Search results for: Data resourcesmanagement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7453

Search results for: Data resourcesmanagement

6343 Information Retrieval in Domain Specific Search Engine with Machine Learning Approaches

Authors: Shilpy Sharma

Abstract:

As the web continues to grow exponentially, the idea of crawling the entire web on a regular basis becomes less and less feasible, so the need to include information on specific domain, domain-specific search engines was proposed. As more information becomes available on the World Wide Web, it becomes more difficult to provide effective search tools for information access. Today, people access web information through two main kinds of search interfaces: Browsers (clicking and following hyperlinks) and Query Engines (queries in the form of a set of keywords showing the topic of interest) [2]. Better support is needed for expressing one's information need and returning high quality search results by web search tools. There appears to be a need for systems that do reasoning under uncertainty and are flexible enough to recover from the contradictions, inconsistencies, and irregularities that such reasoning involves. In a multi-view problem, the features of the domain can be partitioned into disjoint subsets (views) that are sufficient to learn the target concept. Semi-supervised, multi-view algorithms, which reduce the amount of labeled data required for learning, rely on the assumptions that the views are compatible and uncorrelated. This paper describes the use of semi-structured machine learning approach with Active learning for the “Domain Specific Search Engines". A domain-specific search engine is “An information access system that allows access to all the information on the web that is relevant to a particular domain. The proposed work shows that with the help of this approach relevant data can be extracted with the minimum queries fired by the user. It requires small number of labeled data and pool of unlabelled data on which the learning algorithm is applied to extract the required data.

Keywords: Search engines; machine learning, Informationretrieval, Active logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2085
6342 A Detailed Timber Harvest Simulator Coupled with 3-D Visualization

Authors: Jürgen Roßmann, Gerrit Alves

Abstract:

In today-s world, the efficient utilization of wood resources comes more and more to the mind of forest owners. It is a very complex challenge to ensure an efficient harvest of the wood resources. This is one of the scopes the project “Virtual Forest II" addresses. Its core is a database with data about forests containing approximately 260 million trees located in North Rhine-Westphalia (NRW). Based on this data, tree growth simulations and wood mobilization simulations can be conducted. This paper focuses on the latter. It describes a discrete-event-simulation with an attached 3-D real time visualization which simulates timber harvest using trees from the database with different crop resources. This simulation can be displayed in 3-D to show the progress of the wood crop. All the data gathered during the simulation is presented as a detailed summary afterwards. This summary includes cost-benefit calculations and can be compared to those of previous runs to optimize the financial outcome of the timber harvest by exchanging crop resources or modifying their parameters.

Keywords: Timber harvest, simulation, 3-D, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1384
6341 Belief Theory-Based Classifiers Comparison for Static Human Body Postures Recognition in Video

Authors: V. Girondel, L. Bonnaud, A. Caplier, M. Rombaut

Abstract:

This paper presents various classifiers results from a system that can automatically recognize four different static human body postures in video sequences. The considered postures are standing, sitting, squatting, and lying. The three classifiers considered are a naïve one and two based on the belief theory. The belief theory-based classifiers use either a classic or restricted plausibility criterion to make a decision after data fusion. The data come from the people 2D segmentation and from their face localization. Measurements consist in distances relative to a reference posture. The efficiency and the limits of the different classifiers on the recognition system are highlighted thanks to the analysis of a great number of results. This system allows real-time processing.

Keywords: Belief theory, classifiers comparison, data fusion, human motion analysis, real-time processing, static posture recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
6340 Using RASCAL and ALOHA Codes to Establish an Analysis Methodology for Hydrogen Fluoride Evaluation

Authors: J. R. Wang, Y. Chiang, W. S. Hsu, H. C. Chen, S. H. Chen, J. H. Yang, S. W. Chen, C. Shih

Abstract:

In this study, the RASCAL and ALOHA codes are used to establish an analysis methodology for hydrogen fluoride (HF) evaluation. There are three main steps in this study. First, the UF6 data were collected. Second, one postulated case was analyzed by using the RASCAL and UF6 data. This postulated case assumes that fire occurring and UF6 is releasing from a building. Third, the results of RASCAL for HF mass were as the input data of ALOHA. Two postulated cases of HF were analyzed by using ALOHA code and the results of RASCAL. These postulated cases assume fire occurring and HF is releasing with no raining (Case 1) or raining (Case 2) condition. According to the analysis results of ALOHA, the HF concentration of Case 2 is smaller than Case 1. The results can be a reference for the preparing of emergency plans for the release of HF.

