Search results for: MIMO relay networks
856 Data Recording for Remote Monitoring of Autonomous Vehicles
Authors: Rong-Terng Juang
Abstract:
Autonomous vehicles offer the possibility of significant benefits to social welfare. However, fully automated cars might not be going to happen in the near further. To speed the adoption of the self-driving technologies, many governments worldwide are passing laws requiring data recorders for the testing of autonomous vehicles. Currently, the self-driving vehicle, (e.g., shuttle bus) has to be monitored from a remote control center. When an autonomous vehicle encounters an unexpected driving environment, such as road construction or an obstruction, it should request assistance from a remote operator. Nevertheless, large amounts of data, including images, radar and lidar data, etc., have to be transmitted from the vehicle to the remote center. Therefore, this paper proposes a data compression method of in-vehicle networks for remote monitoring of autonomous vehicles. Firstly, the time-series data are rearranged into a multi-dimensional signal space. Upon the arrival, for controller area networks (CAN), the new data are mapped onto a time-data two-dimensional space associated with the specific CAN identity. Secondly, the data are sampled based on differential sampling. Finally, the whole set of data are encoded using existing algorithms such as Huffman, arithmetic and codebook encoding methods. To evaluate system performance, the proposed method was deployed on an in-house built autonomous vehicle. The testing results show that the amount of data can be reduced as much as 1/7 compared to the raw data.
Keywords: Autonomous vehicle, data recording, remote monitoring, controller area network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1352855 Recommender Systems Using Ensemble Techniques
Authors: Yeonjeong Lee, Kyoung-jae Kim, Youngtae Kim
Abstract:
This study proposes a novel recommender system that uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user’s preference. The proposed model consists of two steps. In the first step, this study uses logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. Then, this study combines the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. In the second step, this study uses the market basket analysis to extract association rules for co-purchased products. Finally, the system selects customers who have high likelihood to purchase products in each product group and recommends proper products from same or different product groups to them through above two steps. We test the usability of the proposed system by using prototype and real-world transaction and profile data. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The results also show that the proposed system may be useful in real-world online shopping store.
Keywords: Product recommender system, Ensemble technique, Association rules, Decision tree, Artificial neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4222854 Using Satellite Images Datasets for Road Intersection Detection in Route Planning
Authors: Fatma El-zahraa El-taher, Ayman Taha, Jane Courtney, Susan Mckeever
Abstract:
Understanding road networks plays an important role in navigation applications such as self-driving vehicles and route planning for individual journeys. Intersections of roads are essential components of road networks. Understanding the features of an intersection, from a simple T-junction to larger multi-road junctions is critical to decisions such as crossing roads or selecting safest routes. The identification and profiling of intersections from satellite images is a challenging task. While deep learning approaches offer state-of-the-art in image classification and detection, the availability of training datasets is a bottleneck in this approach. In this paper, a labelled satellite image dataset for the intersection recognition problem is presented. It consists of 14,692 satellite images of Washington DC, USA. To support other users of the dataset, an automated download and labelling script is provided for dataset replication. The challenges of construction and fine-grained feature labelling of a satellite image dataset are examined, including the issue of how to address features that are spread across multiple images. Finally, the accuracy of detection of intersections in satellite images is evaluated.
Keywords: Satellite images, remote sensing images, data acquisition, autonomous vehicles, robot navigation, route planning, road intersections.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 759853 High Speed Video Transmission for Telemedicine using ATM Technology
Authors: J. P. Dubois, H. M. Chiu
Abstract:
In this paper, we study statistical multiplexing of VBR video in ATM networks. ATM promises to provide high speed realtime multi-point to central video transmission for telemedicine applications in rural hospitals and in emergency medical services. Video coders are known to produce variable bit rate (VBR) signals and the effects of aggregating these VBR signals need to be determined in order to design a telemedicine network infrastructure capable of carrying these signals. We first model the VBR video signal and simulate it using a generic continuous-data autoregressive (AR) scheme. We carry out the queueing analysis by the Fluid Approximation Model (FAM) and the Markov Modulated Poisson Process (MMPP). The study has shown a trade off: multiplexing VBR signals reduces burstiness and improves resource utilization, however, the buffer size needs to be increased with an associated economic cost. We also show that the MMPP model and the Fluid Approximation model fit best, respectively, the cell region and the burst region. Therefore, a hybrid MMPP and FAM completely characterizes the overall performance of the ATM statistical multiplexer. The ramifications of this technology are clear: speed, reliability (lower loss rate and jitter), and increased capacity in video transmission for telemedicine. With migration to full IP-based networks still a long way to achieving both high speed and high quality of service, the proposed ATM architecture will remain of significant use for telemedicine.Keywords: ATM, multiplexing, queueing, telemedicine, VBR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744852 Unbalanced Distribution Optimal Power Flow to Minimize Losses with Distributed Photovoltaic Plants
Authors: Malinwo Estone Ayikpa
Abstract:
Electric power systems are likely to operate with minimum losses and voltage meeting international standards. This is made possible generally by control actions provide by automatic voltage regulators, capacitors and transformers with on-load tap changer (OLTC). With the development of photovoltaic (PV) systems technology, their integration on distribution networks has increased over the last years to the extent of replacing the above mentioned techniques. The conventional analysis and simulation tools used for electrical networks are no longer able to take into account control actions necessary for studying distributed PV generation impact. This paper presents an unbalanced optimal power flow (OPF) model that minimizes losses with association of active power generation and reactive power control of single-phase and three-phase PV systems. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. The unbalance OPF is formulated by current balance equations and solved by primal-dual interior point method. Several simulation cases have been carried out varying the size and location of PV systems and the results show a detailed view of the impact of PV distributed generation on distribution systems.
