Search results for: Body images
885 Defect Detection of Tiles Using 2D-Wavelet Transform and Statistical Features
Authors: M.Ghazvini, S. A. Monadjemi, N. Movahhedinia, K. Jamshidi
Abstract:
In this article, a method has been offered to classify normal and defective tiles using wavelet transform and artificial neural networks. The proposed algorithm calculates max and min medians as well as the standard deviation and average of detail images obtained from wavelet filters, then comes by feature vectors and attempts to classify the given tile using a Perceptron neural network with a single hidden layer. In this study along with the proposal of using median of optimum points as the basic feature and its comparison with the rest of the statistical features in the wavelet field, the relational advantages of Haar wavelet is investigated. This method has been experimented on a number of various tile designs and in average, it has been valid for over 90% of the cases. Amongst the other advantages, high speed and low calculating load are prominent.Keywords: Defect detection, tile and ceramic quality inspection, wavelet transform, classification, neural networks, statistical features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2381884 Development of a Miniature and Low-Cost IoT-Based Remote Health Monitoring Device
Authors: Sreejith Jayachandran, Mojtaba Ghodsi, Morteza Mohammadzaheri
Abstract:
The modern busy world is running behind new embedded technologies based on computers and software meanwhile some people are unable to monitor their health condition and regular medical check-ups. Some of them postpone medical check-ups due to a lack of time and convenience while others skip these regular evaluations and medical examinations due to huge medical bills and hospital expenses. In this research, we present a device in the telemonitoring system capable of monitoring, checking, and evaluating the health status of the human body remotely through the internet for the needs of all kinds of people. The remote health monitoring device is a microcontroller-based embedded unit. The various types of sensors in this device are connected to the human body, and with the help of an Arduino UNO board, the required analogue data are collected from the sensors. The microcontroller on the Arduino board processes the analogue data collected in this way into digital data and transfers that information to the cloud and stores it there; the processed digital data are then instantly displayed through the LCD attached to the machine. By accessing the cloud storage with a username and password, the concerned person’s health care teams/doctors, and other health staff can collect these data for the assessment and follow-up of that patient. Besides that, the family members/guardians can use and evaluate these data for awareness of the patient's current health status. Moreover, the system is connected to a GPS module. In emergencies, the concerned team can be positioning the patient or the person with this device. The setup continuously evaluates and transfers the data to the cloud and also the user can prefix a normal value range for the evaluation. For example, the blood pressure normal value is universally prefixed between 80/120 mmHg. Similarly, the Remote Health Monitoring System (RHMS) is also allowed to fix the range of values referred to as normal coefficients. This IoT-based miniature system 11×10×10 cm3 with a low weight of 500 gr only consumes 10 mW. This smart monitoring system is manufactured for 100 GBP (British Pound Sterling), and can facilitate the communication between patients and health systems, but also it can be employed for numerous other uses including communication sectors in the aerospace and transportation systems.
