Search results for: Missing Data Techniques.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9220

Search results for: Missing Data Techniques.

8080 A Physics-Based Model for Fast Recovery Diodes with Lifetime Control and Emitter Efficiency Reduction

Authors: Chengjie Wang, Li Yin, Chuanmin Wang

Abstract:

This paper presents a physics-based model for the high-voltage fast recovery diodes. The model provides a good trade-off between reverse recovery time and forward voltage drop realized through a combination of lifetime control and emitter efficiency reduction techniques. The minority carrier lifetime can be extracted from the reverse recovery transient response and forward characteristics. This paper also shows that decreasing the amount of the excess carriers stored in the drift region will result in softer characteristics which can be achieved using a lower doping level. The developed model is verified by experiment and the measurement data agrees well with the model.

Keywords: Emitter efficiency, lifetime control, P-i-N diode, physics-based model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3806
8079 Drone On-time Obstacle Avoidance for Static and Dynamic Obstacles

Authors: Herath MPC Jayaweera, Samer Hanoun

Abstract:

Path planning for on-time obstacle avoidance is an essential and challenging task that enables drones to achieve safe operation in any application domain. The level of challenge increases significantly on the obstacle avoidance technique when the drone is following a ground mobile entity (GME). This is mainly due to the change in direction and magnitude of the GMEs velocity in dynamic and unstructured environments. Force field techniques are the most widely used obstacle avoidance methods due to their simplicity, ease of use and potential to be adopted for three-dimensional dynamic environments. However, the existing force field obstacle avoidance techniques suffer many drawbacks including their tendency to generate longer routes when the obstacles are sideways of the drones route, poor ability to find the shortest flyable path, propensity to fall into local minima, producing a non-smooth path, and high failure rate in the presence of symmetrical obstacles. To overcome these shortcomings, this paper proposes an on-time three-dimensional obstacle avoidance method for drones to effectively and efficiently avoid dynamic and static obstacles in unknown environments while pursuing a GME. This on-time obstacle avoidance technique generates velocity waypoints for its obstacle-free and efficient path based on the shape of the encountered obstacles. This method can be utilize on most types of drones that have basic distance measurement sensors and autopilot supported flight controllers. The proposed obstacle avoidance technique is validated and evaluated against existing force field methods for different simulation scenarios in Gazebo and ROS supported PX4-SITL. The simulation results show that the proposed obstacle avoidance technique outperforms the existing force field techniques and is better suited for real-world applications.

Keywords: Drones, force field methods, obstacle avoidance, path planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 78
8078 A Business-to-Business Collaboration System That Promotes Data Utilization While Encrypting Information on the Blockchain

Authors: Hiroaki Nasu, Ryota Miyamoto, Yuta Kodera, Yasuyuki Nogami

Abstract:

To promote Industry 4.0 and Society 5.0 and so on, it is important to connect and share data so that every member can trust it. Blockchain (BC) technology is currently attracting attention as the most advanced tool and has been used in the financial field and so on. However, the data collaboration using BC has not progressed sufficiently among companies on the supply chain of the manufacturing industry that handle sensitive data such as product quality, manufacturing conditions, etc. There are two main reasons why data utilization is not sufficiently advanced in the industrial supply chain. The first reason is that manufacturing information is top secret and a source for companies to generate profits. It is difficult to disclose data even between companies with transactions in the supply chain. Blockchain mechanism such as Bitcoin using Public Key Infrastructure (PKI) requires plaintext to be shared between companies in order to verify the identity of the company that sent the data. Another reason is that the merits (scenarios) of collaboration data between companies are not specifically specified in the industrial supply chain. For these problems, this paper proposes a Business to Business (B2B) collaboration system using homomorphic encryption and BC technique. Using the proposed system, each company on the supply chain can exchange confidential information on encrypted data and utilize the data for their own business. In addition, this paper considers a scenario focusing on quality data, which was difficult to collaborate because it is top-secret. In this scenario, we show an implementation scheme and a benefit of concrete data collaboration by proposing a comparison protocol that can grasp the change in quality while hiding the numerical value of quality data.

