Search results for: Single User Detection.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4065

Search results for: Single User Detection.

2955 A New Fuzzy DSS/ES for Stock Portfolio Selection using Technical and Fundamental Approaches in Parallel

Authors: H. Zarei, M. H. Fazel Zarandi, M. Karbasian

Abstract:

A Decision Support System/Expert System for stock portfolio selection presented where at first step, both technical and fundamental data used to estimate technical and fundamental return and risk (1st phase); Then, the estimated values are aggregated with the investor preferences (2nd phase) to produce convenient stock portfolio. In the 1st phase, there are two expert systems, each of which is responsible for technical or fundamental estimation. In the technical expert system, for each stock, twenty seven candidates are identified and with using rough sets-based clustering method (RC) the effective variables have been selected. Next, for each stock two fuzzy rulebases are developed with fuzzy C-Mean method and Takai-Sugeno- Kang (TSK) approach; one for return estimation and the other for risk. Thereafter, the parameters of the rule-bases are tuned with backpropagation method. In parallel, for fundamental expert systems, fuzzy rule-bases have been identified in the form of “IF-THEN" rules through brainstorming with the stock market experts and the input data have been derived from financial statements; as a result two fuzzy rule-bases have been generated for all the stocks, one for return and the other for risk. In the 2nd phase, user preferences represented by four criteria and are obtained by questionnaire. Using an expert system, four estimated values of return and risk have been aggregated with the respective values of user preference. At last, a fuzzy rule base having four rules, treats these values and produce a ranking score for each stock which will lead to a satisfactory portfolio for the user. The stocks of six manufacturing companies and the period of 2003-2006 selected for data gathering.

Keywords: Stock Portfolio Selection, Fuzzy Rule-Base ExpertSystems, Financial Decision Support Systems, Technical Analysis, Fundamental Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
2954 A Novel SVM-Based OOK Detector in Low SNR Infrared Channels

Authors: J. P. Dubois, O. M. Abdul-Latif

Abstract:

Support Vector Machine (SVM) is a recent class of statistical classification and regression techniques playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM is applied to an infrared (IR) binary communication system with different types of channel models including Ricean multipath fading and partially developed scattering channel with additive white Gaussian noise (AWGN) at the receiver. The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these channel stochastic models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to classical binary signal maximum likelihood detection using a matched filter driven by On-Off keying (OOK) modulation. We found that the performance of SVM is superior to that of the traditional optimal detection schemes used in statistical communication, especially for very low signal-to-noise ratio (SNR) ranges. For large SNR, the performance of the SVM is similar to that of the classical detectors. The implication of these results is that SVM can prove very beneficial to IR communication systems that notoriously suffer from low SNR at the cost of increased computational complexity.

Keywords: Least square-support vector machine, on-off keying, matched filter, maximum likelihood detector, wireless infrared communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953
2953 A Nondominated Sorting Genetic Algorithm for Shortest Path Routing Problem

Authors: C. Chitra, P. Subbaraj

Abstract:

The shortest path routing problem is a multiobjective nonlinear optimization problem with constraints. This problem has been addressed by considering Quality of service parameters, delay and cost objectives separately or as a weighted sum of both objectives. Multiobjective evolutionary algorithms can find multiple pareto-optimal solutions in one single run and this ability makes them attractive for solving problems with multiple and conflicting objectives. This paper uses an elitist multiobjective evolutionary algorithm based on the Non-dominated Sorting Genetic Algorithm (NSGA), for solving the dynamic shortest path routing problem in computer networks. A priority-based encoding scheme is proposed for population initialization. Elitism ensures that the best solution does not deteriorate in the next generations. Results for a sample test network have been presented to demonstrate the capabilities of the proposed approach to generate well-distributed pareto-optimal solutions of dynamic routing problem in one single run. The results obtained by NSGA are compared with single objective weighting factor method for which Genetic Algorithm (GA) was applied.