Keywords: Embedded Technology, Telemonitoring system, Microcontroller, Arduino UNO, Cloud storage, GPS, RHMS, Remote Health Monitoring System, Alert system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 272883 Real Time Video Based Smoke Detection Using Double Optical Flow Estimation
Authors: Anton Stadler, Thorsten Ike
Abstract:
In this paper, we present a video based smoke detection algorithm based on TVL1 optical flow estimation. The main part of the algorithm is an accumulating system for motion angles and upward motion speed of the flow field. We optimized the usage of TVL1 flow estimation for the detection of smoke with very low smoke density. Therefore, we use adapted flow parameters and estimate the flow field on difference images. We show in theory and in evaluation that this improves the performance of smoke detection significantly. We evaluate the smoke algorithm using videos with different smoke densities and different backgrounds. We show that smoke detection is very reliable in varying scenarios. Further we verify that our algorithm is very robust towards crowded scenes disturbance videos.Keywords: Low density, optical flow, upward smoke motion, video based smoke detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423882 Indicator of Small Calcification Detection in Ultrasonography using Decorrelation of Forward Scattered Waves
Authors: Hirofumi Taki, Takuya Sakamoto, Makoto Yamakawa, Tsuyoshi Shiina, Toru Sato
Abstract:
For the improvement of the ability in detecting small calcifications using Ultrasonography (US) we propose a novel indicator of calcifications in an ultrasound B-mode image without decrease in frame rate. Since the waveform of an ultrasound pulse changes at a calcification position, the decorrelation of adjacent scan lines occurs behind a calcification. Therefore, we employ the decorrelation of adjacent scan lines as an indicator of a calcification. The proposed indicator depicted wires 0.05 mm in diameter at 2 cm depth with a sensitivity of 86.7% and a specificity of 100%, which were hardly detected in ultrasound B-mode images. This study shows the potential of the proposed indicator to approximate the detectable calcification size using an US device to that of an X-ray imager, implying the possibility that an US device will become a convenient, safe, and principal clinical tool for the screening of breast cancer.Keywords: Ultrasonography, Calcification, Decorrelation, Forward scattered wave
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454881 The Survey and the Comparison of Maximum Likelihood, Mahalanobis Distance and Minimum Distance Methods in Preparing Landuse Map in the Western Part of Isfahan Province
Authors: Ali Gholami, M.Esfadiari, M.H.Masihabadi
Abstract:
In this research three methods of Maximum Likelihood, Mahalanobis Distance and Minimum Distance were analyzed in the Western part of Isfahan province in the Iran country. For this purpose, the IRS satellite images and various land preparation uses in region including rangelands, irrigation farming, dry farming, gardens and urban areas were separated and identified. In these methods, matrix error and Kappa index were calculated and accuracy of each method, based on percentages: 53.13, 56.64 and 48.44, were obtained respectively. Considering the low accuracy of these methods to separate land uses due to spread of the land uses, it-s suggested the visual interpretation of the map, to preparing the land use map in this region. The map prepared by visual interpretation is in high accuracy if it will be accompany with the visit of the region.
Keywords: Aghche Region, land use map, MaximumLikelihood, Mahalanobis Distance and Minimum Distance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827880 Detection and Analysis of Deficiencies in Groundnut Plant using Geometric Moments
Authors: Sumeet S. Nisale, Chandan J. Bharambe, Vidya N.More
Abstract:
We propose our genuine research of geometric moments which detects the mineral inadequacy in the frail groundnut plant. This plant is prone to many deficiencies as a result of the variance in the soil nutrients. By analyzing the leaves of the plant, we detect the visual symptoms that are not recognizable to the naked eyes. We have collected about 160 samples of leaves from the nearby fields. The images have been taken by keeping every leaf into a black box to avoid the external interference. For the first time, it has been possible to provide the farmer with the stages of deficiencies. This paper has applied the algorithms successfully to many other plants like Lady-s finger, Green Bean, Lablab Bean, Chilli and Tomato. But we submit the results of the groundnut predominantly. The accuracy of our algorithm and method is almost 93%. This will again pioneer a kind of green revolution in the field of agriculture and will be a boon to that field.Keywords: Component image, geometric moments, average intensity, average affected area, black box
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2134879 Multimedia E-Books for Digital Mechanism and Gear Library
Authors: Rike Brecht, Heidi Krömker, Adrian Kühlewind
Abstract:
This paper presents a digital engineering library – the Digital Mechanism and Gear Library, DMG-Lib – providing a multimedia collection of e-books, pictures, videos and animations in the domain of mechanisms and machines. The specific characteristic about DMG-Lib is the enrichment and cross-linking of the different sources. DMG-Lib e-books not only present pages as pixel images but also selected figures augmented with interactive animations. The presentation of animations in e-books increases the clearness of the information. To present the multimedia e-books and make them available in the DMG-Lib internet portal a special e-book reader called StreamBook was developed for optimal presentation of digitized books and to enable reading the e-books as well as working efficiently and individually with the enriched information. The objective is to support different user tasks ranging from information retrieval to development and design of mechanisms.Keywords: E-books, digital library, multimedia, enrichment and cross-linking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633878 Detection of Moving Images Using Neural Network
Authors: P. Latha, L. Ganesan, N. Ramaraj, P. V. Hari Venkatesh
Abstract:
Motion detection is a basic operation in the selection of significant segments of the video signals. For an effective Human Computer Intelligent Interaction, the computer needs to recognize the motion and track the moving object. Here an efficient neural network system is proposed for motion detection from the static background. This method mainly consists of four parts like Frame Separation, Rough Motion Detection, Network Formation and Training, Object Tracking. This paper can be used to verify real time detections in such a way that it can be used in defense applications, bio-medical applications and robotics. This can also be used for obtaining detection information related to the size, location and direction of motion of moving objects for assessment purposes. The time taken for video tracking by this Neural Network is only few seconds.