Keywords: RASCAL, ALOHA, UF6, hydrogen fluoride.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 778
6339 Genetic Programming Approach for Multi-Category Pattern Classification Appliedto Network Intrusions Detection

Authors: K.M. Faraoun, A. Boukelif

Abstract:

This paper describes a new approach of classification using genetic programming. The proposed technique consists of genetically coevolving a population of non-linear transformations on the input data to be classified, and map them to a new space with a reduced dimension, in order to get a maximum inter-classes discrimination. The classification of new samples is then performed on the transformed data, and so become much easier. Contrary to the existing GP-classification techniques, the proposed one use a dynamic repartition of the transformed data in separated intervals, the efficacy of a given intervals repartition is handled by the fitness criterion, with a maximum classes discrimination. Experiments were first performed using the Fisher-s Iris dataset, and then, the KDD-99 Cup dataset was used to study the intrusion detection and classification problem. Obtained results demonstrate that the proposed genetic approach outperform the existing GP-classification methods [1],[2] and [3], and give a very accepted results compared to other existing techniques proposed in [4],[5],[6],[7] and [8].

Keywords: Genetic programming, patterns classification, intrusion detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
6338 Performance Analysis of Routing Protocol for WSN Using Data Centric Approach

Authors: A. H. Azni, Madihah Mohd Saudi, Azreen Azman, Ariff Syah Johari

Abstract:

Sensor Network are emerging as a new tool for important application in diverse fields like military surveillance, habitat monitoring, weather, home electrical appliances and others. Technically, sensor network nodes are limited in respect to energy supply, computational capacity and communication bandwidth. In order to prolong the lifetime of the sensor nodes, designing efficient routing protocol is very critical. In this paper, we illustrate the existing routing protocol for wireless sensor network using data centric approach and present performance analysis of these protocols. The paper focuses in the performance analysis of specific protocol namely Directed Diffusion and SPIN. This analysis reveals that the energy usage is important features which need to be taken into consideration while designing routing protocol for wireless sensor network.

Keywords: Data Centric Approach, Directed Diffusion, SPIN WSN Routing Protocol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2541
6337 DD Models for Reports Building

Authors: Ljerka Hrženjak-Šego, Željko Polić, Zdravka Aljinović

Abstract:

In general, reports are a form of representing data in such way that user gets the information he needs. They can be built in various ways, from the simplest (“select from") to the most complex ones (results derived from different sources/tables with complex formulas applied). Furthermore, rules of calculations could be written as a program hard code or built in the database to be used by dynamic code. This paper will introduce two types of reports, defined in the DB structure. The main goal is to manage calculations in optimal way, keeping maintenance of reports as simple and smooth as possible.

Keywords: Data Definition diagram, Server Model Diagram, system modelling, reports.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1347
6336 The Study of Implications on Modern Businesses Performances by Digital Communities: Case of Data Leak

Authors: Asim Majeed, Anwar Ul Haq, Mike, Lloyd-Williams, Arshad Jamal, Usman Butt

Abstract:

This study aims to investigate the impact of data leak of M&S customers on digital communities. Modern businesses are using digital communities as an important public relations tool for marketing purposes. This form of communication helps companies to build better relationship with their customers which also act as another source of information. The communication between the customers and the organizations is not regulated so users may post positive and negative comments. There are new platforms being developed on a daily basis and it is very crucial for the businesses to not only get themselves familiar with those but also know how to reach their existing and perspective consumers. The driving force of marketing and communication in modern businesses is the digital communities and these are continuously increasing and developing. This phenomenon is changing the way marketing is conducted. The current research has discussed the implications on M&S business performance since the data was exploited on digital communities; users contacted M&S and raised the security concerns. M&S closed down its website for few hours to try to resolve the issue. The next day M&S made a public apology about this incidence. This information was proliferated on various digital communities and it has impacted negatively on M&S brand name, sales and customers. The content analysis approach is being used to collect qualitative data from 100 digital bloggers including social media communities such as Facebook and Twitter. The results and finding provide useful new insights into the nature and form of security concerns of digital users. Findings have theoretical and practical implications. This research will showcase a large corporation utilizing various digital community platforms and can serve as a model for future organizations.