Keywords: Distribution system, losses, photovoltaic generation, primal-dual interior point method, reactive power control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1080851 Aggregation Scheduling Algorithms in Wireless Sensor Networks
Authors: Min Kyung An
Abstract:
In Wireless Sensor Networks which consist of tiny wireless sensor nodes with limited battery power, one of the most fundamental applications is data aggregation which collects nearby environmental conditions and aggregates the data to a designated destination, called a sink node. Important issues concerning the data aggregation are time efficiency and energy consumption due to its limited energy, and therefore, the related problem, named Minimum Latency Aggregation Scheduling (MLAS), has been the focus of many researchers. Its objective is to compute the minimum latency schedule, that is, to compute a schedule with the minimum number of timeslots, such that the sink node can receive the aggregated data from all the other nodes without any collision or interference. For the problem, the two interference models, the graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR), have been adopted with different power models, uniform-power and non-uniform power (with power control or without power control), and different antenna models, omni-directional antenna and directional antenna models. In this survey article, as the problem has proven to be NP-hard, we present and compare several state-of-the-art approximation algorithms in various models on the basis of latency as its performance measure.Keywords: Data aggregation, convergecast, gathering, approximation, interference, omni-directional, directional.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 799850 Performance Evaluation of AOMDV-PAMAC Protocols for Ad Hoc Networks
Authors: B. Malarkodi, S. K. Riyaz Hussain, B. Venkataramani
Abstract:
Power consumption of nodes in ad hoc networks is a critical issue as they predominantly operate on batteries. In order to improve the lifetime of an ad hoc network, all the nodes must be utilized evenly and the power required for connections must be minimized. In this project a link layer algorithm known as Power Aware medium Access Control (PAMAC) protocol is proposed which enables the network layer to select a route with minimum total power requirement among the possible routes between a source and a destination provided all nodes in the routes have battery capacity above a threshold. When the battery capacity goes below a predefined threshold, routes going through these nodes will be avoided and these nodes will act only as source and destination. Further, the first few nodes whose battery power drained to the set threshold value are pushed to the exterior part of the network and the nodes in the exterior are brought to the interior. Since less total power is required to forward packets for each connection. The network layer protocol AOMDV is basically an extension to the AODV routing protocol. AOMDV is designed to form multiple routes to the destination and it also avoid the loop formation so that it reduces the unnecessary congestion to the channel. In this project, the performance of AOMDV is evaluated using PAMAC as a MAC layer protocol and the average power consumption, throughput and average end to end delay of the network are calculated and the results are compared with that of the other network layer protocol AODV.Keywords: AODV, PAMAC, AOMDV, Power consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1825849 Seamless Multicast Handover in Fmipv6-Based Networks
Authors: Moneeb Gohar, Seok Joo Koh, Tae-Won Um, Hyun-Woo Lee
Abstract:
This paper proposes a fast tree join scheme to provide seamless multicast handover in the mobile networks based on the Fast Mobile IPv6 (FMIPv6). In the existing FMIPv6-based multicast handover scheme, the bi-directional tunnelling or the remote subscription is employed with the packet forwarding from the previous access router (AR) to the new AR. In general, the remote subscription approach is preferred to the bi-directional tunnelling one, since in the remote subscription scheme we can exploit an optimized multicast path from a multicast source to many mobile receivers. However, in the remote subscription scheme, if the tree joining operation takes a long time, the amount of data packets to be forwarded and buffered for multicast handover will increase, and thus the corresponding buffer may overflow, which results in severe packet losses. In order to reduce these costs associated with packet forwarding and buffering, this paper proposes the fast join to multicast tree, in which the new AR will join the multicast tree as fast as possible, so that the new multicast data packets can also arrive at the new AR, by which the packet forwarding and buffering costs can be reduced. From numerical analysis, it is shown that the proposed scheme can give better performance than the existing FMIPv6-based multicast handover schemes in terms of the multicast packet delivery costs.Keywords: Mobile Multicast, FMIPv6, Seamless Handover, Fast Tree Join.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1426848 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks
Authors: Yong Zhao, Jian He, Cheng Zhang
Abstract:
Cardiovascular disease resulting from hypertension poses a significant threat to human health, and early detection of hypertension can potentially save numerous lives. Traditional methods for detecting hypertension require specialized equipment and are often incapable of capturing continuous blood pressure fluctuations. To address this issue, this study starts by analyzing the principle of heart rate variability (HRV) and introduces the utilization of sliding window and power spectral density (PSD) techniques to analyze both temporal and frequency domain features of HRV. Subsequently, a hypertension prediction network that relies on HRV is proposed, combining Resnet, attention mechanisms, and a multi-layer perceptron. The network leverages a modified ResNet18 to extract frequency domain features, while employing an attention mechanism to integrate temporal domain features, thus enabling auxiliary hypertension prediction through the multi-layer perceptron. The proposed network is trained and tested using the publicly available SHAREE dataset from PhysioNet. The results demonstrate that the network achieves a high prediction accuracy of 92.06% for hypertension, surpassing traditional models such as K Near Neighbor (KNN), Bayes, Logistic regression, and traditional Convolutional Neural Network (CNN).
