Improvement of Reaction Technology of Decalin Halogenation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Improvement of Reaction Technology of Decalin Halogenation

Authors: Dmitriy Yu. Korulkin, Ravshan M. Nuraliev, Raissa A. Muzychkina

Abstract:

In this research paper were investigated the main regularities of a radical bromination reaction of decalin. There had been studied the temperature effect, durations of reaction, frequency rate of process, a ratio of initial components, type and number of the initiator on decalin bromination degree. There were specified optimum conditions of synthesis of a perbromodecalin by the method of a decalin bromination. There are developed the technological flowchart of receiving a perbromodecalin and the mass balance of process on the first and the subsequent loadings of components. The results of research of antibacterial and antifungal activity of synthesized bromoderivatives have been represented.

Keywords: Decalin, optimum technology, perbromodecalin, radical bromination.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1099978

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2219

References:


[1] E. Tsuchida, E. J. G. Riess, P. E. Keipert, Blood Substitutes, Lausanne: Elsevier Science SA, 1998.
[2] J. G. Riess, Biomater. Artif. Cells Immobil. Biotechnol., vol. 20, pp. 183- 202, 1992.
[3] O. P. Habler, M. S. Kleen, J . W. Hutter, Transfusion, vol. 38, pp. 145-155, 1998.
[4] J. L. Kiplinger, T. D. Richmond, J. Am. Chem. Soc., vol. 118, no. 7, pp. 1805-1812, 1996.
[5] I. P. Ushakova, N. A. Braghina, A. F. Mironov, Halogenation methods in organic synthesis, Moscow: MCTI, 2005.
[6] B. V. Passet, Main processes chemical synthesis of biologically active substances, Moscow: Geotar-Media, 2002.
[7] L. N. Milovanova Manufacturing techniques of dosage forms, Rostov: Phoenix, 2002.
[8] R. J. Lagow, T. R. Beirschenk, T. J. Juhkle., H. Kawa, Synthetic fluorine chemistry, N.Y.: Wiley, 2009.
[9] G. Marchionni, A. Staccione, G. Gregorio, J. Fluorine Chem., vol. 47, pp. 515-518, 2004.
[10] I. L. Knunyants, G. G. Jacobson, Synthesis of fluororganic compounds, Moscow: Chemistry, 2000.
[11] B. Gething, C. Patrick, M. Stacey, J. Tatlow, Nature, vol. 178, pp. 199- 208, 1956.
[12] G. G. Jakobson, V. D. Shteingartz, Izv. Akad. Nauk, Ser.Khim., vol. 8, pp. 1551-1558, 1964.
[13] G. Fuller, J. Chem. Soc., vol. 111, pp. 6264-6272, 1965.
[14] C.-M. Hu, F. Long, Z.-Q. Xu, J. Fluorine Chem., vol. 48, pp. 29-40, 1990.
[15] J. L. Kiplinger, T. D. Richmond, J. Am. Chem. Soc., vol. 118, pp. 1805- 1812, 1996.
[16] T. Hamatsuka, T. Suzuki, Y. Itoh, H. Hirata, Chem. Pharm. Bull., vol. 36, pp. 4225-4231, 1988.
[17] S. Ayabe, Arch. Biochem. Biophys., vol. 261, pp. 458-461, 1988.
[18] G. Kochs, S. Pilge, G. Stockmanns, Eur. J. Biochem., vol. 155, pp. 311- 318, 1986.
[19] E. A. Kean, M. Gutman, T. P. Singer, Biochem. Biophys. Res. Commun., vol. 40, no. 6, pp. 1507-1513, 1970.
[20] C.-L. Peng, S.-W. Chen; Z.-F. Lin, Prog. Biochem. Biophys, vol. 27, pp. 658-661, 2000.
[21] W. Heller, K. Hahibrock, Arch. Biochem. Biophys., vol. 200, pp. 617- 619, 1980.
[22] L. Beerhues, R. Wiermann, Ztschr. Naturforsch. C, vol. 40, pp. 160-165, 1985.
[23] M. Lahlou, Phytother. Res., vol. 18, pp. 435-448, 2004.
[24] Sh. Inouye, H. Yamaguchi, T. Takizawa, J. Infect. Chemother., vol. 7, no., 4, pp. 251-254, 2001.