Keywords: Digital, communities, performance, dissemination, implications, data, exploitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820
6335 TRACE/FRAPTRAN Analysis of Kuosheng Nuclear Power Plant Dry-Storage System

Authors: J. R. Wang, Y. Chiang, W. Y. Li, H. T. Lin, H. C. Chen, C. Shih, S. W. Chen

Abstract:

The dry-storage systems of nuclear power plants (NPPs) in Taiwan have become one of the major safety concerns. There are two steps considered in this study. The first step is the verification of the TRACE by using VSC-17 experimental data. The results of TRACE were similar to the VSC-17 data. It indicates that TRACE has the respectable accuracy in the simulation and analysis of the dry-storage systems. The next step is the application of TRACE in the dry-storage system of Kuosheng NPP (BWR/6). Kuosheng NPP is the second BWR NPP of Taiwan Power Company. In order to solve the storage of the spent fuels, Taiwan Power Company developed the new dry-storage system for Kuosheng NPP. In this step, the dry-storage system model of Kuosheng NPP was established by TRACE. Then, the steady state simulation of this model was performed and the results of TRACE were compared with the Kuosheng NPP data. Finally, this model was used to perform the safety analysis of Kuosheng NPP dry-storage system. Besides, FRAPTRAN was used tocalculate the transient performance of fuel rods.

Keywords: BWR, TRACE, FRAPTRAN, Dry-Storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2088
6334 MCDM Spectrum Handover Models for Cognitive Wireless Networks

Authors: Cesar Hernández, Diego Giral, Fernando Santa

Abstract:

Spectrum handover is a significant topic in the cognitive radio networks to assure an efficient data transmission in the cognitive radio user’s communications. This paper proposes a comparison between three spectrum handover models: VIKOR, SAW and MEW. Four evaluation metrics are used. These metrics are, accumulative average of failed handover, accumulative average of handover performed, accumulative average of transmission bandwidth and, accumulative average of the transmission delay. As a difference with related work, the performance of the three spectrum handover models was validated with captured data of spectrum occupancy in experiments performed at the GSM frequency band (824 MHz - 849 MHz). These data represent the actual behavior of the licensed users for this wireless frequency band. The results of the comparison show that VIKOR Algorithm provides a 15.8% performance improvement compared to SAW Algorithm and, it is 12.1% better than the MEW Algorithm.

Keywords: Cognitive radio, decision making, MEW, SAW, spectrum handover, VIKOR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159
6333 Weak Measurement Theory for Discrete Scales

Authors: Jan Newmarch

Abstract:

With the increasing spread of computers and the internet among culturally, linguistically and geographically diverse communities, issues of internationalization and localization and becoming increasingly important. For some of the issues such as different scales for length and temperature, there is a well-developed measurement theory. For others such as date formats no such theory will be possible. This paper fills a gap by developing a measurement theory for a class of scales previously overlooked, based on discrete and interval-valued scales such as spanner and shoe sizes. The paper gives a theoretical foundation for a class of data representation problems.

Keywords: Data representation, internationalisation, localisation, measurement theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447
6332 Comparison of Number of Waves Surfed and Duration Using Global Positioning System and Inertial Sensors

Authors: J. Madureira, R. Lagido, I. Sousa

Abstract:

Surf is an increasingly popular sport and its performance evaluation is often qualitative. This work aims at using a smartphone to collect and analyze the GPS and inertial sensors data in order to obtain quantitative metrics of the surfing performance. Two approaches are compared for detection of wave rides, computing the number of waves rode in a surfing session, the starting time of each wave and its duration. The first approach is based on computing the velocity from the Global Positioning System (GPS) signal and finding the velocity thresholds that allow identifying the start and end of each wave ride. The second approach adds information from the Inertial Measurement Unit (IMU) of the smartphone, to the velocity thresholds obtained from the GPS unit, to determine the start and end of each wave ride. The two methods were evaluated using GPS and IMU data from two surfing sessions and validated with similar metrics extracted from video data collected from the beach. The second method, combining GPS and IMU data, was found to be more accurate in determining the number of waves, start time and duration. This paper shows that it is feasible to use smartphones for quantification of performance metrics during surfing. In particular, detection of the waves rode and their duration can be accurately determined using the smartphone GPS and IMU. 