Keywords: Multiobjective optimization, Non-dominated Sorting Genetic Algorithm, Routing, Weighted sum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
2952 Genetic Algorithm and Padé-Moment Matching for Model Order Reduction

Authors: Shilpi Lavania, Deepak Nagaria

Abstract:

A mixed method for model order reduction is presented in this paper. The denominator polynomial is derived by matching both Markov parameters and time moments, whereas numerator polynomial derivation and error minimization is done using Genetic Algorithm. The efficiency of the proposed method can be investigated in terms of closeness of the response of reduced order model with respect to that of higher order original model and a comparison of the integral square error as well.

Keywords: Model Order Reduction (MOR), control theory, Markov parameters, time moments, genetic algorithm, Single Input Single Output (SISO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3534
2951 Model to Support Synchronous and Asynchronous in the Learning Process with An Adaptive Hypermedia System

Authors: Francisca Grimón, Marylin Giugni, Josep Monguet F., Joaquín Fernández, Luis León G.

Abstract:

In blended learning environments, the Internet can be combined with other technologies. The aim of this research was to design, introduce and validate a model to support synchronous and asynchronous activities by managing content domains in an Adaptive Hypermedia System (AHS). The application is based on information recovery techniques, clustering algorithms and adaptation rules to adjust the user's model to contents and objects of study. This system was applied to blended learning in higher education. The research strategy used was the case study method. Empirical studies were carried out on courses at two universities to validate the model. The results of this research show that the model had a positive effect on the learning process. The students indicated that the synchronous and asynchronous scenario is a good option, as it involves a combination of work with the lecturer and the AHS. In addition, they gave positive ratings to the system and stated that the contents were adapted to each user profile.

Keywords: Blended Learning, System Adaptive, Model, Clustering Algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1852
2950 Machine Learning Methods for Network Intrusion Detection

Authors: Mouhammad Alkasassbeh, Mohammad Almseidin

Abstract:

Network security engineers work to keep services available all the time by handling intruder attacks. Intrusion Detection System (IDS) is one of the obtainable mechanisms that is used to sense and classify any abnormal actions. Therefore, the IDS must be always up to date with the latest intruder attacks signatures to preserve confidentiality, integrity, and availability of the services. The speed of the IDS is a very important issue as well learning the new attacks. This research work illustrates how the Knowledge Discovery and Data Mining (or Knowledge Discovery in Databases) KDD dataset is very handy for testing and evaluating different Machine Learning Techniques. It mainly focuses on the KDD preprocess part in order to prepare a decent and fair experimental data set. The J48, MLP, and Bayes Network classifiers have been chosen for this study. It has been proven that the J48 classifier has achieved the highest accuracy rate for detecting and classifying all KDD dataset attacks, which are of type DOS, R2L, U2R, and PROBE.

Keywords: IDS, DDoS, MLP, KDD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 727
2949 The Design of Multiple Detection Parallel Combined Spread Spectrum Communication System

Authors: Lixin Tian, Wei Xue

Abstract:

Many jobs in society go underground, such as mine mining, tunnel construction and subways, which are vital to the development of society. Once accidents occur in these places, the interruption of traditional wired communication is not conducive to the development of rescue work. In order to realize the positioning, early warning and command functions of underground personnel and improve rescue efficiency, it is necessary to develop and design an emergency ground communication system. It is easy to be subjected to narrowband interference when performing conventional underground communication. Spreading communication can be used for this problem. However, general spread spectrum methods such as direct spread communication are inefficient, so it is proposed to use parallel combined spread spectrum (PCSS) communication to improve efficiency. The PCSS communication not only has the anti-interference ability and the good concealment of the traditional spread spectrum system, but also has a relatively high frequency band utilization rate and a strong information transmission capability. So, this technology has been widely used in practice. This paper presents a PCSS communication model-multiple detection parallel combined spread spectrum (MDPCSS) communication system. In this paper, the principle of MDPCSS communication system is described, that is, the sequence at the transmitting end is processed in blocks and cyclically shifted to facilitate multiple detection at the receiving end. The block diagrams of the transmitter and receiver of the MDPCSS communication system are introduced. At the same time, the calculation formula of the system bit error rate (BER) is introduced, and the simulation and analysis of the BER of the system are completed. By comparing with the common parallel PCSS communication, we can draw a conclusion that it is indeed possible to reduce the BER and improve the system performance. Furthermore, the influence of different pseudo-code lengths selected on the system BER is simulated and analyzed, and the conclusion is that the larger the pseudo-code length is, the smaller the system error rate is.