Keywords: Feature extraction, heart rate variability, hypertension, residual networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195847 Tree Based Data Fusion Clustering Routing Algorithm for Illimitable Network Administration in Wireless Sensor Network
Authors: Y. Harold Robinson, M. Rajaram, E. Golden Julie, S. Balaji
Abstract:
In wireless sensor networks, locality and positioning information can be captured using Global Positioning System (GPS). This message can be congregated initially from spot to identify the system. Users can retrieve information of interest from a wireless sensor network (WSN) by injecting queries and gathering results from the mobile sink nodes. Routing is the progression of choosing optimal path in a mobile network. Intermediate node employs permutation of device nodes into teams and generating cluster heads that gather the data from entity cluster’s node and encourage the collective data to base station. WSNs are widely used for gathering data. Since sensors are power-constrained devices, it is quite vital for them to reduce the power utilization. A tree-based data fusion clustering routing algorithm (TBDFC) is used to reduce energy consumption in wireless device networks. Here, the nodes in a tree use the cluster formation, whereas the elevation of the tree is decided based on the distance of the member nodes to the cluster-head. Network simulation shows that this scheme improves the power utilization by the nodes, and thus considerably improves the lifetime.
Keywords: WSN, TBDFC, LEACH, PEGASIS, TREEPSI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1116846 Suicide Conceptualization in Adolescents through Semantic Networks
Authors: K. P. Valdés García, E. I. Rodríguez Fonseca, L. G. Juárez Cantú
Abstract:
Suicide is a global, multidimensional and dynamic problem of mental health, which requires a constant study for its understanding and prevention. When research of this phenomenon is done, it is necessary to consider the different characteristics it may have because of the individual and sociocultural variables, the importance of this consideration is related to the generation of effective treatments and interventions. Adolescents are a vulnerable population due to the characteristics of the development stage. The investigation was carried out with the objective of identifying and describing the conceptualization of adolescents of suicide, and in this process, we find possible differences between men and women. The study was carried out in Saltillo, Coahuila, Mexico. The sample was composed of 418 volunteer students aged between 11 and 18 years. The ethical aspects of the research were reviewed and considered in all the processes of the investigation with the participants, their parents and the schools to which they belonged, psychological attention was offered to the participants and preventive workshops were carried in the educational institutions. Natural semantic networks were the instrument used, since this hybrid method allows to find and analyze the social concept of a phenomenon; in this case, the word suicide was used as an evocative stimulus and participants were asked to evoke at least five words and a maximum 10 that they thought were related to suicide, and then hierarchize them according to the closeness with the construct. The subsequent analysis was carried with Excel, yielding the semantic weights, affective loads and the distances between each of the semantic fields established according to the words reported by the subjects. The results showed similarities in the conceptualization of suicide in adolescents, men and women. Seven semantic fields were generated; the words were related in the discourse analysis: 1) death, 2) possible triggering factors, 3) associated moods, 4) methods used to carry it out, 5) psychological symptomatology that could affect, 6) words associated with a rejection of suicide, and finally, 7) specific objects to carry it out. One of the necessary aspects to consider in the investigations of complex issues such as suicide is to have a diversity of instruments and techniques that adjust to the characteristics of the population and that allow to understand the phenomena from the social constructs and not only theoretical. The constant study of suicide is a pressing need, the loss of a life from emotional difficulties that can be solved through psychiatry and psychological methods requires governments and professionals to pay attention and work with the risk population.
Keywords: Adolescents, semantic networks, speech analysis, suicide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 756845 A Review on Medical Image Registration Techniques
Authors: Shadrack Mambo, Karim Djouani, Yskandar Hamam, Barend van Wyk, Patrick Siarry
Abstract:
This paper discusses the current trends in medical image registration techniques and addresses the need to provide a solid theoretical foundation for research endeavours. Methodological analysis and synthesis of quality literature was done, providing a platform for developing a good foundation for research study in this field which is crucial in understanding the existing levels of knowledge. Research on medical image registration techniques assists clinical and medical practitioners in diagnosis of tumours and lesion in anatomical organs, thereby enhancing fast and accurate curative treatment of patients. Literature review aims to provide a solid theoretical foundation for research endeavours in image registration techniques. Developing a solid foundation for a research study is possible through a methodological analysis and synthesis of existing contributions. Out of these considerations, the aim of this paper is to enhance the scientific community’s understanding of the current status of research in medical image registration techniques and also communicate to them, the contribution of this research in the field of image processing. The gaps identified in current techniques can be closed by use of artificial neural networks that form learning systems designed to minimise error function. The paper also suggests several areas of future research in the image registration.Keywords: Image registration techniques, medical images, neural networks, optimisation, transformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813844 An AI-Based Dynamical Resource Allocation Calculation Algorithm for Unmanned Aerial Vehicle
Authors: Zhou Luchen, Wu Yubing, Burra Venkata Durga Kumar
Abstract:
As the scale of the network becomes larger and more complex than before, the density of user devices is also increasing. The development of Unmanned Aerial Vehicle (UAV) networks is able to collect and transform data in an efficient way by using software-defined networks (SDN) technology. This paper proposed a three-layer distributed and dynamic cluster architecture to manage UAVs by using an AI-based resource allocation calculation algorithm to address the overloading network problem. Through separating services of each UAV, the UAV hierarchical cluster system performs the main function of reducing the network load and transferring user requests, with three sub-tasks including data collection, communication channel organization, and data relaying. In this cluster, a head node and a vice head node UAV are selected considering the CPU, RAM, and ROM memory of devices, battery charge, and capacity. The vice head node acts as a backup that stores all the data in the head node. The k-means clustering algorithm is used in order to detect high load regions and form the UAV layered clusters. The whole process of detecting high load areas, forming and selecting UAV clusters, and moving the selected UAV cluster to that area is proposed as offloading traffic algorithm.