Keywords: Inertial Measurement Unit (IMU), Global Positioning System (GPS), smartphone, surfing performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
6331 Parallel and Distributed Mining of Association Rule on Knowledge Grid

Authors: U. Sakthi, R. Hemalatha, R. S. Bhuvaneswaran

Abstract:

In Virtual organization, Knowledge Discovery (KD) service contains distributed data resources and computing grid nodes. Computational grid is integrated with data grid to form Knowledge Grid, which implements Apriori algorithm for mining association rule on grid network. This paper describes development of parallel and distributed version of Apriori algorithm on Globus Toolkit using Message Passing Interface extended with Grid Services (MPICHG2). The creation of Knowledge Grid on top of data and computational grid is to support decision making in real time applications. In this paper, the case study describes design and implementation of local and global mining of frequent item sets. The experiments were conducted on different configurations of grid network and computation time was recorded for each operation. We analyzed our result with various grid configurations and it shows speedup of computation time is almost superlinear.

Keywords: Association rule, Grid computing, Knowledge grid, Mobility prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191
6330 A Numerical Model for Simulation of Blood Flow in Vascular Networks

Authors: Houman Tamaddon, Mehrdad Behnia, Masud Behnia

Abstract:

An accurate study of blood flow is associated with an accurate vascular pattern and geometrical properties of the organ of interest. Due to the complexity of vascular networks and poor accessibility in vivo, it is challenging to reconstruct the entire vasculature of any organ experimentally. The objective of this study is to introduce an innovative approach for the reconstruction of a full vascular tree from available morphometric data. Our method consists of implementing morphometric data on those parts of the vascular tree that are smaller than the resolution of medical imaging methods. This technique reconstructs the entire arterial tree down to the capillaries. Vessels greater than 2 mm are obtained from direct volume and surface analysis using contrast enhanced computed tomography (CT). Vessels smaller than 2mm are reconstructed from available morphometric and distensibility data and rearranged by applying Murray’s Laws. Implementation of morphometric data to reconstruct the branching pattern and applying Murray’s Laws to every vessel bifurcation simultaneously, lead to an accurate vascular tree reconstruction. The reconstruction algorithm generates full arterial tree topography down to the first capillary bifurcation. Geometry of each order of the vascular tree is generated separately to minimize the construction and simulation time. The node-to-node connectivity along with the diameter and length of every vessel segment is established and order numbers, according to the diameter-defined Strahler system, are assigned. During the simulation, we used the averaged flow rate for each order to predict the pressure drop and once the pressure drop is predicted, the flow rate is corrected to match the computed pressure drop for each vessel. The final results for 3 cardiac cycles is presented and compared to the clinical data.

Keywords: Blood flow, Morphometric data, Vascular tree, Strahler ordering system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104
6329 3D Dense Correspondence for 3D Dense Morphable Face Shape Model

Authors: Tae in Seol, Sun-Tae Chung, Seongwon Cho

Abstract:

Realistic 3D face model is desired in various applications such as face recognition, games, avatars, animations, and etc. Construction of 3D face model is composed of 1) building a face shape model and 2) rendering the face shape model. Thus, building a realistic 3D face shape model is an essential step for realistic 3D face model. Recently, 3D morphable model is successfully introduced to deal with the various human face shapes. 3D dense correspondence problem should be precedently resolved for constructing a realistic 3D dense morphable face shape model. Several approaches to 3D dense correspondence problem in 3D face modeling have been proposed previously, and among them optical flow based algorithms and TPS (Thin Plate Spline) based algorithms are representative. Optical flow based algorithms require texture information of faces, which is sensitive to variation of illumination. In TPS based algorithms proposed so far, TPS process is performed on the 2D projection representation in cylindrical coordinates of the 3D face data, not directly on the 3D face data and thus errors due to distortion in data during 2D TPS process may be inevitable. In this paper, we propose a new 3D dense correspondence algorithm for 3D dense morphable face shape modeling. The proposed algorithm does not need texture information and applies TPS directly on 3D face data. Through construction procedures, it is observed that the proposed algorithm constructs realistic 3D face morphable model reliably and fast.