Keywords: Frame separation, Correlation Network, Neural network training, Radial Basis Function, object tracking, Motion Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3154877 Intelligent System for Breast Cancer Prognosis using Multiwavelet Packets and Neural Network
Authors: Sepehr M.H.Jamarani, M.H.Moradi, H.Behnam, G.A.Rezai Rad
Abstract:
This paper presents an approach for early breast cancer diagnostic by employing combination of artificial neural networks (ANN) and multiwaveletpacket based subband image decomposition. The microcalcifications correspond to high-frequency components of the image spectrum, detection of microcalcifications is achieved by decomposing the mammograms into different frequency subbands,, reconstructing the mammograms from the subbands containing only high frequencies. For this approach we employed different types of multiwaveletpacket. We used the result as an input of neural network for classification. The proposed methodology is tested using the Nijmegen and the Mammographic Image Analysis Society (MIAS) mammographic databases and images collected from local hospitals. Results are presented as the receiver operating characteristic (ROC) performance and are quantified by the area under the ROC curve.Keywords: Breast cancer, neural networks, diagnosis, multiwavelet packet, microcalcification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404876 Active Contours with Prior Corner Detection
Authors: U.A.A. Niroshika, Ravinda G.N. Meegama
Abstract:
Deformable active contours are widely used in computer vision and image processing applications for image segmentation, especially in biomedical image analysis. The active contour or “snake" deforms towards a target object by controlling the internal, image and constraint forces. However, if the contour initialized with a lesser number of control points, there is a high probability of surpassing the sharp corners of the object during deformation of the contour. In this paper, a new technique is proposed to construct the initial contour by incorporating prior knowledge of significant corners of the object detected using the Harris operator. This new reconstructed contour begins to deform, by attracting the snake towards the targeted object, without missing the corners. Experimental results with several synthetic images show the ability of the new technique to deal with sharp corners with a high accuracy than traditional methods.Keywords: Active Contours, Image Segmentation, Harris Operator, Snakes
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2284875 Face Recognition Using Morphological Shared-weight Neural Networks
Authors: Hossein Sahoolizadeh, Mahdi Rahimi, Hamid Dehghani
Abstract:
We introduce an algorithm based on the morphological shared-weight neural network. Being nonlinear and translation-invariant, the MSNN can be used to create better generalization during face recognition. Feature extraction is performed on grayscale images using hit-miss transforms that are independent of gray-level shifts. The output is then learned by interacting with the classification process. The feature extraction and classification networks are trained together, allowing the MSNN to simultaneously learn feature extraction and classification for a face. For evaluation, we test for robustness under variations in gray levels and noise while varying the network-s configuration to optimize recognition efficiency and processing time. Results show that the MSNN performs better for grayscale image pattern classification than ordinary neural networks.Keywords: Face recognition, Neural Networks, Multi-layer Perceptron, masking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521874 Adaptive Gaussian Mixture Model for Skin Color Segmentation
Authors: Reza Hassanpour, Asadollah Shahbahrami, Stephan Wong
Abstract:
Skin color based tracking techniques often assume a static skin color model obtained either from an offline set of library images or the first few frames of a video stream. These models can show a weak performance in presence of changing lighting or imaging conditions. We propose an adaptive skin color model based on the Gaussian mixture model to handle the changing conditions. Initial estimation of the number and weights of skin color clusters are obtained using a modified form of the general Expectation maximization algorithm, The model adapts to changes in imaging conditions and refines the model parameters dynamically using spatial and temporal constraints. Experimental results show that the method can be used in effectively tracking of hand and face regions.Keywords: Face detection, Segmentation, Tracking, Gaussian Mixture Model, Adaptation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2418873 A Hybrid Approach for Color Image Quantization Using K-means and Firefly Algorithms