Keywords: k-means, resource allocation, SDN, UAV network, unmanned aerial vehicles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 352843 Action Potential of Lateral Geniculate Neurons at Low Threshold Currents: Simulation Study
Authors: Faris Tarlochan, Siva Mahesh Tangutooru
Abstract:
Lateral Geniculate Nucleus (LGN) is the relay center in the visual pathway as it receives most of the input information from retinal ganglion cells (RGC) and sends to visual cortex. Low threshold calcium currents (IT) at the membrane are the unique indicator to characterize this firing functionality of the LGN neurons gained by the RGC input. According to the LGN functional requirements such as functional mapping of RGC to LGN, the morphologies of the LGN neurons were developed. During the neurological disorders like glaucoma, the mapping between RGC and LGN is disconnected and hence stimulating LGN electrically using deep brain electrodes can restore the functionalities of LGN. A computational model was developed for simulating the LGN neurons with three predominant morphologies each representing different functional mapping of RGC to LGN. The firings of action potentials at LGN neuron due to IT were characterized by varying the stimulation parameters, morphological parameters and orientation. A wide range of stimulation parameters (stimulus amplitude, duration and frequency) represents the various strengths of the electrical stimulation with different morphological parameters (soma size, dendrites size and structure). The orientation (0-1800) of LGN neuron with respect to the stimulating electrode represents the angle at which the extracellular deep brain stimulation towards LGN neuron is performed. A reduced dendrite structure was used in the model using Bush–Sejnowski algorithm to decrease the computational time while conserving its input resistance and total surface area. The major finding is that an input potential of 0.4 V is required to produce the action potential in the LGN neuron which is placed at 100 μm distance from the electrode. From this study, it can be concluded that the neuroprostheses under design would need to consider the capability of inducing at least 0.4V to produce action potentials in LGN.Keywords: Lateral geniculate nucleus, visual cortex, finite element, glaucoma, neuroprostheses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2025842 Solar Thermal Aquaculture System Controller Based on Artificial Neural Network
Authors: A. Doaa M. Atia, Faten H. Fahmy, Ninet M. Ahmed, Hassen T. Dorrah
Abstract:
Temperature is one of the most principle factors affects aquaculture system. It can cause stress and mortality or superior environment for growth and reproduction. This paper presents the control of pond water temperature using artificial intelligence technique. The water temperature is very important parameter for shrimp growth. The required temperature for optimal growth is 34oC, if temperature increase up to 38oC it cause death of the shrimp, so it is important to control water temperature. Solar thermal water heating system is designed to supply an aquaculture pond with the required hot water in Mersa Matruh in Egypt. Neural networks are massively parallel processors that have the ability to learn patterns through a training experience. Because of this feature, they are often well suited for modeling complex and non-linear processes such as those commonly found in the heating system. Artificial neural network is proposed to control water temperature due to Artificial intelligence (AI) techniques are becoming useful as alternate approaches to conventional techniques. They have been used to solve complicated practical problems. Moreover this paper introduces a complete mathematical modeling and MATLAB SIMULINK model for the aquaculture system. The simulation results indicate that, the control unit success in keeping water temperature constant at the desired temperature by controlling the hot water flow rate.
Keywords: artificial neural networks, aquaculture, forced circulation hot water system,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056841 Designing Social Care Policies in the Long Term: A Study Using Regression, Clustering and Backpropagation Neural Nets
Authors: Sotirios Raptis
Abstract:
Linking social needs to social classes using different criteria may lead to social services misuse. The paper discusses using ML and Neural Networks (NNs) in linking public services in Scotland in the long term and advocates, this can result in a reduction of the services cost connecting resources needed in groups for similar services. The paper combines typical regression models with clustering and cross-correlation as complementary constituents to predict the demand. Insurance companies and public policymakers can pack linked services such as those offered to the elderly or to low-income people in the longer term. The work is based on public data from 22 services offered by Public Health Services (PHS) Scotland and from the Scottish Government (SG) from 1981 to 2019 that are broken into 110 years series called factors and uses Linear Regression (LR), Autoregression (ARMA) and 3 types of back-propagation (BP) Neural Networks (BPNN) to link them under specific conditions. Relationships found were between smoking related healthcare provision, mental health-related health services, and epidemiological weight in Primary 1(Education) Body Mass Index (BMI) in children. Primary component analysis (PCA) found 11 significant factors while C-Means (CM) clustering gave 5 major factors clusters.