Keywords: 3D Dense Correspondence, 3D Morphable Face Shape Model, 3D Face Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2194
6328 Advantages of Neural Network Based Air Data Estimation for Unmanned Aerial Vehicles

Authors: Angelo Lerro, Manuela Battipede, Piero Gili, Alberto Brandl

Abstract:

Redundancy requirements for UAV (Unmanned Aerial Vehicle) are hardly faced due to the generally restricted amount of available space and allowable weight for the aircraft systems, limiting their exploitation. Essential equipment as the Air Data, Attitude and Heading Reference Systems (ADAHRS) require several external probes to measure significant data as the Angle of Attack or the Sideslip Angle. Previous research focused on the analysis of a patented technology named Smart-ADAHRS (Smart Air Data, Attitude and Heading Reference System) as an alternative method to obtain reliable and accurate estimates of the aerodynamic angles. This solution is based on an innovative sensor fusion algorithm implementing soft computing techniques and it allows to obtain a simplified inertial and air data system reducing external devices. In fact, only one external source of dynamic and static pressures is needed. This paper focuses on the benefits which would be gained by the implementation of this system in UAV applications. A simplification of the entire ADAHRS architecture will bring to reduce the overall cost together with improved safety performance. Smart-ADAHRS has currently reached Technology Readiness Level (TRL) 6. Real flight tests took place on ultralight aircraft equipped with a suitable Flight Test Instrumentation (FTI). The output of the algorithm using the flight test measurements demonstrates the capability for this fusion algorithm to embed in a single device multiple physical and virtual sensors. Any source of dynamic and static pressure can be integrated with this system gaining a significant improvement in terms of versatility.

Keywords: Neural network, aerodynamic angles, virtual sensor, unmanned aerial vehicle, air data system, flight test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1026
6327 Place Recommendation Using Location-Based Services and Real-time Social Network Data

Authors: Kanda Runapongsa Saikaew, Patcharaporn Jiranuwattanawong, Patinya Taearak

Abstract:

Currently, there is excessively growing information about places on Facebook, which is the largest social network but such information is not explicitly organized and ranked. Therefore users cannot exploit such data to recommend places conveniently and quickly. This paper proposes a Facebook application and an Android application that recommend places based on the number of check-ins of those places, the distance of those places from the current location, the number of people who like Facebook page of those places, and the number of talking about of those places. Related Facebook data is gathered via Facebook API requests. The experimental results of the developed applications show that the applications can recommend places and rank interesting places from the most to the least. We have found that the average satisfied score of the proposed Facebook application is 4.8 out of 5. The users’ satisfaction can increase by adding the app features that support personalization in terms of interests and preferences.

Keywords: Mobile computing, location-based services, recommendation system, social network analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785
6326 Analysis of Sequence Moves in Successful Chess Openings Using Data Mining with Association Rules

Authors: R.M.Rani

Abstract:

Chess is one of the indoor games, which improves the level of human confidence, concentration, planning skills and knowledge. The main objective of this paper is to help the chess players to improve their chess openings using data mining techniques. Budding Chess Players usually do practices by analyzing various existing openings. When they analyze and correlate thousands of openings it becomes tedious and complex for them. The work done in this paper is to analyze the best lines of Blackmar- Diemer Gambit(BDG) which opens with White D4... using data mining analysis. It is carried out on the collection of winning games by applying association rules. The first step of this analysis is assigning variables to each different sequence moves. In the second step, the sequence association rules were generated to calculate support and confidence factor which help us to find the best subsequence chess moves that may lead to winning position.

Keywords: Blackmar-Diemer Gambit(BDG), Confidence, sequence Association Rules, Support.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3097
6325 Efficient STAKCERT KDD Processes in Worm Detection

Authors: Madihah Mohd Saudi, Andrea J Cullen, Mike E Woodward

Abstract:

This paper presents a new STAKCERT KDD processes for worm detection. The enhancement introduced in the data-preprocessing resulted in the formation of a new STAKCERT model for worm detection. In this paper we explained in detail how all the processes involved in the STAKCERT KDD processes are applied within the STAKCERT model for worm detection. Based on the experiment conducted, the STAKCERT model yielded a 98.13% accuracy rate for worm detection by integrating the STAKCERT KDD processes.

Keywords: data mining, incident response, KDD processes, security metrics and worm detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
6324 Entropy Based Data Hiding for Document Images

Authors: Swetha Kurup, Sridhar G., Sridhar V.

