahi Pour, Mohsen Saneei

Abstract:

This paper describes a novel monitoring scheme to minimize total active power in digital circuits depend on the demand frequency, by adjusting automatically both supply voltage and threshold voltages based on circuit operating conditions such as temperature, process variations, and desirable frequency. The delay monitoring results, will be control and apply so as to be maintained at the minimum value at which the chip is able to operate for a given clock frequency. Design details of power monitor are examined using simulation framework in 32nm BTPM model CMOS process. Experimental results show the overhead of proposed circuit in terms of its power consumption is about 40 μW for 32nm technology; moreover the results show that our proposed circuit design is not far sensitive to the temperature variations and also process variations. Besides, uses the simple blocks which offer good sensitivity, high speed, the continuously feedback loop. This design provides up to 40% reduction in power consumption in active mode.

Keywords: active mode, delay monitor, body biasing, VDD scaling, low power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856
4746 Time Series Regression with Meta-Clusters

Authors: Monika Chuchro

Abstract:

This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain subgroups of time series data with normal distribution from the inflow into wastewater treatment plant data, composed of several groups differing by mean value. Two simple algorithms, K-mean and EM, were chosen as a clustering method. The Rand index was used to measure the similarity. After simple meta-clustering, a regression model was performed for each subgroups. The final model was a sum of the subgroups models. The quality of the obtained model was compared with the regression model made using the same explanatory variables, but with no clustering of data. Results were compared using determination coefficient (R2), measure of prediction accuracy- mean absolute percentage error (MAPE) and comparison on a linear chart. Preliminary results allow us to foresee the potential of the presented technique.

Keywords: Clustering, Data analysis, Data mining, Predictive models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952
4745 Adaptive Fuzzy Control of a Nonlinear Tank Process

Authors: A. R. Tavakolpour-Saleh, H. Jokar

Abstract:

Liquid level control of conical tank system is known to be a great challenge in many industries such as food processing, hydrometallurgical industries and wastewater treatment plant due to its highly nonlinear characteristics. In this research, an adaptive fuzzy PID control scheme is applied to the problem of liquid level control in a nonlinear tank process. A conical tank process is first modeled and primarily simulated. A PID controller is then applied to the plant model as a suitable benchmark for comparison and the dynamic responses of the control system to different step inputs were investigated. It is found that the conventional PID controller is not able to fulfill the controller design criteria such as desired time constant due to highly nonlinear characteristics of the plant model. Consequently, a nonlinear control strategy based on gain-scheduling adaptive control incorporating a fuzzy logic observer is proposed to accurately control the nonlinear tank system. The simulation results clearly demonstrated the superiority of the proposed adaptive fuzzy control method over the conventional PID controller.

Keywords: Adaptive control, fuzzy logic, conical tank, PID controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023
4744 A Study of Growth Factors on Sustainable Manufacturing in Small and Medium-Sized Enterprises: Case Study of Japan Manufacturing

Authors: Tadayuki Kyoutani, Shigeyuki Haruyama, Ken Kaminishi, Zefry Darmawan

Abstract:

Japan’s semiconductor industries have developed greatly in recent years. Many were started from a Small and Medium-sized Enterprises (SMEs) that found at a good circumstance and now become the prosperous industries in the world. Sustainable growth factors that support the creation of spirit value inside the Japanese company were strongly embedded through performance. Those factors were not clearly defined among each company. A series of literature research conducted to explore quantitative text mining about the definition of sustainable growth factors. Sustainable criteria were developed from previous research to verify the definition of the factors. A typical frame work was proposed as a systematical approach to develop sustainable growth factor in a specific company. Result of approach was review in certain period shows that factors influenced in sustainable growth was importance for the company to achieve the goal.

Keywords: SME, manufacture, sustainable, growth factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 639
4743 Fresh Vegetable Supply Chain in Nakorn Pathom Province for Exporting

Authors: P. Waiyawuththanapoom, P. Tirastittam

Abstract:

Thailand is the agriculture country as the weather and geography are suitable for agriculture environment. In 2011, the quantity of exported fresh vegetable was 126,069 tons which valued 117.1 million US dollars. Although the fresh vegetable has a high potential in exporting, there also have a lack of knowledge such as chemical usage, land usage, marketing and also the transportation and logistics. Nakorn Pathom province is the area which the farmer and manufacturer of fresh vegetable located. The objectives of this study are to study the basic information of the local fresh vegetable farmers in Nakorn Pathom province, to study the factor which effects the management of the fresh vegetable supply chain in Nakorn Pathom province and to study the problems and obstacle of the fresh vegetable supply chain in Nakorn Pathom province. This study is limited to the flow of the Nakorn Pathom province fresh vegetable from the farmers to the country which import the vegetable from Thailand. The populations of this study are 100 local farmers in Nakorn Pathom province. The result of this study shows that the key process of the fresh vegetable supply chain is in the supply sourcing process and manufacturing process.