Authors: Parisut Jitpakdee, Pakinee Aimmanee, Bunyarit Uyyanonvara
Abstract:
Color Image quantization (CQ) is an important problem in computer graphics, image and processing. The aim of quantization is to reduce colors in an image with minimum distortion. Clustering is a widely used technique for color quantization; all colors in an image are grouped to small clusters. In this paper, we proposed a new hybrid approach for color quantization using firefly algorithm (FA) and K-means algorithm. Firefly algorithm is a swarmbased algorithm that can be used for solving optimization problems. The proposed method can overcome the drawbacks of both algorithms such as the local optima converge problem in K-means and the early converge of firefly algorithm. Experiments on three commonly used images and the comparison results shows that the proposed algorithm surpasses both the base-line technique k-means clustering and original firefly algorithm.Keywords: Clustering, Color quantization, Firefly algorithm, Kmeans.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2223872 Inter-frame Collusion Attack in SS-N Video Watermarking System
Authors: Yaser Mohammad Taheri, Alireza Zolghadr–asli, Mehran Yazdi
Abstract:
Video watermarking is usually considered as watermarking of a set of still images. In frame-by-frame watermarking approach, each video frame is seen as a single watermarked image, so collusion attack is more critical in video watermarking. If the same or redundant watermark is used for embedding in every frame of video, the watermark can be estimated and then removed by watermark estimate remodolulation (WER) attack. Also if uncorrelated watermarks are used for every frame, these watermarks can be washed out with frame temporal filtering (FTF). Switching watermark system or so-called SS-N system has better performance against WER and FTF attacks. In this system, for each frame, the watermark is randomly picked up from a finite pool of watermark patterns. At first SS-N system will be surveyed and then a new collusion attack for SS-N system will be proposed using a new algorithm for separating video frame based on watermark pattern. So N sets will be built in which every set contains frames carrying the same watermark. After that, using WER attack in every set, N different watermark patterns will be estimated and removed later.
Keywords: Watermark estimation remodulation (WER), Frame Temporal Averaging (FTF), switching watermark system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500871 Dynamic Clustering using Particle Swarm Optimization with Application in Unsupervised Image Classification
Authors: Mahamed G.H. Omran, Andries P Engelbrecht, Ayed Salman
Abstract:
A new dynamic clustering approach (DCPSO), based on Particle Swarm Optimization, is proposed. This approach is applied to unsupervised image classification. The proposed approach automatically determines the "optimum" number of clusters and simultaneously clusters the data set with minimal user interference. The algorithm starts by partitioning the data set into a relatively large number of clusters to reduce the effects of initial conditions. Using binary particle swarm optimization the "best" number of clusters is selected. The centers of the chosen clusters is then refined via the Kmeans clustering algorithm. The experiments conducted show that the proposed approach generally found the "optimum" number of clusters on the tested images.Keywords: Clustering Validation, Particle Swarm Optimization, Unsupervised Clustering, Unsupervised Image Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2457870 Attention Multiple Instance Learning for Cancer Tissue Classification in Digital Histopathology Images
Authors: Afaf Alharbi, Qianni Zhang
Abstract:
The identification of malignant tissue in histopathological slides holds significant importance in both clinical settings and pathology research. This paper presents a methodology aimed at automatically categorizing cancerous tissue through the utilization of a multiple instance learning framework. This framework is specifically developed to acquire knowledge of the Bernoulli distribution of the bag label probability by employing neural networks. Furthermore, we put forward a neural network-based permutation-invariant aggregation operator, equivalent to attention mechanisms, which is applied to the multi-instance learning network. Through empirical evaluation on an openly available colon cancer histopathology dataset, we provide evidence that our approach surpasses various conventional deep learning methods.