Keywords: Cyclic shift, multiple detection, parallel combined spread spectrum, PN code.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 554
2948 Direction of Arrival Estimation Based on a Single Port Smart Antenna Using MUSIC Algorithm with Periodic Signals

Authors: Chen Sun, Nemai Chandra Karmakar

Abstract:

A novel direction-of-arrival (DOA) estimation technique, which uses a conventional multiple signal classification (MUSIC) algorithm with periodic signals, is applied to a single RF-port parasitic array antenna for direction finding. Simulation results show that the proposed method gives high resolution (1 degree) DOA estimation in an uncorrelated signal environment. The novelty lies in that the MUSIC algorithm is applied to a simplified antenna configuration. Only one RF port and one analogue-to-digital converter (ADC) are used in this antenna, which features low DC power consumption, low cost, and ease of fabrication. Modifications to the conventional MUSIC algorithm do not bring much additional complexity. The proposed technique is also free from the negative influence by the mutual coupling between elements. Therefore, the technique has great potential to be implemented into the existing wireless mobile communications systems, especially at the power consumption limited mobile terminals, to provide additional position location (PL) services.

Keywords: Direction-of-arrival (DOA) estimation, electronically steerable parasitic array radiator (ESPAR), multiple single classifications (MUSIC), position location.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2994
2947 Enhancement of Pulsed Eddy Current Response Based on Power Spectral Density after Continuous Wavelet Transform Decomposition

Authors: A. Benyahia, M. Zergoug, M. Amir, M. Fodil

Abstract:

The main objective of this work is to enhance the Pulsed Eddy Current (PEC) response from the aluminum structure using signal processing. Cracks and metal loss in different structures cause changes in PEC response measurements. In this paper, time-frequency analysis is used to represent PEC response, which generates a large quantity of data and reduce the noise due to measurement. Power Spectral Density (PSD) after Wavelet Decomposition (PSD-WD) is proposed for defect detection. The experimental results demonstrate that the cracks in the surface can be extracted satisfactorily by the proposed methods. The validity of the proposed method is discussed.

Keywords: NDT, pulsed eddy current, continuous wavelet transform, Mexican hat wavelet mother, defect detection, power spectral density.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 765
2946 Ensuring Data Security and Consistency in FTIMA - A Fault Tolerant Infrastructure for Mobile Agents

Authors: Umar Manzoor, Kiran Ijaz, Wajiha Shamim, Arshad Ali Shahid

Abstract:

Transaction management is one of the most crucial requirements for enterprise application development which often require concurrent access to distributed data shared amongst multiple application / nodes. Transactions guarantee the consistency of data records when multiple users or processes perform concurrent operations. Existing Fault Tolerance Infrastructure for Mobile Agents (FTIMA) provides a fault tolerant behavior in distributed transactions and uses multi-agent system for distributed transaction and processing. In the existing FTIMA architecture, data flows through the network and contains personal, private or confidential information. In banking transactions a minor change in the transaction can cause a great loss to the user. In this paper we have modified FTIMA architecture to ensure that the user request reaches the destination server securely and without any change. We have used triple DES for encryption/ decryption and MD5 algorithm for validity of message.

Keywords: Distributed Transaction, Security, Mobile Agents, FTIMA Architecture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525
2945 Using Vulnerability to Reduce False Positive Rate in Intrusion Detection Systems

Authors: Nadjah Chergui, Narhimene Boustia

Abstract:

Intrusion Detection Systems are an essential tool for network security infrastructure. However, IDSs have a serious problem which is the generating of massive number of alerts, most of them are false positive ones which can hide true alerts and make the analyst confused to analyze the right alerts for report the true attacks. The purpose behind this paper is to present a formalism model to perform correlation engine by the reduction of false positive alerts basing on vulnerability contextual information. For that, we propose a formalism model based on non-monotonic JClassicδє description logic augmented with a default (δ) and an exception (є) operator that allows a dynamic inference according to contextual information.