Keywords: Business to business data collaboration, industrial supply chain, blockchain, homomorphic encryption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 819
8077 High Performance Electrocardiogram Steganography Based on Fast Discrete Cosine Transform

Authors: Liang-Ta Cheng, Ching-Yu Yang

Abstract:

Based on fast discrete cosine transform (FDCT), the authors present a high capacity and high perceived quality method for electrocardiogram (ECG) signal. By using a simple adjusting policy to the 1-dimentional (1-D) DCT coefficients, a large volume of secret message can be effectively embedded in an ECG host signal and be successfully extracted at the intended receiver. Simulations confirmed that the resulting perceived quality is good, while the hiding capability of the proposed method significantly outperforms that of existing techniques. In addition, our proposed method has a certain degree of robustness. Since the computational complexity is low, it is feasible for our method being employed in real-time applications.

Keywords: Data hiding, ECG steganography, fast discrete cosine transform, 1-D DCT bundle, real-time applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 812
8076 Apoptotic Induction Ability of Harmalol and Its Binding: Biochemical and Biophysical Perspectives

Authors: Kakali Bhadra

Abstract:

Harmalol administration caused remarkable reduction in proliferation of HepG2 cells with GI50 of 14.2 mM, without showing much cytotoxicity in embryonic liver cell line, WRL-68. Data from circular dichroism and differential scanning calorimetric analysis of harmalol-CT DNA complex shows conformational changes with prominent CD perturbation and stabilization of CT DNA by 8 oC. Binding constant and stoichiometry was also calculated using the above biophysical techniques. Further, dose dependent apoptotic induction ability of harmalol was studied in HepG2 cells using different biochemical assays. Generation of ROS, DNA damage, changes in cellular external and ultramorphology, alteration of membrane, formation of comet tail, decreased mitochondrial membrane potential and a significant increase in Sub Go/G1 population made the cancer cell, HepG2, prone to apoptosis. Up regulation of p53 and caspase 3 further indicated the apoptotic role of harmalol.

Keywords: Apoptosis, beta carboline alkaloid, comet assay, cytotoxicity, ROS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1193
8075 Radiation Usage Impact of on Anti-Nutritional Compounds (Antitrypsin and Phytic Acid) of Livestock and Poultry Foods

Authors: Mohammad Khosravi, Ali Kiani, Behroz Dastar, Parvin Showrang

Abstract:

Review was carried out on important anti-nutritional compounds of livestock and poultry foods and the effect of radiation usage. Nowadays, with advancement in technology, different methods have been considered for the optimum usage of nutrients in livestock and poultry foods. Steaming, extruding, pelleting, and the use of chemicals are the most common and popular methods in food processing. Use of radiation in food processing researches in the livestock and poultry industry is currently highly regarded. Ionizing (electrons, gamma) and non-ionizing beams (microwave and infrared) are the most useable rays in animal food processing. In recent researches, these beams have been used to remove and reduce the anti-nutritional factors and microbial contamination and improve the digestibility of nutrients in poultry and livestock food. The evidence presented will help researchers to recognize techniques of relevance to them. Simplification of some of these techniques, especially in developing countries, must be addressed so that they can be used more widely.

Keywords: Antitrypsin, gamma anti-nutritional components, phytic acid, radiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1211
8074 An Approximation of Daily Rainfall by Using a Pixel Value Data Approach

Authors: Sarisa Pinkham, Kanyarat Bussaban

Abstract:

The research aims to approximate the amount of daily rainfall by using a pixel value data approach. The daily rainfall maps from the Thailand Meteorological Department in period of time from January to December 2013 were the data used in this study. The results showed that this approach can approximate the amount of daily rainfall with RMSE=3.343.

Keywords: Daily rainfall, Image processing, Approximation, Pixel value data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
8073 Automatic Generation of Ontology from Data Source Directed by Meta Models

Authors: Widad Jakjoud, Mohamed Bahaj, Jamal Bakkas

Abstract:

Through this paper we present a method for automatic generation of ontological model from any data source using Model Driven Architecture (MDA), this generation is dedicated to the cooperation of the knowledge engineering and software engineering. Indeed, reverse engineering of a data source generates a software model (schema of data) that will undergo transformations to generate the ontological model. This method uses the meta-models to validate software and ontological models.