Keywords: Attention Multiple Instance Learning, Multiple Instance Learning, transfer learning, histopathological slides, cancer tissue classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 249869 Labeling Method in Steganography
Authors: H. Motameni, M. Norouzi, M. Jahandar, A. Hatami
Abstract:
In this paper a way of hiding text message (Steganography) in the gray image has been presented. In this method tried to find binary value of each character of text message and then in the next stage, tried to find dark places of gray image (black) by converting the original image to binary image for labeling each object of image by considering on 8 connectivity. Then these images have been converted to RGB image in order to find dark places. Because in this way each sequence of gray color turns into RGB color and dark level of grey image is found by this way if the Gary image is very light the histogram must be changed manually to find just dark places. In the final stage each 8 pixels of dark places has been considered as a byte and binary value of each character has been put in low bit of each byte that was created manually by dark places pixels for increasing security of the main way of steganography (LSB).
Keywords: Binary image, labeling, low bit, neighborhood, RGB image, steganography, threshold.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2142868 Test Method Development for Evaluation of Process and Design Effect on Reinforced Tube
Authors: Cathal Merz, Gareth O’Donnell
Abstract:
Coil reinforced thin-walled (CRTW) tubes are used in medicine to treat problems affecting blood vessels within the body through minimally invasive procedures. The CRTW tube considered in this research makes up part of such a device and is inserted into the patient via their femoral or brachial arteries and manually navigated to the site in need of treatment. This procedure replaces the requirement to perform open surgery but is limited by reduction of blood vessel lumen diameter and increase in tortuosity of blood vessels deep in the brain. In order to maximize the capability of these procedures, CRTW tube devices are being manufactured with decreasing wall thicknesses in order to deliver treatment deeper into the body and to allow passage of other devices through its inner diameter. This introduces significant stresses to the device materials which have resulted in an observed increase in the breaking of the proximal segment of the device into two separate pieces after it has failed by buckling. As there is currently no international standard for measuring the mechanical properties of these CRTW tube devices, it is difficult to accurately analyze this problem. The aim of the current work is to address this discrepancy in the biomedical device industry by developing a measurement system that can be used to quantify the effect of process and design changes on CRTW tube performance, aiding in the development of better performing, next generation devices. Using materials testing frames, micro-computed tomography (micro-CT) imaging, experiment planning, analysis of variance (ANOVA), T-tests and regression analysis, test methods have been developed for assessing the impact of process and design changes on the device. The major findings of this study have been an insight into the suitability of buckle and three-point bend tests for the measurement of the effect of varying processing factors on the device’s performance, and guidelines for interpreting the output data from the test methods. The findings of this study are of significant interest with respect to verifying and validating key process and design changes associated with the device structure and material condition. Test method integrity evaluation is explored throughout.
Keywords: Buckling, coil reinforced thin-walled tubes, fracture, test method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 705867 Computer Generated Hologram for SemiFragile Watermarking with Encrypted Images
Authors: G. Schirripa Spagnolo, M. De Santis
Abstract:
The protection of the contents of digital products is referred to as content authentication. In some applications, to be able to authenticate a digital product could be extremely essential. For example, if a digital product is used as a piece of evidence in the court, its integrity could mean life or death of the accused. Generally, the problem of content authentication can be solved using semifragile digital watermarking techniques. Recently many authors have proposed Computer Generated Hologram Watermarking (CGHWatermarking) techniques. Starting from these studies, in this paper a semi-fragile Computer Generated Hologram coding technique is proposed, which is able to detect malicious tampering while tolerating some incidental distortions. The proposed technique uses as watermark an encrypted image, and it is well suitable for digital image authentication.Keywords: Asymmetric cryptography, Semi-Fragile watermarking, Image authentication, Hologram watermark, Public- Key Cryptography, RSA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612866 Changes in Amino Acids Content in Muscle of European Eel (Anguilla anguilla) in Relation to Body Size