Keywords: Context, exception, default, IDS, Non-monotonic Description Logic JClassicδє, vulnerability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
2944 Analytical Mathematical Expression for the Channel Capacity of a Power and Rate Simultaneous Adaptive Cellular DS/FFH-CDMA Systemin a Rayleigh Fading Channel

Authors: P.Varzakas

Abstract:

In this paper, an accurate theoretical analysis for the achievable average channel capacity (in the Shannon sense) per user of a hybrid cellular direct-sequence/fast frequency hopping code-division multiple-access (DS/FFH-CDMA) system operating in a Rayleigh fading environment is presented. The analysis covers the downlink operation and leads to the derivation of an exact mathematical expression between the normalized average channel capacity available to each system-s user, under simultaneous optimal power and rate adaptation and the system-s parameters, as the number of hops per bit, the processing gain applied, the number of users per cell and the received signal-tonoise power ratio over the signal bandwidth. Finally, numerical results are presented to illustrate the proposed mathematical analysis.

Keywords: Shannon capacity, adaptive systems, code-division multiple access, fading channels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
2943 Parameter Estimation of Diode Circuit Using Extended Kalman Filter

Authors: Amit Kumar Gautam, Sudipta Majumdar

Abstract:

This paper presents parameter estimation of a single-phase rectifier using extended Kalman filter (EKF). The state space model has been obtained using Kirchhoff’s current law (KCL) and Kirchhoff’s voltage law (KVL). The capacitor voltage and diode current of the circuit have been estimated using EKF. Simulation results validate the better accuracy of the proposed method as compared to the least mean square method (LMS). Further, EKF has the advantage that it can be used for nonlinear systems.

Keywords: Extended Kalman filter, parameter estimation, single phase rectifier, state space modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 904
2942 Performance Analysis of a Single-Phase Thermosyphon Solar Water Heating System

Authors: S. Sadhishkumar, T. Balusamy

Abstract:

A single-phase closed thermosyphon has been fabricated and experimented to utilize solar energy for water heating. The working fluid of the closed thermosyphon is heated at the flatplate collector and the hot water goes to the water tank due to density gradient caused by temperature differences. This experimental work was done using insulated water tank and insulated connecting pipe between the tank and the flat-plate collector. From the collected data, performance parameters such as instantaneous collector efficiency and heat removal factor are calculated. In this study, the effects of glazing were also observed. The water temperature rise and the maximum instantaneous efficiency obtained from this experiment with glazing using insulated water tank and insulated connecting pipe are 17°C in a period of 5 hours and 60% respectively. Whereas the water temperature rise and the maximum instantaneous efficiency obtained from this experiment with glazing using non-insulated water tank and non-insulated connecting pipe are 14°C in a period of 5 hours and 39% respectively.

Keywords: Solar water heating systems, Single-phase thermosyphon, Flat-plate collector, Insulated tank and pipe.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3132
2941 Adaptive Non-linear Filtering Technique for Image Restoration

Authors: S. K. Satpathy, S. Panda, K. K. Nagwanshi, S. K. Nayak, C. Ardil

Abstract:

Removing noise from the any processed images is very important. Noise should be removed in such a way that important information of image should be preserved. A decisionbased nonlinear algorithm for elimination of band lines, drop lines, mark, band lost and impulses in images is presented in this paper. The algorithm performs two simultaneous operations, namely, detection of corrupted pixels and evaluation of new pixels for replacing the corrupted pixels. Removal of these artifacts is achieved without damaging edges and details. However, the restricted window size renders median operation less effective whenever noise is excessive in that case the proposed algorithm automatically switches to mean filtering. The performance of the algorithm is analyzed in terms of Mean Square Error [MSE], Peak-Signal-to-Noise Ratio [PSNR], Signal-to-Noise Ratio Improved [SNRI], Percentage Of Noise Attenuated [PONA], and Percentage Of Spoiled Pixels [POSP]. This is compared with standard algorithms already in use and improved performance of the proposed algorithm is presented. The advantage of the proposed algorithm is that a single algorithm can replace several independent algorithms which are required for removal of different artifacts.