Abstract:

In this paper we present a novel technique for data hiding in binary document images. We use the concept of entropy in order to identify document specific least distortive areas throughout the binary document image. The document image is treated as any other image and the proposed method utilizes the standard document characteristics for the embedding process. Proposed method minimizes perceptual distortion due to embedding and allows watermark extraction without the requirement of any side information at the decoder end.

Keywords: Entropy, Steganography, Watermarking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534
6323 Context Generation with Image Based Sensors: An Interdisciplinary Enquiry on Technical and Social Issues and their Implications for System Design

Authors: Julia Moehrmann, Gunter Heidemann, Oliver Siemoneit, Christoph Hubig, Uwe-Philipp Kaeppeler, Paul Levi

Abstract:

Image data holds a large amount of different context information. However, as of today, these resources remain largely untouched. It is thus the aim of this paper to present a basic technical framework which allows for a quick and easy exploitation of context information from image data especially by non-expert users. Furthermore, the proposed framework is discussed in detail concerning important social and ethical issues which demand special requirements in system design. Finally, a first sensor prototype is presented which meets the identified requirements. Additionally, necessary implications for the software and hardware design of the system are discussed, rendering a sensor system which could be regarded as a good, acceptable and justifiable technical and thereby enabling the extraction of context information from image data.

Keywords: Context-aware computing, ethical and social issues, image recognition, requirements in system design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673
6322 COVID_ICU_BERT: A Fine-tuned Language Model for COVID-19 Intensive Care Unit Clinical Notes

Authors: Shahad Nagoor, Lucy Hederman, Kevin Koidl, Annalina Caputo

Abstract:

Doctors’ notes reflect their impressions, attitudes, clinical sense, and opinions about patients’ conditions and progress, and other information that is essential for doctors’ daily clinical decisions. Despite their value, clinical notes are insufficiently researched within the language processing community. Automatically extracting information from unstructured text data is known to be a difficult task as opposed to dealing with structured information such as physiological vital signs, images and laboratory results. The aim of this research is to investigate how Natural Language Processing (NLP) techniques and machine learning techniques applied to clinician notes can assist in doctors’ decision making in Intensive Care Unit (ICU) for coronavirus disease 2019 (COVID-19) patients. The hypothesis is that clinical outcomes like survival or mortality can be useful to influence the judgement of clinical sentiment in ICU clinical notes. This paper presents two contributions: first, we introduce COVID_ICU_BERT, a fine-tuned version of a clinical transformer model that can reliably predict clinical sentiment for notes of COVID patients in ICU. We train the model on clinical notes for COVID-19 patients, ones not previously seen by Bio_ClinicalBERT or Bio_Discharge_Summary_BERT. The model which was based on Bio_ClinicalBERT achieves higher predictive accuracy than the one based on Bio_Discharge_Summary_BERT (Acc 93.33%, AUC 0.98, and Precision 0.96). Second, we perform data augmentation using clinical contextual word embedding that is based on a pre-trained clinical model to balance the samples in each class in the data (survived vs. deceased patients). Data augmentation improves the accuracy of prediction slightly (Acc 96.67%, AUC 0.98, and Precision 0.92).

Keywords: BERT fine-tuning, clinical sentiment, COVID-19, data augmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 286
6321 Lithofacies Classification from Well Log Data Using Neural Networks, Interval Neutrosophic Sets and Quantification of Uncertainty

Authors: Pawalai Kraipeerapun, Chun Che Fung, Kok Wai Wong

Abstract:

This paper proposes a novel approach to the question of lithofacies classification based on an assessment of the uncertainty in the classification results. The proposed approach has multiple neural networks (NN), and interval neutrosophic sets (INS) are used to classify the input well log data into outputs of multiple classes of lithofacies. A pair of n-class neural networks are used to predict n-degree of truth memberships and n-degree of false memberships. Indeterminacy memberships or uncertainties in the predictions are estimated using a multidimensional interpolation method. These three memberships form the INS used to support the confidence in results of multiclass classification. Based on the experimental data, our approach improves the classification performance as compared to an existing technique applied only to the truth membership. In addition, our approach has the capability to provide a measure of uncertainty in the problem of multiclass classification.