Authors: L. Gómez-Limia, I. Franco, T. Blanco, S. Martínez
Abstract:
European eels (Anguilla anguilla) belong to Anguilliformes order and Anguillidae family. They are generally classified as warm-water fish. Eels have a great commercial value in Europe and Asian countries. Eels can reach high weights, although their commercial size is relatively low in some countries. The capture of larger eels would facilitate the recovery of the species, as well as having a greater number of either glass eels or elvers for aquaculture. In the last years, the demand and the price of eels have increased significantly. However, European eel is considered critically endangered by the International Union for the Conservation of Nature (IUCN) Red List. The biochemical composition of fishes is an important aspect of quality and affects the nutritional value and consumption quality of fish. In addition, knowing this composition can help predict an individual’s condition for their recovery. Fish is known to be important source of protein rich in essential amino acids. However, there is very little information about changes in amino acids composition of European eels with increase in size. The aim of this study was to evaluate the effect of two different weight categories on the amino acids content in muscle tissue of wild European eels. European eels were caught in River Ulla (Galicia, NW Spain), during winter. The eels were slaughtered in ice water immersion. Then, they were purchased and transferred to the laboratory. The eels were subdivided into two groups, according to the weight. The samples were kept frozen (-20 °C) until their analysis. Frozen eels were defrosted and the white muscle between the head and the anal hole. was extracted, in order to obtain amino acids composition. Thirty eels for each group were used. Liquid chromatography was used for separation and quantification of amino a cids. The results conclude that the eels are rich in glutamic acid, leucine, lysine, threonine, valine, isoleucine and phenylalanine. The analysis showed that there are significant differences (p < 0.05) among the eels with different sizes. Histidine, threonine, lysine, hydroxyproline, serine, glycine, arginine, alanine and proline were higher in small eels. European eels muscle presents between 45 and 46% of essential amino acids in the total amino acids. European eels have a well-balanced and high quality protein source in the respect of E/NE ratio. However, eels with higher weight showed a better ratio of essential and non-essential amino acid.
Keywords: European eels, amino acids, HPLC, body size.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 842865 An Automated Method to Segment and Classify Masses in Mammograms
Authors: Viet Dzung Nguyen, Duc Thuan Nguyen, Tien Dzung Nguyen, Van Thanh Pham
Abstract:
Mammography is the most effective procedure for an early diagnosis of the breast cancer. Nowadays, people are trying to find a way or method to support as much as possible to the radiologists in diagnosis process. The most popular way is now being developed is using Computer-Aided Detection (CAD) system to process the digital mammograms and prompt the suspicious region to radiologist. In this paper, an automated CAD system for detection and classification of massive lesions in mammographic images is presented. The system consists of three processing steps: Regions-Of- Interest detection, feature extraction and classification. Our CAD system was evaluated on Mini-MIAS database consisting 322 digitalized mammograms. The CAD system-s performance is evaluated using Receiver Operating Characteristics (ROC) and Freeresponse ROC (FROC) curves. The archived results are 3.47 false positives per image (FPpI) and sensitivity of 85%.Keywords: classification, computer-aided detection, featureextraction, mass detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662864 Foot Recognition Using Deep Learning for Knee Rehabilitation
Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia
Abstract:
The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.Keywords: Convolutional neural networks, deep learning, foot recognition, knee rehabilitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443863 PIL Theory
Authors: A. Peveri
Abstract:
The curvature space-time by the presence of material, this deformation must present a pattern of deformation, not random. Space is uniform, elastic and any modification that occurs in one part, causes a change in another.
This deformation exists, must be a constant value and is independent of the observer, and relates the amount of matter, the force caused by the curvature of space and surface space. This unit of space is defined in this study as PIL and represents a constant area of space, deformable in the direction and sense of the center of mass of the body. The PIL is curved and connected to the center of mass of the Earth, to get to that point, through all matter, thus forming part of any place between particles at atomic and subatomic levels. At these levels the space between each particle is flat, unlike the macro where the space curves.