Keywords: Probability, cohorts, data frames, services, prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 463840 ECG Based Reliable User Identification Using Deep Learning
Authors: R. N. Begum, Ambalika Sharma, G. K. Singh
Abstract:
Identity theft has serious ramifications beyond data and personal information loss. This necessitates the implementation of robust and efficient user identification systems. Therefore, automatic biometric recognition systems are the need of the hour, and electrocardiogram (ECG)-based systems are unquestionably the best choice due to their appealing inherent characteristics. The Convolutional Neural Networks (CNNs) are the recent state-of-the-art techniques for ECG-based user identification systems. However, the results obtained are significantly below standards, and the situation worsens as the number of users and types of heartbeats in the dataset grows. As a result, this study proposes a highly accurate and resilient ECG-based person identification system using CNN's dense learning framework. The proposed research explores explicitly the caliber of dense CNNs in the field of ECG-based human recognition. The study tests four different configurations of dense CNN which are trained on a dataset of recordings collected from eight popular ECG databases. With the highest False Acceptance Rate (FAR) of 0.04% and the highest False Rejection Rate (FRR) of 5%, the best performing network achieved an identification accuracy of 99.94%. The best network is also tested with various train/test split ratios. The findings show that DenseNets are not only extremely reliable, but also highly efficient. Thus, they might also be implemented in real-time ECG-based human recognition systems.
Keywords: Biometrics, dense networks, identification rate, train/test split ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 543839 Tariff as a Determining Factor in Choosing Mobile Operators: A Case Study from Higher Learning Institution in Dodoma Municipality in Tanzania
Authors: Justinian Anatory, Ekael Stephen Manase
Abstract:
In recent years, the adoption of mobile phones has been exceptionally rapid in many parts of the world, and Tanzania is not exceptional. We are witnessing a number of new mobile network operators being licensed from time to time by Tanzania Communications Regulatory Authority (TCRA). This makes competition in the telecommunications market very stiff. All mobile phone companies are struggling to earn more new customers into their networks. This trend courses a stiff competition. The various measures are being taken by different companies including, lowering tariff, and introducing free short messages within and out of their networks, and free calls during off-peak periods. This paper is aimed at investigating the influence of tariffs on students’ mobile customers in selecting their mobile network operators. About seventy seven students from high learning institutions in Dodoma Municipality, Tanzania, participated in responding to the prepared questionnaires. The sought information was aimed at determining if tariffs influenced students into selection of their current mobile operators. The results indicate that tariffs were the major driving factor in selection of mobile operators. However, female mobile customers were found to be more easily attracted into subscribing to a mobile operator due to low tariffs, a bigger number of free short messages or discounted call charges than their fellow male customers.
Keywords: Consumer Buying, mobile operators, tariff.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241838 Controller Design for Euler-Bernoulli Smart Structures Using Robust Decentralized POF via Reduced Order Modeling
Authors: T.C. Manjunath, B. Bandyopadhyay
Abstract:
This paper features the proposed modeling and design of a Robust Decentralized Periodic Output Feedback (RDPOF) control technique for the active vibration control of smart flexible multimodel Euler-Bernoulli cantilever beams for a multivariable (MIMO) case by retaining the first 6 vibratory modes. The beam structure is modeled in state space form using the concept of piezoelectric theory, the Euler-Bernoulli beam theory and the Finite Element Method (FEM) technique by dividing the beam into 4 finite elements and placing the piezoelectric sensor / actuator at two finite element locations (positions 2 and 4) as collocated pairs, i.e., as surface mounted sensor / actuator, thus giving rise to a multivariable model of the smart structure plant with two inputs and two outputs. Five such multivariable models are obtained by varying the dimensions (aspect ratios) of the aluminum beam, thus giving rise to a multimodel of the smart structure system. Using model order reduction technique, the reduced order model of the higher order system is obtained based on dominant eigen value retention and the method of Davison. RDPOF controllers are designed for the above 5 multivariable-multimodel plant. The closed loop responses with the RDPOF feedback gain and the magnitudes of the control input are observed and the performance of the proposed multimodel smart structure system with the controller is evaluated for vibration control.Keywords: Smart structure, Euler-Bernoulli beam theory, Periodic output feedback control, Finite Element Method, State space model, SISO, Embedded sensors and actuators, Vibration control, Reduced order model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028837 Integrating Computational Intelligence Techniques and Assessment Agents in ELearning Environments
Authors: Konstantinos C. Giotopoulos, Christos E. Alexakos, Grigorios N. Beligiannis, Spiridon D.Likothanassis
Abstract:
In this contribution an innovative platform is being presented that integrates intelligent agents and evolutionary computation techniques in legacy e-learning environments. It introduces the design and development of a scalable and interoperable integration platform supporting: I) various assessment agents for e-learning environments, II) a specific resource retrieval agent for the provision of additional information from Internet sources matching the needs and profile of the specific user and III) a genetic algorithm designed to extract efficient information (classifying rules) based on the students- answering input data. The agents are implemented in order to provide intelligent assessment services based on computational intelligence techniques such as Bayesian Networks and Genetic Algorithms. The proposed Genetic Algorithm (GA) is used in order to extract efficient information (classifying rules) based on the students- answering input data. The idea of using a GA in order to fulfil this difficult task came from the fact that GAs have been widely used in applications including classification of unknown data. The utilization of new and emerging technologies like web services allows integrating the provided services to any web based legacy e-learning environment.Keywords: Bayesian Networks, Computational Intelligencetechniques, E-learning legacy systems, Service Oriented Integration, Intelligent Agents, Genetic Algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744836 An Induction Motor Drive System with Intelligent Supervisory Control for Water Networks Including Storage Tank