Keywords: Filtering, Decision Based Algorithm, noise, imagerestoration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2158
2940 Fault Classification of a Doubly FED Induction Machine Using Neural Network

Authors: A. Ourici

Abstract:

Rapid progress in process automation and tightening quality standards result in a growing demand being placed on fault detection and diagnostics methods to provide both speed and reliability of motor quality testing. Doubly fed induction generators are used mainly for wind energy conversion in MW power plants. This paper presents a detection of an inter turn stator and an open phase faults, in a doubly fed induction machine whose stator and rotor are supplied by two pulse width modulation (PWM) inverters. The method used in this article to detect these faults, is based on Park-s Vector Approach, using a neural network.

Keywords: Doubly fed induction machine, inter turn stator fault, neural network, open phase fault, Park's vector approach, PWMinverter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
2939 Digital Library Evaluation by SWARA-WASPAS Method

Authors: Mehmet Yörükoğlu, Serhat Aydın

Abstract:

Since the discovery of the manuscript, mechanical methods for storing, transferring and using the information have evolved into digital methods over the time. In this process, libraries that are the center of the information have also become digitized and become accessible from anywhere and at any time in the world by taking on a structure that has no physical boundaries. In this context, some criteria for information obtained from digital libraries have become more important for users. This paper evaluates the user criteria from different perspectives that make a digital library more useful. The Step-Wise Weight Assessment Ratio Analysis-Weighted Aggregated Sum Product Assessment (SWARA-WASPAS) method is used with flexibility and easy calculation steps for the evaluation of digital library criteria. Three different digital libraries are evaluated by information technology experts according to five conflicting main criteria, ‘interface design’, ‘effects on users’, ‘services’, ‘user engagement’ and ‘context’. Finally, alternatives are ranked in descending order.

Keywords: Digital library, multi criteria decision making, SWARA-WASPAS method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 902
2938 Integration of Image and Patient Data, Software and International Coding Systems for Use in a Mammography Research Project

Authors: V. Balanica, W. I. D. Rae, M. Caramihai, S. Acho, C. P. Herbst

Abstract:

Mammographic images and data analysis to facilitate modelling or computer aided diagnostic (CAD) software development should best be done using a common database that can handle various mammographic image file formats and relate these to other patient information. This would optimize the use of the data as both primary reporting and enhanced information extraction of research data could be performed from the single dataset. One desired improvement is the integration of DICOM file header information into the database, as an efficient and reliable source of supplementary patient information intrinsically available in the images. The purpose of this paper was to design a suitable database to link and integrate different types of image files and gather common information that can be further used for research purposes. An interface was developed for accessing, adding, updating, modifying and extracting data from the common database, enhancing the future possible application of the data in CAD processing. Technically, future developments envisaged include the creation of an advanced search function to selects image files based on descriptor combinations. Results can be further used for specific CAD processing and other research. Design of a user friendly configuration utility for importing of the required fields from the DICOM files must be done.

Keywords: Database Integration, Mammogram Classification, Tumour Classification, Computer Aided Diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1945
2937 Ultrasensitive Hepatitis B Virus Detection in Blood Using Nano-Porous Silicon Oxide: Towards POC Diagnostics

Authors: N. Das, N. Samanta, L. Pandey, C. Roy Chaudhuri

Abstract:

Early diagnosis of infection like Hep-B virus in blood is important for low cost medical treatment. For this purpose, it is desirable to develop a point of care device which should be able to detect trace quantities of the target molecule in blood. In this paper, we report a nanoporous silicon oxide sensor which is capable of detecting down to 1fM concentration of Hep-B surface antigen in blood without the requirement of any centrifuge or pre-concentration. This has been made possible by the presence of resonant peak in the sensitivity characteristics. This peak is observed to be dependent only on the concentration of the specific antigen and not on the interfering species in blood serum. The occurrence of opposite impedance change within the pores and at the bottom of the pore is responsible for this effect. An electronic interface has also been designed to provide a display of the virus concentration.