Keywords: Multiclass classification, feed-forward backpropagation neural network, interval neutrosophic sets, uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
6320 The Role of Mobile Technology in Surveillance of Adverse Events Following Immunization during New Vaccines Introduction in Cameroon: A Cross-Sectional Study

Authors: A. A. Njoh, S. T. Ndoula, A. Adidja, G. N. Menan, A. Mengue, E. Mboke, H. B. Bachir, S. C. Nchinjoh, L. Adisso, Y. Saidu, L. Cleenewerck de Kiev

Abstract:

Vaccines serve a great deal in protecting the population globally. Vaccine products are subject to rigorous quality control and approval before use to ensure safety. Even if all actors take the required precautions, some people could still have adverse events following immunization (AEFI) caused by the vaccine composition or an error in its administration. AEFI underreporting is pronounced in low-income settings like Cameroon. The Country introduced electronic platforms to strengthen surveillance. With the introduction of many novel vaccines, like COVID-19 and the novel Oral Polio Vaccine (nOPV) 2, there was a need to monitor AEFI in Cameroon. A cross-sectional study was conducted from July to December 2022. Data on AEFI per region of Cameroon were reviewed for the previous five years. Data were analyzed with MS Excel, and the results were presented in proportions. AEFI reporting was uncommon in Cameroon. With the introduction of novel vaccines in 2021, the health authorities engaged in new tools and training to capture cases. AEFI detected almost doubled using the open data kit (ODK) compared to previous platforms, especially following the introduction of the nOPV2 and COVID-19 vaccines. The AEFI rate was 1.9 and 160 per administered 100,000 doses of nOPV2 and COVID-19 vaccines, respectively. This mobile tool captured individual information for people with AEFI from all regions. The platform helped to identify common AEFI following the use of these new vaccines. The ODK mobile technology was vital in improving AEFI reporting and providing data to monitor the use of new vaccines in Cameroon.

Keywords: Adverse events following immunization, AEFI, Cameroon, COVID-19 vaccines, novel oral polio vaccine 2, open data kit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 185
6319 Geopotential Models Evaluation in Algeria Using Stochastic Method, GPS/Leveling and Topographic Data

Authors: M. A. Meslem

Abstract:

For precise geoid determination, we use a reference field to subtract long and medium wavelength of the gravity field from observations data when we use the remove-compute-restore technique. Therefore, a comparison study between considered models should be made in order to select the optimal reference gravity field to be used. In this context, two recent global geopotential models have been selected to perform this comparison study over Northern Algeria. The Earth Gravitational Model (EGM2008) and the Global Gravity Model (GECO) conceived with a combination of the first model with anomalous potential derived from a GOCE satellite-only global model. Free air gravity anomalies in the area under study have been used to compute residual data using both gravity field models and a Digital Terrain Model (DTM) to subtract the residual terrain effect from the gravity observations. Residual data were used to generate local empirical covariance functions and their fitting to the closed form in order to compare their statistical behaviors according to both cases. Finally, height anomalies were computed from both geopotential models and compared to a set of GPS levelled points on benchmarks using least squares adjustment. The result described in details in this paper regarding these two models has pointed out a slight advantage of GECO global model globally through error degree variances comparison and ground-truth evaluation.

Keywords: Quasigeoid, gravity anomalies, covariance, GGM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 906
6318 Arduino Pressure Sensor Cushion for Tracking and Improving Sitting Posture

Authors: Andrew Hwang

Abstract:

The average American worker sits for thirteen hours a day, often with poor posture and infrequent breaks, which can lead to health issues and back problems. The Smart Cushion was created to alert individuals of their poor postures, and may potentially alleviate back problems and correct poor posture. The Smart Cushion is a portable, rectangular, foam cushion, with five strategically placed pressure sensors, that utilizes an Arduino Uno circuit board and specifically designed software, allowing it to collect data from the five pressure sensors and store the data on an SD card. The data is then compiled into graphs and compared to controlled postures. Before volunteers sat on the cushion, their levels of back pain were recorded on a scale from 1-10. Data was recorded for an hour during sitting, and then a new, corrected posture was suggested. After using the suggested posture for an hour, the volunteers described their level of discomfort on a scale from 1-10. Different patterns of sitting postures were generated that were able to serve as early warnings of potential back problems. By using the Smart Cushion, the areas where different volunteers were applying the most pressure while sitting could be identified, and the sitting postures could be corrected. Further studies regarding the relationships between posture and specific regions of the body are necessary to better understand the origins of back pain; however, the Smart Cushion is sufficient for correcting sitting posture and preventing the development of additional back pain.