Keywords: Meta model, model, ontology, data source.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1998
8072 A Distributed Mobile Agent Based on Intrusion Detection System for MANET

Authors: Maad Kamal Al-Anni

Abstract:

This study is about an algorithmic dependence of Artificial Neural Network on Multilayer Perceptron (MPL) pertaining to the classification and clustering presentations for Mobile Adhoc Network vulnerabilities. Moreover, mobile ad hoc network (MANET) is ubiquitous intelligent internetworking devices in which it has the ability to detect their environment using an autonomous system of mobile nodes that are connected via wireless links. Security affairs are the most important subject in MANET due to the easy penetrative scenarios occurred in such an auto configuration network. One of the powerful techniques used for inspecting the network packets is Intrusion Detection System (IDS); in this article, we are going to show the effectiveness of artificial neural networks used as a machine learning along with stochastic approach (information gain) to classify the malicious behaviors in simulated network with respect to different IDS techniques. The monitoring agent is responsible for detection inference engine, the audit data is collected from collecting agent by simulating the node attack and contrasted outputs with normal behaviors of the framework, whenever. In the event that there is any deviation from the ordinary behaviors then the monitoring agent is considered this event as an attack , in this article we are going to demonstrate the  signature-based IDS approach in a MANET by implementing the back propagation algorithm over ensemble-based Traffic Table (TT), thus the signature of malicious behaviors or undesirable activities are often significantly prognosticated and efficiently figured out, by increasing the parametric set-up of Back propagation algorithm during the experimental results which empirically shown its effectiveness  for the ratio of detection index up to 98.6 percentage. Consequently it is proved in empirical results in this article, the performance matrices are also being included in this article with Xgraph screen show by different through puts like Packet Delivery Ratio (PDR), Through Put(TP), and Average Delay(AD).

Keywords: Mobile ad hoc network, MANET, intrusion detection system, back propagation algorithm, neural networks, traffic table, multilayer perceptron, feed-forward back-propagation, network simulator 2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 928
8071 Steps towards the Development of National Health Data Standards in Developing Countries: An Exploratory Qualitative Study in Saudi Arabia

Authors: Abdullah I. Alkraiji, Thomas W. Jackson, Ian R. Murray

Abstract:

The proliferation of health data standards today is somewhat overlapping and conflicting, resulting in market confusion and leading to increasing proprietary interests. The government role and support in standardization for health data are thought to be crucial in order to establish credible standards for the next decade, to maximize interoperability across the health sector, and to decrease the risks associated with the implementation of non-standard systems. The normative literature missed out the exploration of the different steps required to be undertaken by the government towards the development of national health data standards. Based on the lessons learned from a qualitative study investigating the different issues to the adoption of health data standards in the major tertiary hospitals in Saudi Arabia and the opinions and feedback from different experts in the areas of data exchange and standards and medical informatics in Saudi Arabia and UK, a list of steps required towards the development of national health data standards was constructed. Main steps are the existence of: a national formal reference for health data standards, an agreed national strategic direction for medical data exchange, a national medical information management plan and a national accreditation body, and more important is the change management at the national and organizational level. The outcome of this study can be used by academics and practitioners to develop the planning of health data standards, and in particular those in developing countries.

Keywords: Interoperability, Case Study, Health Data Standards, Medical Data Exchange, Saudi Arabia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
8070 Test Data Compression Using a Hybrid of Bitmask Dictionary and 2n Pattern Runlength Coding Methods

Authors: C. Kalamani, K. Paramasivam

Abstract:

In VLSI, testing plays an important role. Major problem in testing are test data volume and test power. The important solution to reduce test data volume and test time is test data compression. The Proposed technique combines the bit maskdictionary and 2n pattern run length-coding method and provides a substantial improvement in the compression efficiency without introducing any additional decompression penalty. This method has been implemented using Mat lab and HDL Language to reduce test data volume and memory requirements. This method is applied on various benchmark test sets and compared the results with other existing methods. The proposed technique can achieve a compression ratio up to 86%.