Keywords: Exporting, Fresh Vegetable, Nakorn Pathom Province, Supply Chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
4742 Personnel Selection Based on Step-Wise Weight Assessment Ratio Analysis and Multi-Objective Optimization on the Basis of Ratio Analysis Methods

Authors: Emre Ipekci Cetin, Ebru Tarcan Icigen

Abstract:

Personnel selection process is considered as one of the most important and most difficult issues in human resources management. At the stage of personnel selection, the applicants are handled according to certain criteria, the candidates are dealt with, and efforts are made to select the most appropriate candidate. However, this process can be more complicated in terms of the managers who will carry out the staff selection process. Candidates should be evaluated according to different criteria such as work experience, education, foreign language level etc. It is crucial that a rational selection process is carried out by considering all the criteria in an integrated structure. In this study, the problem of choosing the front office manager of a 5 star accommodation enterprise operating in Antalya is addressed by using multi-criteria decision-making methods. In this context, SWARA (Step-wise weight assessment ratio analysis) and MOORA (Multi-Objective Optimization on the basis of ratio analysis) methods, which have relatively few applications when compared with other methods, have been used together. Firstly SWARA method was used to calculate the weights of the criteria and subcriteria that were determined by the business. After the weights of the criteria were obtained, the MOORA method was used to rank the candidates using the ratio system and the reference point approach. Recruitment processes differ from sector to sector, from operation to operation. There are a number of criteria that must be taken into consideration by businesses in accordance with the structure of each sector. It is of utmost importance that all candidates are evaluated objectively in the framework of these criteria, after these criteria have been carefully selected in the selection of suitable candidates for employment. In the study, staff selection process was handled by using SWARA and MOORA methods together.

Keywords: Accommodation establishments, human resource management, MOORA, multi criteria decision making, SWARA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1245
4741 A Digital Twin Approach for Sustainable Territories Planning: A Case Study on District Heating

Authors: A. Amrani, O. Allali, A. Ben Hamida, F. Defrance, S. Morland, E. Pineau, T. Lacroix

Abstract:

The energy planning process is a very complex task that involves several stakeholders and requires the consideration of several local and global factors and constraints. In order to optimize and simplify this process, we propose a tool-based iterative approach applied to district heating planning. We build our tool with the collaboration of a French territory using actual district data and implementing the European incentives. We set up an iterative process including data visualization and analysis, identification and extraction of information related to the area concerned by the operation, design of sustainable planning scenarios leveraging local renewable and recoverable energy sources, and finally, the evaluation of scenarios. The last step is performed by a dynamic digital twin replica of the city. Territory’s energy experts confirm that the tool provides them with valuable support towards sustainable energy planning.

Keywords: Climate change, data management, decision support, digital twin, district heating, energy planning, renewables, smart city.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 662
4740 Memory Leak Detection in Distributed System

Authors: Roohi Shabrin S., Devi Prasad B., Prabu D., Pallavi R. S., Revathi P.

Abstract:

Due to memory leaks, often-valuable system memory gets wasted and denied for other processes thereby affecting the computational performance. If an application-s memory usage exceeds virtual memory size, it can leads to system crash. Current memory leak detection techniques for clusters are reactive and display the memory leak information after the execution of the process (they detect memory leak only after it occur). This paper presents a Dynamic Memory Monitoring Agent (DMMA) technique. DMMA framework is a dynamic memory leak detection, that detects the memory leak while application is in execution phase, when memory leak in any process in the cluster is identified by DMMA it gives information to the end users to enable them to take corrective actions and also DMMA submit the affected process to healthy node in the system. Thus provides reliable service to the user. DMMA maintains information about memory consumption of executing processes and based on this information and critical states, DMMA can improve reliability and efficaciousness of cluster computing.