Authors: O. S. Ebrahim, K. O. Shawky, M. A. Badr, P. K. Jain
Abstract:
This paper describes an efficient; low-cost; high-availability; induction motor (IM) drive system with intelligent supervisory control for water distribution networks including storage tank. To increase the operational efficiency and reduce cost, the IM drive system includes main pumping unit and an auxiliary voltage source inverter (VSI) fed unit. The main unit comprises smart star/delta starter, regenerative fluid clutch, switched VAR compensator, and hysteresis liquid-level controller. Three-state energy saving mode (ESM) is defined at no-load and a logic algorithm is developed for best energetic cost reduction. To reduce voltage sag, the supervisory controller operates the switched VAR compensator upon motor starting. To provide smart star/delta starter at low cost, a method based on current sensing is developed for interlocking, malfunction detection, and life–cycles counting and used to synthesize an improved fuzzy logic (FL) based availability assessment scheme. Furthermore, a recurrent neural network (RNN) full state estimator is proposed to provide sensor fault-tolerant algorithm for the feedback control. The auxiliary unit is working at low flow rates and improves the system efficiency and flexibility for distributed generation during islanding mode. Compared with doubly-fed IM, the proposed one ensures 30% working throughput under main motor/pump fault conditions, higher efficiency, and marginal cost difference. This is critically important in case of water networks. Theoretical analysis, computer simulations, cost study, as well as efficiency evaluation, using timely cascaded energy-conservative systems, are performed on IM experimental setup to demonstrate the validity and effectiveness of the proposed drive and control.
Keywords: Artificial Neural Network, ANN, Availability Assessment, Cloud Computing, Energy Saving, Induction Machine, IM, Supervisory Control, Fuzzy Logic, FL, Pumped Storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 631835 Modeling and Analysis of Adaptive Buffer Sharing Scheme for Consecutive Packet Loss Reduction in Broadband Networks
Authors: Sakshi Kausha, R.K Sharma
Abstract:
High speed networks provide realtime variable bit rate service with diversified traffic flow characteristics and quality requirements. The variable bit rate traffic has stringent delay and packet loss requirements. The burstiness of the correlated traffic makes dynamic buffer management highly desirable to satisfy the Quality of Service (QoS) requirements. This paper presents an algorithm for optimization of adaptive buffer allocation scheme for traffic based on loss of consecutive packets in data-stream and buffer occupancy level. Buffer is designed to allow the input traffic to be partitioned into different priority classes and based on the input traffic behavior it controls the threshold dynamically. This algorithm allows input packets to enter into buffer if its occupancy level is less than the threshold value for priority of that packet. The threshold is dynamically varied in runtime based on packet loss behavior. The simulation is run for two priority classes of the input traffic – realtime and non-realtime classes. The simulation results show that Adaptive Partial Buffer Sharing (ADPBS) has better performance than Static Partial Buffer Sharing (SPBS) and First In First Out (FIFO) queue under the same traffic conditions.Keywords: Buffer Management, Consecutive packet loss, Quality-of-Service, Priority based packet discarding, partial buffersharing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637834 Rapid Finite-Element Based Airport Pavement Moduli Solutions using Neural Networks
Authors: Kasthurirangan Gopalakrishnan, Marshall R. Thompson, Anshu Manik
Abstract:
This paper describes the use of artificial neural networks (ANN) for predicting non-linear layer moduli of flexible airfield pavements subjected to new generation aircraft (NGA) loading, based on the deflection profiles obtained from Heavy Weight Deflectometer (HWD) test data. The HWD test is one of the most widely used tests for routinely assessing the structural integrity of airport pavements in a non-destructive manner. The elastic moduli of the individual pavement layers backcalculated from the HWD deflection profiles are effective indicators of layer condition and are used for estimating the pavement remaining life. HWD tests were periodically conducted at the Federal Aviation Administration-s (FAA-s) National Airport Pavement Test Facility (NAPTF) to monitor the effect of Boeing 777 (B777) and Beoing 747 (B747) test gear trafficking on the structural condition of flexible pavement sections. In this study, a multi-layer, feed-forward network which uses an error-backpropagation algorithm was trained to approximate the HWD backcalculation function. The synthetic database generated using an advanced non-linear pavement finite-element program was used to train the ANN to overcome the limitations associated with conventional pavement moduli backcalculation. The changes in ANN-based backcalculated pavement moduli with trafficking were used to compare the relative severity effects of the aircraft landing gears on the NAPTF test pavements.Keywords: Airfield pavements, ANN, backcalculation, newgeneration aircraft
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2185833 Estimation of Attenuation and Phase Delay in Driving Voltage Waveform of a Digital-Noiseless, Ultra-High-Speed Image Sensor
Authors: V. T. S. Dao, T. G. Etoh, C. Vo Le, H. D. Nguyen, K. Takehara, T. Akino, K. Nishi
Abstract:
Since 2004, we have been developing an in-situ storage image sensor (ISIS) that captures more than 100 consecutive images at a frame rate of 10 Mfps with ultra-high sensitivity as well as the video camera for use with this ISIS. Currently, basic research is continuing in an attempt to increase the frame rate up to 100 Mfps and above. In order to suppress electro-magnetic noise at such high frequency, a digital-noiseless imaging transfer scheme has been developed utilizing solely sinusoidal driving voltages. This paper presents highly efficient-yet-accurate expressions to estimate attenuation as well as phase delay of driving voltages through RC networks of an ultra-high-speed image sensor. Elmore metric for a fundamental RC chain is employed as the first-order approximation. By application of dimensional analysis to SPICE data, we found a simple expression that significantly improves the accuracy of the approximation. Similarly, another simple closed-form model to estimate phase delay through fundamental RC networks is also obtained. Estimation error of both expressions is much less than previous works, only less 2% for most of the cases . The framework of this analysis can be extended to address similar issues of other VLSI structures.