Keywords: Bit Mask dictionary, 2n pattern run length code, system-on-chip, SOC, test data compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921
8069 Efficient Large Numbers Karatsuba-Ofman Multiplier Designs for Embedded Systems

Authors: M.Machhout, M.Zeghid, W.El hadj youssef, B.Bouallegue, A.Baganne, R.Tourki

Abstract:

Long number multiplications (n ≥ 128-bit) are a primitive in most cryptosystems. They can be performed better by using Karatsuba-Ofman technique. This algorithm is easy to parallelize on workstation network and on distributed memory, and it-s known as the practical method of choice. Multiplying long numbers using Karatsuba-Ofman algorithm is fast but is highly recursive. In this paper, we propose different designs of implementing Karatsuba-Ofman multiplier. A mixture of sequential and combinational system design techniques involving pipelining is applied to our proposed designs. Multiplying large numbers can be adapted flexibly to time, area and power criteria. Computationally and occupation constrained in embedded systems such as: smart cards, mobile phones..., multiplication of finite field elements can be achieved more efficiently. The proposed designs are compared to other existing techniques. Mathematical models (Area (n), Delay (n)) of our proposed designs are also elaborated and evaluated on different FPGAs devices.

Keywords: finite field, Karatsuba-Ofman, long numbers, multiplication, mathematical model, recursivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2531
8068 TheAnalyzer: Clustering-Based System for Improving Business Productivity by Analyzing User Profiles to Enhance Human-Computer Interaction

Authors: D. S. A. Nanayakkara, K. J. P. G. Perera

Abstract:

E-commerce platforms have revolutionized the shopping experience, offering convenient ways for consumers to make purchases. To improve interactions with customers and optimize marketing strategies, it is essential for businesses to understand user behavior, preferences, and needs on these platforms. This paper focuses on recommending businesses to customize interactions with users based on their behavioral patterns, leveraging data-driven analysis and machine learning techniques. Businesses can improve engagement and boost the adoption of e-commerce platforms by aligning behavioral patterns with user goals of usability and satisfaction. We propose TheAnalyzer, a clustering-based system designed to enhance business productivity by analyzing user-profiles and improving human-computer interaction. TheAnalyzer seamlessly integrates with business applications, collecting relevant data points based on users' natural interactions without additional burdens such as questionnaires or surveys. It defines five key user analytics as features for its dataset, which are easily captured through users' interactions with e-commerce platforms. This research presents a study demonstrating the successful distinction of users into specific groups based on the five key analytics considered by TheAnalyzer. With the assistance of domain experts, customized business rules can be attached to each group, enabling TheAnalyzer to influence business applications and provide an enhanced personalized user experience. The outcomes are evaluated quantitatively and qualitatively, demonstrating that utilizing TheAnalyzer’s capabilities can optimize business outcomes, enhance customer satisfaction, and drive sustainable growth. The findings of this research contribute to the advancement of personalized interactions in e-commerce platforms. By leveraging user behavioral patterns and analyzing both new and existing users, businesses can effectively tailor their interactions to improve customer satisfaction, loyalty and ultimately drive sales.

Keywords: Data clustering, data standardization, dimensionality reduction, human-computer interaction, user profiling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 229
8067 Application and Limitation of Parallel Modelingin Multidimensional Sequential Pattern

Authors: Mahdi Esmaeili, Mansour Tarafdar

Abstract:

The goal of data mining algorithms is to discover useful information embedded in large databases. One of the most important data mining problems is discovery of frequently occurring patterns in sequential data. In a multidimensional sequence each event depends on more than one dimension. The search space is quite large and the serial algorithms are not scalable for very large datasets. To address this, it is necessary to study scalable parallel implementations of sequence mining algorithms. In this paper, we present a model for multidimensional sequence and describe a parallel algorithm based on data parallelism. Simulation experiments show good load balancing and scalable and acceptable speedup over different processors and problem sizes and demonstrate that our approach can works efficiently in a real parallel computing environment.