Keywords: Dynamic Memory Monitoring Agent (DMMA), Cluster Computing, Memory Leak, Fault Tolerant Framework, Dynamic Memory Leak Detection (DMLD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2287
4739 Performance Comparison of Different Regression Methods for a Polymerization Process with Adaptive Sampling

Authors: Florin Leon, Silvia Curteanu

Abstract:

Developing complete mechanistic models for polymerization reactors is not easy, because complex reactions occur simultaneously; there is a large number of kinetic parameters involved and sometimes the chemical and physical phenomena for mixtures involving polymers are poorly understood. To overcome these difficulties, empirical models based on sampled data can be used instead, namely regression methods typical of machine learning field. They have the ability to learn the trends of a process without any knowledge about its particular physical and chemical laws. Therefore, they are useful for modeling complex processes, such as the free radical polymerization of methyl methacrylate achieved in a batch bulk process. The goal is to generate accurate predictions of monomer conversion, numerical average molecular weight and gravimetrical average molecular weight. This process is associated with non-linear gel and glass effects. For this purpose, an adaptive sampling technique is presented, which can select more samples around the regions where the values have a higher variation. Several machine learning methods are used for the modeling and their performance is compared: support vector machines, k-nearest neighbor, k-nearest neighbor and random forest, as well as an original algorithm, large margin nearest neighbor regression. The suggested method provides very good results compared to the other well-known regression algorithms.

Keywords: Adaptive sampling, batch bulk methyl methacrylate polymerization, large margin nearest neighbor regression, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1403
4738 Evaluating Hurst Parameters and Fractal Dimensions of Surveyed Dataset of Tailings Dam Embankment

Authors: I. Yakubu, Y. Y. Ziggah, C. Yeboah

Abstract:

In the mining environment, tailings dam embankment is among the hazards and risk areas. The tailings dam embankment could fail and result to damages to facilities, human injuries or even fatalities. Periodic monitoring of the dam embankment is needed to help assess the safety of the tailings dam embankment. Artificial intelligence techniques such as fractals can be used to analyse the stability of the monitored dataset from survey measurement techniques. In this paper, the fractal dimension (D) was determined using D = 2-H. The Hurst parameters (H) of each monitored prism were determined by using a time domain of rescaled range programming in MATLAB software. The fractal dimensions of each monitored prism were determined based on the values of H. The results reveal that the values of the determined H were all within the threshold of 0 ≤ H ≤ 1 m. The smaller the H, the bigger the fractal dimension is. Fractal dimension values ranging from 1.359 x 10-4 m to 1.8843 x 10-3 m were obtained from the monitored prisms on the based on the tailing dam embankment dataset used. The ranges of values obtained indicate that the tailings dam embankment is stable.

Keywords: Hurst parameter, fractal dimension, tailings dam embankment, surveyed dataset.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 761
4737 The Use of Performance Indicators for Evaluating Models of Drying Jackfruit (Artocarpus heterophyllus L.): Page, Midilli, and Lewis

Authors: D. S. C. Soares, D. G. Costa, J. T. S., A. K. S. Abud, T. P. Nunes, A. M. Oliveira Júnior

Abstract:

Mathematical models of drying are used for the purpose of understanding the drying process in order to determine important parameters for design and operation of the dryer. The jackfruit is a fruit with high consumption in the Northeast and perishability. It is necessary to apply techniques to improve their conservation for longer in order to diffuse it by regions with low consumption. This study aimed to analyze several mathematical models (Page, Lewis, and Midilli) to indicate one that best fits the conditions of convective drying process using performance indicators associated with each model: accuracy (Af) and noise factors (Bf), mean square error (RMSE) and standard error of prediction (% SEP). Jackfruit drying was carried out in convective type tray dryer at a temperature of 50°C for 9 hours. It is observed that the model Midili was more accurate with Af: 1.39, Bf: 1.33, RMSE: 0.01%, and SEP: 5.34. However, the use of the Model Midilli is not appropriate for purposes of control process due to need four tuning parameters. With the performance indicators used in this paper, the Page model showed similar results with only two parameters. It is concluded that the best correlation between the experimental and estimated data is given by the Page’s model.

