Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Search results for: Minodora Leca

3 The Nanobiotechnology of Obtaining of Collagen Gels from Marin Fish Skin and Yours Reological Properties for using Like New Materials in Dental Medicine

Authors: Anamaria Bechir, Rodica Sirbu, Minodora Leca, Maria Maris, Dan Artenie Maris, Emilia Mihaela Cadar, Marius Maris

Abstract:

This paper aims at presenting the biotechnology used to obtain collagen-based gels from shark (Squalus acanthias) and brill skin, marine fish growing in the Black Sea. Due to the structure of its micro-fibres, collagen can be considered a nanomaterial; in order to use collagen-based matrixes as biomaterial, rheological studies must be performed first, to state whether they are stable or not. For the triple-helix structure to remain stable within these gels at room or human body temperature, they must be stabilized by reticulation.

Keywords: Collagen, biotechnology, reticulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2659
2 Experimental Determination of Shear Strength Properties of Lightweight Expanded Clay Aggregates Using Direct Shear and Triaxial Tests

Authors: Mahsa Shafaei Bajestani, Mahmoud Yazdani, Aliakbar Golshani

Abstract:

Artificial lightweight aggregates have a wide range of applications in industry and engineering. Nowadays, the usage of this material in geotechnical activities, especially as backfill in retaining walls has been growing due to the specific characteristics which make it a competent alternative to the conventional geotechnical materials. In practice, a material with lower weight but higher shear strength parameters would be ideal as backfill behind retaining walls because of the important roles that these parameters play in decreasing the overall active lateral earth pressure. In this study, two types of Light Expanded Clay Aggregates (LECA) produced in the Leca factory are investigated. LECA is made in a rotary kiln by heating natural clay at different temperatures up to 1200 °C making quasi-spherical aggregates with different sizes ranged from 0 to 25 mm. The loose bulk density of these aggregates is between 300 and 700 kN/m3. The purpose of this research is to determine the stress-strain behavior, shear strength parameters, and the energy absorption of LECA materials. Direct shear tests were conducted at five normal stresses of 25, 50, 75, 100, and 200 kPa. In addition, conventional triaxial compression tests were operated at confining pressures of 50, 100, and 200 kPa to examine stress-strain behavior. The experimental results show a high internal angle of friction and even a considerable amount of nominal cohesion despite the granular structure of LECA. These desirable properties along with the intrinsic low density of these aggregates make LECA as a very proper material in geotechnical applications. Furthermore, the results demonstrate that lightweight aggregates may have high energy absorption that is excellent alternative material in seismic isolations.

Keywords: Expanded clay, direct shear test, triaxial test, shear properties, energy absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 909
1 Rheological Characterisation of Collagen Gels from Marine Resources of Black Sea and Chlohexidine Salt for using in Dental Medicine

Authors: Sirbu R., Negreanu-Pirjol T., Leca M., Bechir A., Maris M., Maris D.

Abstract:

In the paper we presented the possibility of application collagen gels with active principle-s from marine algae extract and chlorhexidine salt in dental medicine. The hydro-alcoholic extracts from marine algae have been used as they have been obtained. The extracts from marine algae and chlorhexidine salt (digluconate) are incorporated in type I non-denatured fibrillar collagen matrixes. In order to obtain therapeutic effects at nanostructure level, it is important to know the rheological characteristics of the relevant mixtures of collagen gels and extracts from marine algae selected for use. In this survey we have studied mixtures made of non-denatured fibrillar collagen hydro-gels where different concentrations of marine algae have been incorporated. Based on the data obtained for the shearing tensions, we have traced the rheograms – the diagrams for shearing tensions depending on the shearing speed values – from which we have calculated the apparent viscosities as ratios between shearing tension and speed values, which have been figured in relation to the shearing speed values, with a view to levelling dependency.

Keywords: rheological properties, fibrillar collagen hydro-gel, marine algae, chlorhexidine salt, dental medicine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744