Keywords: Dimensional Analysis, ISIS, Digital-noiseless, RC network, Attenuation, Phase Delay, Elmore model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454832 Prediction of the Epileptic Events 'Epileptic Seizures' by Neural Networks and Expert Systems
Authors: Kifah Tout, Nisrine Sinno, Mohamad Mikati
Abstract:
Many studies have focused on the nonlinear analysis of electroencephalography (EEG) mainly for the characterization of epileptic brain states. It is assumed that at least two states of the epileptic brain are possible: the interictal state characterized by a normal apparently random, steady-state EEG ongoing activity; and the ictal state that is characterized by paroxysmal occurrence of synchronous oscillations and is generally called in neurology, a seizure. The spatial and temporal dynamics of the epileptogenic process is still not clear completely especially the most challenging aspects of epileptology which is the anticipation of the seizure. Despite all the efforts we still don-t know how and when and why the seizure occurs. However actual studies bring strong evidence that the interictal-ictal state transition is not an abrupt phenomena. Findings also indicate that it is possible to detect a preseizure phase. Our approach is to use the neural network tool to detect interictal states and to predict from those states the upcoming seizure ( ictal state). Analysis of the EEG signal based on neural networks is used for the classification of EEG as either seizure or non-seizure. By applying prediction methods it will be possible to predict the upcoming seizure from non-seizure EEG. We will study the patients admitted to the epilepsy monitoring unit for the purpose of recording their seizures. Preictal, ictal, and post ictal EEG recordings are available on such patients for analysis The system will be induced by taking a body of samples then validate it using another. Distinct from the two first ones a third body of samples is taken to test the network for the achievement of optimum prediction. Several methods will be tried 'Backpropagation ANN' and 'RBF'.Keywords: Artificial neural network (ANN), automatic prediction, epileptic seizures analysis, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540831 Cascaded ANN for Evaluation of Frequency and Air-gap Voltage of Self-Excited Induction Generator
Authors: Raja Singh Khela, R. K. Bansal, K. S. Sandhu, A. K. Goel
Abstract:
Self-Excited Induction Generator (SEIG) builds up voltage while it enters in its magnetic saturation region. Due to non-linear magnetic characteristics, the performance analysis of SEIG involves cumbersome mathematical computations. The dependence of air-gap voltage on saturated magnetizing reactance can only be established at rated frequency by conducting a laboratory test commonly known as synchronous run test. But, there is no laboratory method to determine saturated magnetizing reactance and air-gap voltage of SEIG at varying speed, terminal capacitance and other loading conditions. For overall analysis of SEIG, prior information of magnetizing reactance, generated frequency and air-gap voltage is essentially required. Thus, analytical methods are the only alternative to determine these variables. Non-existence of direct mathematical relationship of these variables for different terminal conditions has forced the researchers to evolve new computational techniques. Artificial Neural Networks (ANNs) are very useful for solution of such complex problems, as they do not require any a priori information about the system. In this paper, an attempt is made to use cascaded neural networks to first determine the generated frequency and magnetizing reactance with varying terminal conditions and then air-gap voltage of SEIG. The results obtained from the ANN model are used to evaluate the overall performance of SEIG and are found to be in good agreement with experimental results. Hence, it is concluded that analysis of SEIG can be carried out effectively using ANNs.Keywords: Self-Excited Induction Generator, Artificial NeuralNetworks, Exciting Capacitance and Saturated magnetizingreactance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691830 Design and Performance Improvement of Three-Dimensional Optical Code Division Multiple Access Networks with NAND Detection Technique
Authors: Satyasen Panda, Urmila Bhanja
Abstract:
In this paper, we have presented and analyzed three-dimensional (3-D) matrices of wavelength/time/space code for optical code division multiple access (OCDMA) networks with NAND subtraction detection technique. The 3-D codes are constructed by integrating a two-dimensional modified quadratic congruence (MQC) code with one-dimensional modified prime (MP) code. The respective encoders and decoders were designed using fiber Bragg gratings and optical delay lines to minimize the bit error rate (BER). The performance analysis of the 3D-OCDMA system is based on measurement of signal to noise ratio (SNR), BER and eye diagram for a different number of simultaneous users. Also, in the analysis, various types of noises and multiple access interference (MAI) effects were considered. The results obtained with NAND detection technique were compared with those obtained with OR and AND subtraction techniques. The comparison results proved that the NAND detection technique with 3-D MQC\MP code can accommodate more number of simultaneous users for longer distances of fiber with minimum BER as compared to OR and AND subtraction techniques. The received optical power is also measured at various levels of BER to analyze the effect of attenuation.Keywords: Cross correlation, three-dimensional optical code division multiple access, spectral amplitude coding optical code division multiple access, multiple access interference, phase induced intensity noise, three-dimensional modified quadratic congruence/modified prime code.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529829 Freedom of Media, Democracy and Gezi Park
