Search results for: injection molding machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1543

Search results for: injection molding machine

493 Design, Development and Analysis of Automated Storage and Retrieval System with Single and Dual Command Dispatching using MATLAB

Authors: M. Aslam, Farrukh, A. R. Gardezi, Nasir Hayat

Abstract:

Automated material handling is given prime importance in the semi automated and automated facilities since it provides solution to the gigantic problems related to inventory and also support the latest philosophies like just in time production JIT and lean production. Automated storage and retrieval system is an antidote (if designed properly) to the facility sufferings like getting the right material , materials getting perished, long cycle times or many other similar kind of problems. A working model of automated storage and retrieval system (AS/RS) is designed and developed under the design parameters specified by Material Handling Industry of America (MHIA). Later on analysis was carried out to calculate the throughput and size of the machine. The possible implementation of this technology in local scenario is also discussed in this paper.

Keywords: Automated storage and retrieval system (AS/RS), Material handling, Computer integrated manufacturing (CIM), Lightdependent resistor (LDR)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3436
492 Building a Trend Based Segmentation Method with SVR Model for Stock Turning Detection

Authors: Jheng-Long Wu, Pei-Chann Chang, Yi-Fang Pan

Abstract:

This research focus on developing a new segmentation method for improving forecasting model which is call trend based segmentation method (TBSM). Generally, the piece-wise linear representation (PLR) can finds some of pair of trading points is well for time series data, but in the complicated stock environment it is not well for stock forecasting because of the stock has more trends of trading. If we consider the trends of trading in stock price for the trading signal which it will improve the precision of forecasting model. Therefore, a TBSM with SVR model used to detect the trading points for various stocks of Taiwanese and America under different trend tendencies. The experimental results show our trading system is more profitable and can be implemented in real time of stock market

Keywords: Trend based segmentation method, support vector machine, turning detection, stock forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3171
491 Performance Analysis of Self Excited Induction Generator Using Artificial Bee Colony Algorithm

Authors: A. K. Sharma, N. P. Patidar, G. Agnihotri, D. K. Palwalia

Abstract:

This paper presents the performance state analysis of Self-Excited Induction Generator (SEIG) using Artificial Bee Colony (ABC) optimization technique. The total admittance of the induction machine is minimized to calculate the frequency and magnetizing reactance corresponding to any rotor speed, load impedance and excitation capacitance. The performance of SEIG is calculated using the optimized parameter found. The results obtained by ABC algorithm are compared with results from numerical method. The results obtained coincide with the numerical method results. This technique proves to be efficient in solving nonlinear constrained optimization problems and analyzing the performance of SEIG.

Keywords: Artificial bee colony, Steady state analysis, Selfexcited induction generator, Nonlinear constrained optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184
490 Design and Analysis of a Solar Refrigeration System with a Rotating Generator

Authors: K. Bouhadef, S. Chikh, A. Boumedien, A. Benabdesselam

Abstract:

A solar refrigeration system based on the adsorptiondesorption phenomena is designed and analyzed. An annular tubular generator filled with silica gel adsorbent and with a perforated inner cylinder is integrated within a flat solar collector. The working fluid in the refrigeration cycle is water. The thermodynamic analysis and because of the temperature level that could be attained with a flat solar collector it is required that the system operates under vacuum conditions. In order to enhance the performance of the system and to get uniform temperature in the silica gel and higher desorbed mass, an apparatus for rotation of the generator is incorporated in the system. Testing is carried out and measurements are taken on the designed installation. The effect of rotation is checked on the temperature distribution and on the performance of this machine and compared to the flat solar collector with fixed generator.

Keywords: Refrigeration cycle, solar energy, rotating collector, adsorption, silica gel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2438
489 An Improved Scheduling Strategy in Cloud Using Trust Based Mechanism

Authors: D. Sumathi, P. Poongodi

Abstract:

Cloud Computing refers to applications delivered as services over the internet, and the datacenters that provide those services with hardware and systems software. These were earlier referred to as Software as a Service (SaaS). Scheduling is justified by job components (called tasks), lack of information. In fact, in a large fraction of jobs from machine learning, bio-computing, and image processing domains, it is possible to estimate the maximum time required for a task in the job. This study focuses on Trust based scheduling to improve cloud security by modifying Heterogeneous Earliest Finish Time (HEFT) algorithm. It also proposes TR-HEFT (Trust Reputation HEFT) which is then compared to Dynamic Load Scheduling.

Keywords: Software as a Service (SaaS), Trust, Heterogeneous Earliest Finish Time (HEFT) algorithm, Dynamic Load Scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
488 Optimization of the Control Scheme for Human Extremity Exoskeleton

Authors: Yang Li, Xiaorong Guan, Cheng Xu

Abstract:

In order to design a suitable control scheme for human extremity exoskeleton, the interaction force control scheme with traditional PI controller was presented, and the simulation study of the electromechanical system of the human extremity exoskeleton was carried out by using a MATLAB/Simulink module. By analyzing the simulation calculation results, it was shown that the traditional PI controller is not very suitable for every movement speed of human body. So, at last the fuzzy self-adaptive PI controller was presented to solve this problem. Eventually, the superiority and feasibility of the fuzzy self-adaptive PI controller was proved by the simulation results and experimental results.