Keywords: Drying, models, jackfruit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2425
4736 Handwriting Velocity Modeling by Artificial Neural Networks

Authors: Mohamed Aymen Slim, Afef Abdelkrim, Mohamed Benrejeb

Abstract:

The handwriting is a physical demonstration of a complex cognitive process learnt by man since his childhood. People with disabilities or suffering from various neurological diseases are facing so many difficulties resulting from problems located at the muscle stimuli (EMG) or signals from the brain (EEG) and which arise at the stage of writing. The handwriting velocity of the same writer or different writers varies according to different criteria: age, attitude, mood, writing surface, etc. Therefore, it is interesting to reconstruct an experimental basis records taking, as primary reference, the writing speed for different writers which would allow studying the global system during handwriting process. This paper deals with a new approach of the handwriting system modeling based on the velocity criterion through the concepts of artificial neural networks, precisely the Radial Basis Functions (RBF) neural networks. The obtained simulation results show a satisfactory agreement between responses of the developed neural model and the experimental data for various letters and forms then the efficiency of the proposed approaches.

Keywords: ElectroMyoGraphic (EMG) signals, Experimental approach, Handwriting process, Radial Basis Functions (RBF) neural networks, Velocity Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2319
4735 On the Parameter Optimization of Fuzzy Inference Systems

Authors: Erika Martinez Ramirez, Rene V. Mayorga

Abstract:

Nowadays, more engineering systems are using some kind of Artificial Intelligence (AI) for the development of their processes. Some well-known AI techniques include artificial neural nets, fuzzy inference systems, and neuro-fuzzy inference systems among others. Furthermore, many decision-making applications base their intelligent processes on Fuzzy Logic; due to the Fuzzy Inference Systems (FIS) capability to deal with problems that are based on user knowledge and experience. Also, knowing that users have a wide variety of distinctiveness, and generally, provide uncertain data, this information can be used and properly processed by a FIS. To properly consider uncertainty and inexact system input values, FIS normally use Membership Functions (MF) that represent a degree of user satisfaction on certain conditions and/or constraints. In order to define the parameters of the MFs, the knowledge from experts in the field is very important. This knowledge defines the MF shape to process the user inputs and through fuzzy reasoning and inference mechanisms, the FIS can provide an “appropriate" output. However an important issue immediately arises: How can it be assured that the obtained output is the optimum solution? How can it be guaranteed that each MF has an optimum shape? A viable solution to these questions is through the MFs parameter optimization. In this Paper a novel parameter optimization process is presented. The process for FIS parameter optimization consists of the five simple steps that can be easily realized off-line. Here the proposed process of FIS parameter optimization it is demonstrated by its implementation on an Intelligent Interface section dealing with the on-line customization / personalization of internet portals applied to E-commerce.

Keywords: Artificial Intelligence, Fuzzy Logic, Fuzzy InferenceSystems, Nonlinear Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1987
4734 An Experimental Investigation on the Effect of Deep cold Rolling Parameters on Surface Roughness and Hardness of AISI 4140 Steel

Authors: P. R. Prabhu, S. M. Kulkarni, S. S. Sharma

Abstract:

Deep cold rolling (DCR) is a cold working process, which easily produces a smooth and work-hardened surface by plastic deformation of surface irregularities. In the present study, the influence of main deep cold rolling process parameters on the surface roughness and the hardness of AISI 4140 steel were studied by using fractional factorial design of experiments. The assessment of the surface integrity aspects on work material was done, in terms of identifying the predominant factor amongst the selected parameters, their order of significance and setting the levels of the factors for minimizing surface roughness and/or maximizing surface hardness. It was found that the ball diameter, rolling force, initial surface roughness and number of tool passes are the most pronounced parameters, which have great effects on the work piece-s surface during the deep cold rolling process. A simple, inexpensive and newly developed DCR tool, with interchangeable collet for using different ball diameters, was used throughout the experimental work presented in this paper.

Keywords: Deep cold rolling, design of experiments, surface hardness, surface roughness

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159
4733 Improvement of Reaction Technology of Decalin Halogenation

Authors: Dmitriy Yu. Korulkin, Ravshan M. Nuraliev, Raissa A. Muzychkina

Abstract:

In this research paper were investigated the main regularities of a radical bromination reaction of decalin. There had been studied the temperature effect, durations of reaction, frequency rate of process, a ratio of initial components, type and number of the initiator on decalin bromination degree. There were specified optimum conditions of synthesis of a perbromodecalin by the method of a decalin bromination. There are developed the technological flowchart of receiving a perbromodecalin and the mass balance of process on the first and the subsequent loadings of components. The results of research of antibacterial and antifungal activity of synthesized bromoderivatives have been represented.