Keywords: Sequential Patterns, Data Mining, ParallelAlgorithm, Multidimensional Sequence Data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476
8066 A Machine Learning Approach for Earthquake Prediction in Various Zones Based on Solar Activity

Authors: Viacheslav Shkuratskyy, Aminu Bello Usman, Michael O’Dea, Mujeeb Ur Rehman, Saifur Rahman Sabuj

Abstract:

This paper examines relationships between solar activity and earthquakes, it applied machine learning techniques: K-nearest neighbour, support vector regression, random forest regression, and long short-term memory network. Data from the SILSO World Data Center, the NOAA National Center, the GOES satellite, NASA OMNIWeb, and the United States Geological Survey were used for the experiment. The 23rd and 24th solar cycles, daily sunspot number, solar wind velocity, proton density, and proton temperature were all included in the dataset. The study also examined sunspots, solar wind, and solar flares, which all reflect solar activity, and earthquake frequency distribution by magnitude and depth. The findings showed that the long short-term memory network model predicts earthquakes more correctly than the other models applied in the study, and solar activity is more likely to effect earthquakes of lower magnitude and shallow depth than earthquakes of magnitude 5.5 or larger with intermediate depth and deep depth

.

Keywords: K-Nearest Neighbour, Support Vector Regression, Random Forest Regression, Long Short-Term Memory Network, earthquakes, solar activity, sunspot number, solar wind, solar flares.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 203
8065 Generator of Hypotheses an Approach of Data Mining Based on Monotone Systems Theory

Authors: Rein Kuusik, Grete Lind

Abstract:

Generator of hypotheses is a new method for data mining. It makes possible to classify the source data automatically and produces a particular enumeration of patterns. Pattern is an expression (in a certain language) describing facts in a subset of facts. The goal is to describe the source data via patterns and/or IF...THEN rules. Used evaluation criteria are deterministic (not probabilistic). The search results are trees - form that is easy to comprehend and interpret. Generator of hypotheses uses very effective algorithm based on the theory of monotone systems (MS) named MONSA (MONotone System Algorithm).

Keywords: data mining, monotone systems, pattern, rule.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1256
8064 Development and Acceptance of a Proposed Module for Enhancing the Reading and Writing Skills in Baybayin: The Traditional Writing System in the Philippines

Authors: Maria Venus G. Solares

Abstract:

The ancient Filipinos had their own spelling or alphabet that differed from the modern Roman alphabet brought by the Spaniards. It consists of seventeen letters, three vowels, and fourteen consonants and is called Baybayin. The Baybayin, a traditional writing system, is composed of characters that represent syllables. A proposal in the Philippine Congress to declare Baybayin as the national writing system inspired this study. The main objective of this study was to develop and assess the proposed module for enhancing the reading and writing skills in Baybayin of the students. The aim was to ensure the acceptability of the Baybayin using the proposed module and to meet the needs of students in developing their ability to read and write Baybayin through the module. A quasi-experimental research design was used in this study.  The data were collected through the initial and final analysis of the students of Adamson University's ABM 1102 using convenient sampling techniques. Based on statistical analysis of data using weighted mean, standard deviation, and paired t-tests, the proposed module helped improve the students' literacy skills, and the response exercises in the proposed module changed the acceptability of the Baybayin in their minds. The study showed that there was an important difference in the scores of students before and after the use of the module. The students' response to the assessment of their reading and writing skills on Baybayin was highly acceptable. This study will help to develop the reading and writing skills of the students in Baybayin and to teach the Baybayin in response to the revival of a part of Philippine culture that has been long forgotten.