Keywords: Space flat, Space curved, Unit of space, Deformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520862 Error Effects on SAR Image Resolution using Range Doppler Imaging Algorithm
Authors: Su Su Yi Mon, Fang Jiancheng
Abstract:
Synthetic Aperture Radar (SAR) is an imaging radar form by taking full advantage of the relative movement of the antenna with respect to the target. Through the simultaneous processing of the radar reflections over the movement of the antenna via the Range Doppler Algorithm (RDA), the superior resolution of a theoretical wider antenna, termed synthetic aperture, is obtained. Therefore, SAR can achieve high resolution two dimensional imagery of the ground surface. In addition, two filtering steps in range and azimuth direction provide accurate enough result. This paper develops a simulation in which realistic SAR images can be generated. Also, the effect of velocity errors in the resulting image has also been investigated. Taking some velocity errors into account, the simulation results on the image resolution would be presented. Most of the times, algorithms need to be adjusted for particular datasets, or particular applications.
Keywords: Synthetic Aperture Radar (SAR), Range Doppler Algorithm (RDA), Image Resolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3353861 Features for Measuring Credibility on Facebook Information
Authors: Kanda Runapongsa Saikaew, Chaluemwut Noyunsan
Abstract:
Nowadays social media information, such as news, links, images, or VDOs, is shared extensively. However, the effectiveness of disseminating information through social media lacks in quality: less fact checking, more biases, and several rumors. Many researchers have investigated about credibility on Twitter, but there is no the research report about credibility information on Facebook. This paper proposes features for measuring credibility on Facebook information. We developed the system for credibility on Facebook. First, we have developed FB credibility evaluator for measuring credibility of each post by manual human’s labelling. We then collected the training data for creating a model using Support Vector Machine (SVM). Secondly, we developed a chrome extension of FB credibility for Facebook users to evaluate the credibility of each post. Based on the usage analysis of our FB credibility chrome extension, about 81% of users’ responses agree with suggested credibility automatically computed by the proposed system.
Keywords: Facebook, social media, credibility measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3672860 Vessel Inscribed Trigonometry to Measure the Vessel Progressive Orientations in the Digital Fundus Image
Authors: Pil Un Kim, Yunjung Lee, Gihyoun Lee, Jin Ho Cho, Myoung Nam Kim
Abstract:
In this paper, the vessel inscribed trigonometry (VITM) for the vessel progression orientation (VPO) is proposed in the two-dimensional fundus image. The VPO is a major factor in the optic disc (OD) detection which is a basic process in the retina analysis. To measure the VPO, skeletons of vessel are used. First, the vessels are classified into three classes as vessel end, vessel branch and vessel stem. And the chain code maps of VS are generated. Next, two farthest neighborhoods of each point on VS are searched by the proposed angle restriction. Lastly, a gradient of the straight line between two farthest neighborhoods is estimated to measure the VPO. VITM is validated by comparing with manual results and 2D Gaussian templates. It is confirmed that VPO of the proposed mensuration is correct enough to detect OD from the results of experiment which applied VITM to detect OD in fundus images.