Keywords: Impedance spectroscopy, Ultrasensitive detection in blood, Peak frequency, Electronic interface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2694
2936 Identifying Mitigation Plans in Reducing Usability Risk Using Delphi Method

Authors: Jayaletchumi T. Sambantha Moorthy, Suhaimi bin Ibrahim, Mohd Naz’ri Mahrin

Abstract:

Most quality models have defined usability as a significant factor that leads to improving product acceptability, increasing user satisfaction, improving product reliability, and also financially benefitting companies. Usability is also the best factor that balances both the technical and human aspects of a software product, which is an important aspect in defining quality during software development process. A usability risk consist risk factors that could impact the usability of a software product thereby contributing to negative user experiences and causing a possible software product failure. Hence, it is important to mitigate and reduce usability risks in the software development process itself. By managing possible usability risks in software development process, failure of software product could be reduced. Therefore, this research uses the Delphi method to identify mitigation plans for reducing potential usability risks. The Delphi method is conducted with seven experts from the field of risk management and software development.

Keywords: Usability, Usability Risk, Risk Management, Risk Mitigation, Delphi Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2228
2935 A Literature Survey of Neural Network Applications for Shunt Active Power Filters

Authors: S. Janpong, K-L. Areerak, K-N. Areerak

Abstract:

This paper aims to present the reviews of the application of neural network in shunt active power filter (SAPF). From the review, three out of four components of SAPF structure, which are harmonic detection component, compensating current control, and DC bus voltage control, have been adopted some of neural network architecture as part of its component or even substitution. The objectives of most papers in using neural network in SAPF are to increase the efficiency, stability, accuracy, robustness, tracking ability of the systems of each component. Moreover, minimizing unneeded signal due to the distortion is the ultimate goal in applying neural network to the SAPF. The most famous architecture of neural network in SAPF applications are ADALINE and Backpropagation (BP).

Keywords: Active power filter, neural network, harmonic distortion, harmonic detection and compensation, non-linear load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3065
2934 An Improved STBC Structure and Transmission Scheme for High Rate and Reliability in OFDMA Cooperative Communication

Authors: Hyoung-Muk Lim, Won-Jun Choi, Jae-Seon Yoon, Hyoung-Kyu Song

Abstract:

Space-time block code(STBC) has been studied to get full diversity and full rate in multiple input multiple output(MIMO) system. Achieving full rate is difficult in cooperative communications due to the each user consumes the time slots for transmitting information in cooperation phase. So combining MIMO systems with cooperative communications has been researched for full diversity and full rate. In orthogonal frequency division multiple access (OFDMA) system, it is an alternative way that each user shares their allocated subchannels instead of using the MIMO system to improve the transmission rate. In this paper, a Decode-and-forward (DF) based cooperative communication scheme is proposed. The proposed scheme has improved transmission rate and reliability in multi-path fading channel of the OFDMA up-link condition by modified STBC structure and subchannel sharing.

Keywords: cooperation, improved rate, OFDMA, STBC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591
2933 RS Based SCADA System for Longer Distance Powered Devices

Authors: Harkishen Singh, Gavin Mangeni

Abstract:

This project aims at building an efficient and automatic power monitoring SCADA system, which is capable of monitoring the electrical parameters of high voltage powered devices in real time for example RMS voltage and current, frequency, energy consumed, power factor etc. The system uses RS-485 serial communication interface to transfer data over longer distances. Embedded C programming is the platform used to develop two hardware modules namely: RTU and Master Station modules, which both use the CC2540 BLE 4.0 microcontroller configured in slave / master mode. The Si8900 galvanic ally isolated microchip is used to perform ADC externally. The hardware communicates via UART port and sends data to the user PC using the USB port. Labview software is used to design a user interface to display current state of the power loads being monitored as well as logs data to excel spreadsheet file. An understanding of the Si8900’s auto baud rate process is key to successful implementation of this project.