Keywords: Baybayin, proposed module, ancient writing, acceptability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51
8063 Segmentation of Images through Clustering to Extract Color Features: An Application forImage Retrieval

Authors: M. V. Sudhamani, C. R. Venugopal

Abstract:

This paper deals with the application for contentbased image retrieval to extract color feature from natural images stored in the image database by segmenting the image through clustering. We employ a class of nonparametric techniques in which the data points are regarded as samples from an unknown probability density. Explicit computation of the density is avoided by using the mean shift procedure, a robust clustering technique, which does not require prior knowledge of the number of clusters, and does not constrain the shape of the clusters. A non-parametric technique for the recovery of significant image features is presented and segmentation module is developed using the mean shift algorithm to segment each image. In these algorithms, the only user set parameter is the resolution of the analysis and either gray level or color images are accepted as inputs. Extensive experimental results illustrate excellent performance.

Keywords: Segmentation, Clustering, Image Retrieval, Features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460
8062 Categorical Data Modeling: Logistic Regression Software

Authors: Abdellatif Tchantchane

Abstract:

A Matlab based software for logistic regression is developed to enhance the process of teaching quantitative topics and assist researchers with analyzing wide area of applications where categorical data is involved. The software offers an option of performing stepwise logistic regression to select the most significant predictors. The software includes a feature to detect influential observations in data, and investigates the effect of dropping or misclassifying an observation on a predictor variable. The input data may consist either as a set of individual responses (yes/no) with the predictor variables or as grouped records summarizing various categories for each unique set of predictor variables' values. Graphical displays are used to output various statistical results and to assess the goodness of fit of the logistic regression model. The software recognizes possible convergence constraints when present in data, and the user is notified accordingly.

Keywords: Logistic regression, Matlab, Categorical data, Influential observation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882
8061 A Novel Optimal Setting for Directional over Current Relay Coordination using Particle Swarm Optimization

Authors: D. Vijayakumar, R. K. Nema

Abstract:

Over Current Relays (OCRs) and Directional Over Current Relays (DOCRs) are widely used for the radial protection and ring sub transmission protection systems and for distribution systems. All previous work formulates the DOCR coordination problem either as a Non-Linear Programming (NLP) for TDS and Ip or as a Linear Programming (LP) for TDS using recently a social behavior (Particle Swarm Optimization techniques) introduced to the work. In this paper, a Modified Particle Swarm Optimization (MPSO) technique is discussed for the optimal settings of DOCRs in power systems as a Non-Linear Programming problem for finding Ip values of the relays and for finding the TDS setting as a linear programming problem. The calculation of the Time Dial Setting (TDS) and the pickup current (Ip) setting of the relays is the core of the coordination study. PSO technique is considered as realistic and powerful solution schemes to obtain the global or quasi global optimum in optimization problem.

Keywords: Directional over current relays, Optimization techniques, Particle swarm optimization, Power system protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2755
8060 Correction of Infrared Data for Electrical Components on a Board

Authors: Seong-Ho Song, Ki-Seob Kim, Seop-Hyeong Park, Seon-Woo Lee

Abstract:

In this paper, the data correction algorithm is suggested when the environmental air temperature varies. To correct the infrared data in this paper, the initial temperature or the initial infrared image data is used so that a target source system may not be necessary. The temperature data obtained from infrared detector show nonlinear property depending on the surface temperature. In order to handle this nonlinear property, Taylor series approach is adopted. It is shown that the proposed algorithm can reduce the influence of environmental temperature on the components in the board. The main advantage of this algorithm is to use only the initial temperature of the components on the board rather than using other reference device such as black body sources in order to get reference temperatures.

Keywords: Infrared camera, Temperature Data compensation, Environmental Ambient Temperature, Electric Component

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
8059 Diagnosis of Hate Schemas in Prisoners with Antisocial Personality Disorder (ASPD)

Authors: Barbara Gawda

Abstract:

The aim of this study is to show innovative techniques that describe the effectiveness of individuals diagnosed with antisocial personality disorders (ASPD). The author presents information about hate schemas regarding persons with ASPD and their understanding of the role of hate. The data of 60 prisoners with ASPD, 40 prisoners without ASPD, and 60 men without antisocial tendencies, has been analyzed. The participants were asked to describe their hate inspired by a photograph. The narrative discourse was analyzed, the three groups were compared. The results show the differences between the inmates with ASPD, those without ASPD, and the controls. The antisocial individuals describe hate as an ambivalent feeling with low emotional intensity, i.e., actors (in stories) are presented more as positives than as partners. They use different mechanisms to keep them from understanding the meaning of the emotional situation. The schema's characteristics were expressed in narratives attributed to high Psychopathy.