Keywords: Angle measurement, Optic disc, Retina vessel, Vessel progression orientation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419859 The Nanobiotechnology of Obtaining of Collagen Gels from Marin Fish Skin and Yours Reological Properties for using Like New Materials in Dental Medicine
Authors: Anamaria Bechir, Rodica Sirbu, Minodora Leca, Maria Maris, Dan Artenie Maris, Emilia Mihaela Cadar, Marius Maris
Abstract:
This paper aims at presenting the biotechnology used to obtain collagen-based gels from shark (Squalus acanthias) and brill skin, marine fish growing in the Black Sea. Due to the structure of its micro-fibres, collagen can be considered a nanomaterial; in order to use collagen-based matrixes as biomaterial, rheological studies must be performed first, to state whether they are stable or not. For the triple-helix structure to remain stable within these gels at room or human body temperature, they must be stabilized by reticulation.Keywords: Collagen, biotechnology, reticulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2981858 Persian Printed Numeral Characters Recognition Using Geometrical Central Moments and Fuzzy Min-Max Neural Network
Authors: Hamid Reza Boveiri
Abstract:
In this paper, a new proposed system for Persian printed numeral characters recognition with emphasis on representation and recognition stages is introduced. For the first time, in Persian optical character recognition, geometrical central moments as character image descriptor and fuzzy min-max neural network for Persian numeral character recognition has been used. Set of different experiments on binary images of regular, translated, rotated and scaled Persian numeral characters has been done and variety of results has been presented. The best result was 99.16% correct recognition demonstrating geometrical central moments and fuzzy min-max neural network are adequate for Persian printed numeral character recognition.Keywords: Fuzzy min-max neural network, geometrical centralmoments, optical character recognition, Persian digits recognition, Persian printed numeral characters recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728857 Associations among Fetuin A, Cortisol and Thyroid Hormones in Children with Morbid Obesity and Metabolic Syndrome
Authors: Mustafa M. Donma, Orkide Donma
Abstract:
Obesity is a disease with an ever-increasing prevalence throughout the world. The metabolic network associated with obesity is very complicated. In metabolic syndrome (MetS), it becomes even more difficult to understand. Within this context, hormones, cytokines, and many others participate in this complex matrix. The collaboration among all of these parameters is a matter of great wonder. Cortisol, as a stress hormone, is closely associated with obesity. Thyroid hormones are involved in the regulation of energy as well as glucose metabolism with all of its associates. Fetuin A has been known for years; however, the involvement of this parameter in obesity discussions is rather new. Recently, it has been defined as one of the new generation markers of obesity. In this study, the aim was to introduce complex interactions among all to be able to make clear comparisons, at least for a part of this complicated matter. Morbid obese (MO) children participated in the study. Two groups with 46 MO children and 43 with MetS were constituted. All children included in the study were above 99th age- and sex-adjusted body mass index (BMI) percentiles according to World Health Organization criteria. Forty-three morbid obese children in the second group also had MetS components. Informed consent forms were filled by the parents of the participants. The institutional ethics committee has given approval for the study protocol. Data as well as the findings of the study were evaluated from a statistical point of view. Two groups were matched for their age and gender compositions. Significantly higher body mass index (BMI), waist circumference, thyrotropin, and insulin values were observed in the MetS group. Triiodothyronine concentrations did not differ between the groups. Elevated levels for thyroxin, cortisol, and fetuin-A were detected in the MetS group compared to the first group (p > 0.05). In MO MetS- group, cortisol was correlated with thyroxin and fetuin-A (p < 0.05). In the MO MetS+ group, none of these correlations were present. Instead, a correlation between cortisol and thyrotropin was found (p < 0.05). In conclusion, findings have shown that cortisol was the key player in severely obese children. The association of this hormone with the participants of thyroid hormone metabolism was quite important. The lack of association with fetuin A in the morbid obese MetS+ group has suggested the possible interference of MetS components in the behavior of this new generation obesity marker. The most remarkable finding of the study was the unique correlation between cortisol and thyrotropin in the morbid obese MetS+ group, suggesting that thyrotropin may serve as a target along with cortisol in the morbid obese MetS+ group. This association may deserve specific attention during the development of remedies against MetS in the pediatric population.
Keywords: children, cortisol, fetuin A, morbid obesity, thyrotropin
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 531856 Analysis of Patterns in TV Commercials that Recognize NGO Image
Authors: J. Areerut, F. Samuel
Abstract:
The purpose of this research is to analyze the pattern of television commercials and how they encourage non-governmental organizations to build their image in Thailand. It realizes how public relations can impact an organization's image. It is a truth that bad public relations management can cause hurt a reputation. On the other hand, a very small amount of work in public relations helps your organization to be recognized broadly and eventually accepted even wider. The main idea in this paper is to study and analyze patterns of television commercials that could impact non-governmental organization's images in a greater way. This research uses questionnaires and content analysis to summarize results. The findings show the aspects of how patterns of television commercials that are suited to non-governmental organization work in Thailand. It will be useful for any non-governmental organization that wishes to build their image through television commercials and also for further work based on this research.
Keywords: Television Commercial (TVC), Organization Image, Non-Governmental Organization: NGO, Public Relation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2390