Keywords: SCADA, RS485, CC2540, Labview, Si8900.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478
2932 A Pattern Recognition Neural Network Model for Detection and Classification of SQL Injection Attacks

Authors: Naghmeh Moradpoor Sheykhkanloo

Abstract:

Thousands of organisations store important and confidential information related to them, their customers, and their business partners in databases all across the world. The stored data ranges from less sensitive (e.g. first name, last name, date of birth) to more sensitive data (e.g. password, pin code, and credit card information). Losing data, disclosing confidential information or even changing the value of data are the severe damages that Structured Query Language injection (SQLi) attack can cause on a given database. It is a code injection technique where malicious SQL statements are inserted into a given SQL database by simply using a web browser. In this paper, we propose an effective pattern recognition neural network model for detection and classification of SQLi attacks. The proposed model is built from three main elements of: a Uniform Resource Locator (URL) generator in order to generate thousands of malicious and benign URLs, a URL classifier in order to: 1) classify each generated URL to either a benign URL or a malicious URL and 2) classify the malicious URLs into different SQLi attack categories, and a NN model in order to: 1) detect either a given URL is a malicious URL or a benign URL and 2) identify the type of SQLi attack for each malicious URL. The model is first trained and then evaluated by employing thousands of benign and malicious URLs. The results of the experiments are presented in order to demonstrate the effectiveness of the proposed approach.

Keywords: Neural Networks, pattern recognition, SQL injection attacks, SQL injection attack classification, SQL injection attack detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2844
2931 Feature-Based Summarizing and Ranking from Customer Reviews

Authors: Dim En Nyaung, Thin Lai Lai Thein

Abstract:

Due to the rapid increase of Internet, web opinion sources dynamically emerge which is useful for both potential customers and product manufacturers for prediction and decision purposes. These are the user generated contents written in natural languages and are unstructured-free-texts scheme. Therefore, opinion mining techniques become popular to automatically process customer reviews for extracting product features and user opinions expressed over them. Since customer reviews may contain both opinionated and factual sentences, a supervised machine learning technique applies for subjectivity classification to improve the mining performance. In this paper, we dedicate our work is the task of opinion summarization. Therefore, product feature and opinion extraction is critical to opinion summarization, because its effectiveness significantly affects the identification of semantic relationships. The polarity and numeric score of all the features are determined by Senti-WordNet Lexicon. The problem of opinion summarization refers how to relate the opinion words with respect to a certain feature. Probabilistic based model of supervised learning will improve the result that is more flexible and effective.

Keywords: Opinion Mining, Opinion Summarization, Sentiment Analysis, Text Mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2933
2930 Fuzzy Logic Speed Controller with Reduced Rule Base for Dual PMSM Drives

Authors: Jurifa Mat Lazi, Zulkifilie Ibrahim, Marizan Sulaiman, Fizatul Aini Patakor, Siti Noormiza Mat Isa

Abstract:

Dual motor drives fed by single inverter is purposely designed to reduced size and cost with respect to single motor drives fed by single inverter. Previous researches on dual motor drives only focus on the modulation and the averaging techniques. Only a few of them, study the performance of the drives based on different speed controller other than Proportional and Integrator (PI) controller. This paper presents a detailed comparative study on fuzzy rule-base in Fuzzy Logic speed Controller (FLC) for Dual Permanent Magnet Synchronous Motor (PMSM) drives. Two fuzzy speed controllers which are standard and simplified fuzzy speed controllers are designed and the results are compared and evaluated. The standard fuzzy controller consists of 49 rules while the proposed controller consists of 9 rules determined by selecting the most dominant rules only. Both designs are compared for wide range of speed and the robustness of both controllers over load disturbance changes is tested to demonstrate the effectiveness of the simplified/reduced rulebase.