Authors: Emine Tirali
Abstract:
This article provides a conceptual framework of the freedom of media and its correlation with democracy. In a democracy, media should serve the publics’ right to know and reflect human rights violations and offer options for meaningful political choices and effective participation in civic affairs. On that point, the 2013 events at Gezi Park in Turkey are a good empirical example to be discussed. During the events, when self-censorship was broadly employed by mainstream Turkish media, social media filled the important role of providing information to the public. New technologies have made information into a fundamental tool for change and growth, and as a consequence, societies worldwide have merged into a single, interdependent, and autonomous organism. For this reason, violations of human rights can no longer be considered domestic issues, but rather global ones. Only global political action is an adequate response. Democracy depends on people shaping the society they live in, and in order to accomplish this, they need to express themselves. Freedom of expression is therefore necessary in order to understand diversity and differing perspectives, which in turn are necessary to resolve conflicts among people. Moreover, freedom of information is integral to freedom of expression. In this context, the international rules and laws regarding freedom of expression and freedom of information – indispensable for a free and independent media – are examined. These were put in place by international institutions such as the United Nations, UNESCO, the Council of Europe, and the European Union, which have aimed to build a free, democratic, and pluralist world committed to human rights and the rule of law. The methods of international human rights institutions depend on effective and frequent employment of mass media to relay human rights violations to the public. Therefore, in this study, the relationship between mass media and democracy, the process of how mass media forms public opinion, the problems of mass media, the neo-liberal theory of mass media, and the use of mass media by NGOs will be evaluated.
Keywords: Freedom of expression, democracy, public opinion, self-censorship.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696828 Optimization by Means of Genetic Algorithm of the Equivalent Electrical Circuit Model of Different Order for Li-ion Battery Pack
Authors: V. Pizarro-Carmona, S. Castano-Solis, M. Cortés-Carmona, J. Fraile-Ardanuy, D. Jimenez-Bermejo
Abstract:
The purpose of this article is to optimize the Equivalent Electric Circuit Model (EECM) of different orders to obtain greater precision in the modeling of Li-ion battery packs. Optimization includes considering circuits based on 1RC, 2RC and 3RC networks, with a dependent voltage source and a series resistor. The parameters are obtained experimentally using tests in the time domain and in the frequency domain. Due to the high non-linearity of the behavior of the battery pack, Genetic Algorithm (GA) was used to solve and optimize the parameters of each EECM considered (1RC, 2RC and 3RC). The objective of the estimation is to minimize the mean square error between the measured impedance in the real battery pack and those generated by the simulation of different proposed circuit models. The results have been verified by comparing the Nyquist graphs of the estimation of the complex impedance of the pack. As a result of the optimization, the 2RC and 3RC circuit alternatives are considered as viable to represent the battery behavior. These battery pack models are experimentally validated using a hardware-in-the-loop (HIL) simulation platform that reproduces the well-known New York City cycle (NYCC) and Federal Test Procedure (FTP) driving cycles for electric vehicles. The results show that using GA optimization allows obtaining EECs with 2RC or 3RC networks, with high precision to represent the dynamic behavior of a battery pack in vehicular applications.
Keywords: Li-ion battery packs modeling optimized, EECM, GA, electric vehicle applications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544827 Fuzzy Logic Based Improved Range Free Localization for Wireless Sensor Networks
Authors: Ashok Kumar, Vinod Kumar
Abstract:
Wireless Sensor Networks (WSNs) are used to monitor/observe vast inaccessible regions through deployment of large number of sensor nodes in the sensing area. For majority of WSN applications, the collected data needs to be combined with geographic information of its origin to make it useful for the user; information received from remote Sensor Nodes (SNs) that are several hops away from base station/sink is meaningless without knowledge of its source. In addition to this, location information of SNs can also be used to propose/develop new network protocols for WSNs to improve their energy efficiency and lifetime. In this paper, range free localization protocols for WSNs have been proposed. The proposed protocols are based on weighted centroid localization technique, where the edge weights of SNs are decided by utilizing fuzzy logic inference for received signal strength and link quality between the nodes. The fuzzification is carried out using (i) Mamdani, (ii) Sugeno, and (iii) Combined Mamdani Sugeno fuzzy logic inference. Simulation results demonstrate that proposed protocols provide better accuracy in node localization compared to conventional centroid based localization protocols despite presence of unintentional radio frequency interference from radio frequency (RF) sources operating in same frequency band.
Keywords: localization, range free, received signal strength, link quality indicator, Mamdani fuzzy logic inference, Sugeno fuzzy logic inference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2632