Keywords: Antisocial personality disorder, Emotional narratives, Hate schemas, Psychopathy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1277
8058 Predicting the Three Major Dimensions of the Learner-s Emotions from Brainwaves

Authors: Alicia Heraz, Claude Frasson

Abstract:

This paper investigates how the use of machine learning techniques can significantly predict the three major dimensions of learner-s emotions (pleasure, arousal and dominance) from brainwaves. This study has adopted an experimentation in which participants were exposed to a set of pictures from the International Affective Picture System (IAPS) while their electrical brain activity was recorded with an electroencephalogram (EEG). The pictures were already rated in a previous study via the affective rating system Self-Assessment Manikin (SAM) to assess the three dimensions of pleasure, arousal, and dominance. For each picture, we took the mean of these values for all subjects used in this previous study and associated them to the recorded brainwaves of the participants in our study. Correlation and regression analyses confirmed the hypothesis that brainwave measures could significantly predict emotional dimensions. This can be very useful in the case of impassive, taciturn or disabled learners. Standard classification techniques were used to assess the reliability of the automatic detection of learners- three major dimensions from the brainwaves. We discuss the results and the pertinence of such a method to assess learner-s emotions and integrate it into a brainwavesensing Intelligent Tutoring System.

Keywords: Algorithms, brainwaves, emotional dimensions, performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205
8057 A Generalised Relational Data Model

Authors: Georgia Garani

Abstract:

A generalised relational data model is formalised for the representation of data with nested structure of arbitrary depth. A recursive algebra for the proposed model is presented. All the operations are formally defined. The proposed model is proved to be a superset of the conventional relational model (CRM). The functionality and validity of the model is shown by a prototype implementation that has been undertaken in the functional programming language Miranda.

Keywords: nested relations, recursive algebra, recursive nested operations, relational data model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
8056 WiFi Data Offloading: Bundling Method in a Canvas Business Model

Authors: Majid Mokhtarnia, Alireza Amini

Abstract:

Mobile operators deal with increasing in the data traffic as a critical issue. As a result, a vital responsibility of the operators is to deal with such a trend in order to create added values. This paper addresses a bundling method in a Canvas business model in a WiFi Data Offloading (WDO) strategy by which some elements of the model may be affected. In the proposed method, it is supposed to sell a number of data packages for subscribers in which there are some packages with a free given volume of data-offloaded WiFi complimentary. The paper on hands analyses this method in the views of attractiveness and profitability. The results demonstrate that the quality of implementation of the WDO strongly affects the final result and helps the decision maker to make the best one.

Keywords: Bundling, canvas business model, telecommunication, WiFi Data Offloading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 890
8055 Big Data Analytics and Data Security in the Cloud via Fully Homomorphic Encryption

Authors: Victor Onomza Waziri, John K. Alhassan, Idris Ismaila, Moses Noel Dogonyaro

Abstract:

This paper describes the problem of building secure computational services for encrypted information in the Cloud Computing without decrypting the encrypted data; therefore, it meets the yearning of computational encryption algorithmic aspiration model that could enhance the security of big data for privacy, confidentiality, availability of the users. The cryptographic model applied for the computational process of the encrypted data is the Fully Homomorphic Encryption Scheme. We contribute a theoretical presentations in a high-level computational processes that are based on number theory and algebra that can easily be integrated and leveraged in the Cloud computing with detail theoretic mathematical concepts to the fully homomorphic encryption models. This contribution enhances the full implementation of big data analytics based cryptographic security algorithm.