Keywords: Dual Motor Drives, Fuzzy Logic Speed Controller, Reduced Rule-Base, PMSM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2612
2929 Differentiation of Cancerous Prostate tissue from Non-Cancerous Prostate tissue by using Elastic Light Single-Scattering Spectroscopy: A Feasibility Study

Authors: T. Denkçeken, M. Canpolat, Đ. Bassorgun, S. Yücel, M.A. Çiftçioğlu, M. Baykara Murat Canpolat , Tuba Denkçeken , Đbrahim Bassorgun , Selçuk Yücel , M. Akif Çiftçioğlu , Mehmet Baykara

Abstract:

Elastic light single-scattering spectroscopy system with a single optical fiber probe was employed to differentiate cancerous prostate tissue from non-cancerous prostate tissue ex-vivo just after radical prostatectomy. First, ELSSS spectra were acquired from cancerous prostate tissue to define its spectral features. Then, spectra were acquired from normal prostate tissue to define difference in spectral features between the cancerous and normal prostate tissues. Of the total 66 tissue samples were evaluated from nine patients by ELSSS system. Comparing of histopathology results and ELSSS measurements revealed that sign of the spectral slopes of cancerous prostate tissue is negative and non-cancerous tissue is positive in the wavelength range from 450 to 750 nm. Based on the correlation between histopathology results and sign of the spectral slopes, ELSSS system differentiates cancerous prostate tissue from non- cancerous with a sensitivity of 0.95 and a specificity of 0.94.

Keywords: Diagnosis, prostatic neoplasm, prostatectomy, spectrum analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1522
2928 Feature's Extraction of Human Body Composition in Images by Segmentation Method

Authors: Mousa Mojarrad, Mashallah Abbasi Dezfouli, Amir Masoud Rahmani

Abstract:

Detection and recognition of the Human Body Composition and extraction their measures (width and length of human body) in images are a major issue in detecting objects and the important field in Image, Signal and Vision Computing in recent years. Finding people and extraction their features in Images are particularly important problem of object recognition, because people can have high variability in the appearance. This variability may be due to the configuration of a person (e.g., standing vs. sitting vs. jogging), the pose (e.g. frontal vs. lateral view), clothing, and variations in illumination. In this study, first, Human Body is being recognized in image then the measures of Human Body extract from the image.

Keywords: Analysis of image processing, canny edge detection, classification, feature extraction, human body recognition, segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2771
2927 Geographic Profiling Based on Multi-point Centrography with K-means Clustering

Authors: Jiaji Zhou, Le Liang, Long Chen

Abstract:

Geographic Profiling has successfully assisted investigations for serial crimes. Considering the multi-cluster feature of serial criminal spots, we propose a Multi-point Centrography model as a natural extension of Single-point Centrography for geographic profiling. K-means clustering is first performed on the data samples and then Single-point Centrography is adopted to derive a probability distribution on each cluster. Finally, a weighted combinations of each distribution is formed to make next-crime spot prediction. Experimental study on real cases demonstrates the effectiveness of our proposed model.

Keywords: Geographic profiling, Centrography model, K-means algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2085
2926 Comparison of Machine Learning Techniques for Single Imputation on Audiograms

Authors: Sarah Beaver, Renee Bryce

Abstract:

Audiograms detect hearing impairment, but missing values pose problems. This work explores imputations in an attempt to improve accuracy. This work implements Linear Regression, Lasso, Linear Support Vector Regression, Bayesian Ridge, K Nearest Neighbors (KNN), and Random Forest machine learning techniques to impute audiogram frequencies ranging from 125 Hz to 8000 Hz. The data contain patients who had or were candidates for cochlear implants. Accuracy is compared across two different Nested Cross-Validation k values. Over 4000 audiograms were used from 800 unique patients. Additionally, training on data combines and compares left and right ear audiograms versus single ear side audiograms. The accuracy achieved using Root Mean Square Error (RMSE) values for the best models for Random Forest ranges from 4.74 to 6.37. The R2 values for the best models for Random Forest ranges from .91 to .96. The accuracy achieved using RMSE values for the best models for KNN ranges from 5.00 to 7.72. The R2 values for the best models for KNN ranges from .89 to .95. The best imputation models received R2 between .89 to .96 and RMSE values less than 8dB. We also show that the accuracy of classification predictive models performed better with our imputation models versus constant imputations by a two percent increase.

Keywords: Machine Learning, audiograms, data imputations, single imputations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161