Keywords: Arduino Sketch Algorithm, biomedical technology, pressure sensors, Smart Cushion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1306
6317 Generating Arabic Fonts Using Rational Cubic Ball Functions

Authors: Fakharuddin Ibrahim, Jamaludin Md. Ali, Ahmad Ramli

Abstract:

In this paper, we will discuss about the data interpolation by using the rational cubic Ball curve. To generate a curve with a better and satisfactory smoothness, the curve segments must be connected with a certain amount of continuity. The continuity that we will consider is of type G1 continuity. The conditions considered are known as the G1 Hermite condition. A simple application of the proposed method is to generate an Arabic font satisfying the required continuity.

Keywords: Continuity, data interpolation, Hermite condition, rational Ball curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
6316 A Fully-Automated Disturbance Analysis Vision for the Smart Grid Based on Smart Switch Data

Authors: Bernardo Cedano, Ahmed H. Eltom, Bob Hay, Jim Glass, Raga Ahmed

Abstract:

The deployment of smart grid devices such as smart meters and smart switches (SS) supported by a reliable and fast communications system makes automated distribution possible, and thus, provides great benefits to electric power consumers and providers alike. However, more research is needed before the full utility of smart switch data is realized. This paper presents new automated switching techniques using SS within the electric power grid. A concise background of the SS is provided, and operational examples are shown. Organization and presentation of data obtained from SS are shown in the context of the future goal of total automation of the distribution network. The description of application techniques, the examples of success with SS, and the vision outlined in this paper serve to motivate future research pertinent to disturbance analysis automation.

Keywords: Disturbance automation, electric power grid, smart grid, smart switch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1003
6315 Predicting Dietary Practice Behavior among Type 2 Diabetics Using the Theory of Planned Behavior and Mixed Methods Design

Authors: D.O. Omondi, M.K. Walingo, G.M. Mbagaya, L.O.A. Othuon

Abstract:

This study applied the Theory of Planned Behavior model in predicting dietary behavior among Type 2 diabetics in a Kenyan environment. The study was conducted for three months within the diabetic clinic at Kisii Hospital in Nyanza Province in Kenya and adopted sequential mixed methods design combing both qualitative and quantitative phases. Qualitative data was analyzed using grounded theory analysis method. Structural equation modeling using maximum likelihood was used to analyze quantitative data. The results based on the common fit indices revealed that the theory of planned behavior fitted the data acceptably well among the Type 2 diabetes and within dietary behavior {χ2 = 223.3, df = 77, p = .02, χ2/df = 2.9, n=237; TLI = .93; CFI =.91; RMSEA (90CI) = .090(.039, .146)}. This implies that the Theory of Planned Behavior holds and forms a framework for promoting dietary practice among Type 2 diabetics.

Keywords: Dietary practice, Kenya, Theory of PlannedBehavior, Type 2 diabetes, Mixed Methods Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2101
6314 Computer Software Applicable in Rehabilitation, Cardiology and Molecular Biology

Authors: P. Kowalska, P. Gabka, K. Kamieniarz, M. Kamieniarz, W. Stryla, P. Guzik, T. Krauze

Abstract:

We have developed a computer program consisting of 6 subtests assessing the children hand dexterity applicable in the rehabilitation medicine. We have carried out a normative study on a representative sample of 285 children aged from 7 to 15 (mean age 11.3) and we have proposed clinical standards for three age groups (7-9, 9-11, 12-15 years). We have shown statistical significance of differences among the corresponding mean values of the task time completion. We have also found a strong correlation between the task time completion and the age of the subjects, as well as we have performed the test-retest reliability checks in the sample of 84 children, giving the high values of the Pearson coefficients for the dominant and non-dominant hand in the range 0.740.97 and 0.620.93, respectively. A new MATLAB-based programming tool aiming at analysis of cardiologic RR intervals and blood pressure descriptors, is worked out, too. For each set of data, ten different parameters are extracted: 2 in time domain, 4 in frequency domain and 4 in Poincaré plot analysis. In addition twelve different parameters of baroreflex sensitivity are calculated. All these data sets can be visualized in time domain together with their power spectra and Poincaré plots. If available, the respiratory oscillation curves can be also plotted for comparison. Another application processes biological data obtained from BLAST analysis.

Keywords: Biomedical data base processing, Computer software, Hand dexterity, Heart rate and blood pressure variability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477