Keywords: Data Analytics, Security, Privacy, Bootstrapping, and Fully Homomorphic Encryption Scheme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3458
8054 Creep Constitutive Equation for 2- Materials of Weldment-304L Stainless Steel

Authors: Amir Hossein Daei Sorkhabi, Farid Vakili Tahami

Abstract:

In this paper, creep constitutive equations of base (Parent) and weld materials of the weldment for cold-drawn 304L stainless steel have been obtained experimentally. For this purpose, test samples have been generated from cold drawn bars and weld material according to the ASTM standard. The creep behavior and properties have been examined for these materials by conducting uniaxial creep tests. Constant temperatures and constant load uni-axial creep tests have been carried out at two high temperatures, 680 and 720 oC, subjected to constant loads, which produce initial stresses ranging from 240 to 360 MPa. The experimental data have been used to obtain the creep constitutive parameters using numerical optimization techniques.

Keywords: Creep, Constitutive equation, Cold-drawn 304L stainless steel, Weld, Base material

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2772
8053 Awareness of Value Addition of Sweet Potato (Ipomoea batatas (L.) Lam) In Osun State, Nigeria

Authors: A. M. Omoare, E. O. Fakoya, O. E. Fapojuwo, W. O. Oyediran

Abstract:

Awareness of value addition of sweet potato has received comparatively little attention in Nigeria despite its potential to reduce perishability and enhanced utilization of the crop in diverse products forms. This study assessed the awareness of value addition of sweet potato in Osun State, Nigeria. Multi-stage random sampling technique was used to select 120 respondents for the study. Data obtained were analyzed using descriptive statistics and multiple regression analysis. Findings showed that most (75.00%) of the respondents were male with mean age of 42.10 years and 96.70% of the respondents had formal education. The mean farm size was 2.30 hectares. Majority (75.00%) of the respondents had more than 10 years farming experience. Awareness of value addition of sweet potato was very low among the respondents. It was recommended that sweet potato farmers should be empowered through effective and efficient extension training on the use of modern processing techniques in order to enhance value addition of sweet potato. 

Keywords: Awareness, value addition, sweet potato, perishability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2931
8052 A Model for Test Case Selection in the Software-Development Life Cycle

Authors: Adtha Lawanna

Abstract:

Software maintenance is one of the essential processes of Software-Development Life Cycle. The main philosophies of retaining software concern the improvement of errors, the revision of codes, the inhibition of future errors, and the development in piece and capacity. While the adjustment has been employing, the software structure has to be retested to an upsurge a level of assurance that it will be prepared due to the requirements. According to this state, the test cases must be considered for challenging the revised modules and the whole software. A concept of resolving this problem is ongoing by regression test selection such as the retest-all selections, random/ad-hoc selection and the safe regression test selection. Particularly, the traditional techniques concern a mapping between the test cases in a test suite and the lines of code it executes. However, there are not only the lines of code as one of the requirements that can affect the size of test suite but including the number of functions and faulty versions. Therefore, a model for test case selection is developed to cover those three requirements by the integral technique which can produce the smaller size of the test cases when compared with the traditional regression selection techniques.

Keywords: Software maintenance, regression test selection, test case.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698
8051 A Model for Test Case Selection in the Software-Development Life Cycle

Authors: Adtha Lawanna

Abstract:

Software maintenance is one of the essential processes of Software-Development Life Cycle. The main philosophies of retaining software concern the improvement of errors, the revision of codes, the inhibition of future errors, and the development in piece and capacity. While the adjustment has been employing, the software structure has to be retested to an upsurge a level of assurance that it will be prepared due to the requirements. According to this state, the test cases must be considered for challenging the revised modules and the whole software. A concept of resolving this problem is ongoing by regression test selection such as the retest-all selections, random/ad-hoc selection and the safe regression test selection. Particularly, the traditional techniques concern a mapping between the test cases in a test suite and the lines of code it executes. However, there are not only the lines of code as one of the requirements that can affect the size of test suite but including the number of functions and faulty versions. Therefore, a model for test case selection is developed to cover those three requirements by the integral technique which can produce the smaller size of the test cases when compared with the traditional regression selection techniques.

Keywords: Software maintenance, regression test selection, test case.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599