Keywords: Decalin, optimum technology, perbromodecalin, radical bromination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2219
4732 Identification of Conserved Domains and Motifs for GRF Gene Family

Authors: Jafar Ahmadi, Nafiseh Noormohammadi, Sedigheh Fabriki Ourang

Abstract:

GRF, Growth regulating factor, genes encode a novel class of plant-specific transcription factors. The GRF proteins play a role in the regulation of cell numbers in young and growing tissues and may act as transcription activations in growth and development of plants. Identification of GRF genes and their expression are important in plants to performance of the growth and development of various organs. In this study, to better understanding the structural and functional differences of GRFs family, 45 GRF proteins sequences in A. thaliana, Z. mays, O. sativa, B. napus, B. rapa, H. vulgare and S. bicolor, have been collected and analyzed through bioinformatics data mining. As a result, in secondary structure of GRFs, the number of alpha helices was more than beta sheets and in all of them QLQ domains were completely in the biggest alpha helix. In all GRFs, QLQ and WRC domains were completely protected except in AtGRF9. These proteins have no trans-membrane domain and due to have nuclear localization signals act in nuclear and they are component of unstable proteins in the test tube.

Keywords: Domain, Gene Family, GRF, Motif.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2332
4731 Mathematical Modeling to Predict Surface Roughness in CNC Milling

Authors: Ab. Rashid M.F.F., Gan S.Y., Muhammad N.Y.

Abstract:

Surface roughness (Ra) is one of the most important requirements in machining process. In order to obtain better surface roughness, the proper setting of cutting parameters is crucial before the process take place. This research presents the development of mathematical model for surface roughness prediction before milling process in order to evaluate the fitness of machining parameters; spindle speed, feed rate and depth of cut. 84 samples were run in this study by using FANUC CNC Milling α-Τ14ιE. Those samples were randomly divided into two data sets- the training sets (m=60) and testing sets(m=24). ANOVA analysis showed that at least one of the population regression coefficients was not zero. Multiple Regression Method was used to determine the correlation between a criterion variable and a combination of predictor variables. It was established that the surface roughness is most influenced by the feed rate. By using Multiple Regression Method equation, the average percentage deviation of the testing set was 9.8% and 9.7% for training data set. This showed that the statistical model could predict the surface roughness with about 90.2% accuracy of the testing data set and 90.3% accuracy of the training data set.

Keywords: Surface roughness, regression analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2134
4730 A Study of the Variables in the Optimisation of a Platinum Precipitation Process

Authors: Tebogo Phetla, Edison Muzenda, M Belaid

Abstract:

This study investigated possible ways to improve the efficiency of the platinum precipitation process using ammonium chloride by reducing the platinum content reporting to the effluent. The ore treated consist of five platinum group metals namely, ruthenium, rhodium, iridium, platinum, palladium and a precious metal gold. Gold, ruthenium, rhodium and iridium were extracted prior the platinum precipitation process. Temperature, reducing agent, flow rate and potential difference were the variables controlled to determine the operation conditions for optimum platinum precipitation efficiency. Hydrogen peroxide was added as the oxidizing agent at the temperature of 85-90oC and potential difference of 700-850mV was the variable used to check the oxidizing state of platinum. The platinum was further purified at temperature between 60-65oC, potential difference above 700 mV, ammonium chloride of 200 l, and at these conditions the platinum content reporting to the effluent was reduced to less than 300ppm, resulting in optimum platinum precipitation efficiency and purity of 99.9%.

Keywords: Platinum Group Metals (PGM), Potential difference, Precipitation, Redox reactions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4792
4729 Process Development of Safe and Ready-to-eat Raw Oyster Meat by Irradiation Technology

Authors: Pattama Ratana-Arporn, Pongtep Wilaipun

Abstract:

White scar oyster (Crassostrea belcheri) is often eaten raw and being the leading vehicle for foodborne disease, especially Salmonella Weltevreden which exposed the prominent and most resistant to radiation. Gamma irradiation at a low dose of 1 kGy was enough to eliminate S. Weltevreden contaminated in oyster meat at a level up to 5 log CFU/g while it still retain the raw characteristics and equivalent sensory quality as the non-irradiated one. Process development of ready-to-eat chilled oyster meat was conducted by shucking the meat, individually packed in plastic bags, subjected to 1 kGy gamma radiation at chilled condition and then stored in 4oC refrigerated temperature. Microbiological determination showed the absence of S. Weltevreden (5 log CFU/g initial inoculated) along the whole storage time of 30 days. Sensory evaluation indicated the decreasing in sensory scores along storage time which determining the product shelf life to be 18 days compared to 15 days of nonirradiated one. The most advantage of developed process was to provide the safe raw oyster to consumers and in addition sensory quality retained and 3-day extension shelf life also exist.

Keywords: decontamination, food safety, irradiation, oyster, Salmonella Weltevreden

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686
4728 Photo Mosaic Smartphone Application in Client-Server Based Large-Scale Image Databases

Authors: Sang-Hun Lee, Bum-Soo Kim, Yang-Sae Moon, Jinho Kim

Abstract:

In this paper we present a photo mosaic smartphone application in client-server based large-scale image databases. Photo mosaic is not a new concept, but there are very few smartphone applications especially for a huge number of images in the client-server environment. To support large-scale image databases, we first propose an overall framework working as a client-server model. We then present a concept of image-PAA features to efficiently handle a huge number of images and discuss its lower bounding property. We also present a best-match algorithm that exploits the lower bounding property of image-PAA. We finally implement an efficient Android-based application and demonstrate its feasibility.

Keywords: smartphone applications; photo mosaic; similarity search; data mining; large-scale image databases.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673
4727 Decision Support System for Flood Crisis Management using Artificial Neural Network

Authors: Muhammad Aqil, Ichiro Kita, Akira Yano, Nishiyama Soichi

Abstract:

This paper presents an alternate approach that uses artificial neural network to simulate the flood level dynamics in a river basin. The algorithm was developed in a decision support system environment in order to enable users to process the data. The decision support system is found to be useful due to its interactive nature, flexibility in approach and evolving graphical feature and can be adopted for any similar situation to predict the flood level. The main data processing includes the gauging station selection, input generation, lead-time selection/generation, and length of prediction. This program enables users to process the flood level data, to train/test the model using various inputs and to visualize results. The program code consists of a set of files, which can as well be modified to match other purposes. This program may also serve as a tool for real-time flood monitoring and process control. The running results indicate that the decision support system applied to the flood level seems to have reached encouraging results for the river basin under examination. The comparison of the model predictions with the observed data was satisfactory, where the model is able to forecast the flood level up to 5 hours in advance with reasonable prediction accuracy. Finally, this program may also serve as a tool for real-time flood monitoring and process control.

Keywords: Decision Support System, Neural Network, Flood Level

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
4726 Simultaneous Saccharification and Fermentation(SSF) of Sugarcane Bagasse - Kinetics and Modeling

Authors: E.Sasikumar, T.Viruthagiri

Abstract:

Simultaneous Saccharification and Fermentation (SSF) of sugarcane bagasse by cellulase and Pachysolen tannophilus MTCC *1077 were investigated in the present study. Important process variables for ethanol production form pretreated bagasse were optimized using Response Surface Methodology (RSM) based on central composite design (CCD) experiments. A 23 five level CCD experiments with central and axial points was used to develop a statistical model for the optimization of process variables such as incubation temperature (25–45°) X1, pH (5.0–7.0) X2 and fermentation time (24–120 h) X3. Data obtained from RSM on ethanol production were subjected to the analysis of variance (ANOVA) and analyzed using a second order polynomial equation and contour plots were used to study the interactions among three relevant variables of the fermentation process. The fermentation experiments were carried out using an online monitored modular fermenter 2L capacity. The processing parameters setup for reaching a maximum response for ethanol production was obtained when applying the optimum values for temperature (32°C), pH (5.6) and fermentation time (110 h). Maximum ethanol concentration (3.36 g/l) was obtained from 50 g/l pretreated sugarcane bagasse at the optimized process conditions in aerobic batch fermentation. Kinetic models such as Monod, Modified Logistic model, Modified Logistic incorporated Leudeking – Piret model and Modified Logistic incorporated Modified Leudeking – Piret model have been evaluated and the constants were predicted.

Keywords: Sugarcane bagasse, ethanol, optimization, Pachysolen tannophilus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2308