Keywords: Human extremity exoskeleton, interaction force control scheme, simulation study, fuzzy self-adaptive pi controller, man-machine coordinated walking, bear payload.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1000
487 Fuzzy Sliding Mode Speed Controller for a Vector Controlled Induction Motor

Authors: S. Massoum, A. Bentaallah, A. Massoum, F. Benaimeche, P. Wira, A. Meroufel

Abstract:

This paper presents a speed fuzzy sliding mode controller for a vector controlled induction machine (IM) fed by a voltage source inverter (PWM). The sliding mode based fuzzy control method is developed to achieve fast response, a best disturbance rejection and to maintain a good decoupling. The problem with sliding mode control is that there is high frequency switching around the sliding mode surface. The FSMC is the combination of the robustness of Sliding Mode Control (SMC) and the smoothness of Fuzzy Logic (FL). To reduce the torque fluctuations (chattering), the sign function used in the conventional SMC is substituted with a fuzzy logic algorithm. The proposed algorithm was simulated by Matlab/Simulink software and simulation results show that the performance of the control scheme is robust and the chattering problem is solved.

Keywords: IM, FOC, FLC, SMC, and FSMC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2820
486 Immunolabeling of TGF-β during Muscle Regeneration

Authors: K. Nikovics, D. Riccobono, M. Oger, H. Morin, L. Barbier, T. Poyot, X. Holy, A. Bendahmane, M. Drouet, A. L. Favier

Abstract:

Muscle regeneration after injury (as irradiation) is of great importance. However, the molecular and cellular mechanisms are still unclear. Cytokines are believed to play fundamental role in the different stages of muscle regeneration. They are secreted by many cell populations, but the predominant producers are macrophages and helper T cells. On the other hand, it has been shown that adipose tissue derived stromal/stem cell (ASC) injection could improve muscle regeneration. Stem cells probably induce the coordinated modulations of gene expression in different macrophage cells. Therefore, we investigated the patterns and timing of changes in gene expression of different cytokines occurring upon stem cells loading. Muscle regeneration was studied in an irradiated muscle of minipig animal model in presence or absence of ASC treatment (irradiated and treated with ASCs, IRR+ASC; irradiated not-treated with ASCs, IRR; and non-irradiated no-IRR). We characterized macrophage populations by immunolabeling in the different conditions. In our study, we found mostly M2 and a few M1 macrophages in the IRR+ASC samples. However, only few M2b macrophages were noticed in the IRR muscles. In addition, we found intensive fibrosis in the IRR samples. With in situ hybridization and immunolabeling, we analyzed the cytokine expression of the different macrophages and we showed that M2d macrophage are the most abundant in the IRR+ASC samples. By in situ hybridization, strong expression of the transforming growth factor β (TGF-β) was observed in the IRR+ASC but very week in the IRR samples. But when we analyzed TGF-β level with immunolabeling the expression was very different: many M2 macrophages showed week expression in IRR+ASC and few cells expressing stronger level in IRR muscles. Therefore, we investigated the MMP expressions in the different muscles. Our data showed that the M2 macrophages of the IRR+ASC muscle expressed MMP2 proteins. Our working hypothesis is that MMP2 expression of the M2 macrophages can decrease fibrosis in the IRR+ASC muscle by capturing TGF-β.

Keywords: Adipose tissue derived stromal/stem cell, cytokine, macrophage, muscle regeneration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 894
485 New Dynamic Constitutive Model for OFHC Copper Film

Authors: Jin Sung Kim, Hoon Huh

Abstract:

The material properties of OFHC copper film was investigated with the High-Speed Material Micro Testing Machine (HSMMTM) at the high strain rates. The rate-dependent stress-strain curves from the experiment and the Johnson−Cook curve fitting showed large discrepancies as the plastic strain increases since the constitutive model implies no rate-dependent strain hardening effect. A new constitutive model was proposed in consideration of rate-dependent strain hardening effect. The strain rate hardening term in the new constitutive model consists of the strain rate sensitivity coefficients of the yield strength and strain hardening.

Keywords: Rate dependent material properties, Dynamic constitutive model, OFHC copper film, Strain rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2420
484 Deep-Learning Based Approach to Facial Emotion Recognition Through Convolutional Neural Network

Authors: Nouha Khediri, Mohammed Ben Ammar, Monji Kherallah

Abstract:

Recently, facial emotion recognition (FER) has become increasingly essential to understand the state of the human mind. However, accurately classifying emotion from the face is a challenging task. In this paper, we present a facial emotion recognition approach named CV-FER benefiting from deep learning, especially CNN and VGG16. First, the data are pre-processed with data cleaning and data rotation. Then, we augment the data and proceed to our FER model, which contains five convolutions layers and five pooling layers. Finally, a softmax classifier is used in the output layer to recognize emotions. Based on the above contents, this paper reviews the works of facial emotion recognition based on deep learning. Experiments show that our model outperforms the other methods using the same FER2013 database and yields a recognition rate of 92%. We also put forward some suggestions for future work.

Keywords: CNN, deep-learning, facial emotion recognition, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 718
483 Investigation of the Cooling and Uniformity Effectiveness in a Sinter Packed Bed

Authors: Uzu-Kuei Hsu, Chang-Hsien Tai, Kai-Wun Jin

Abstract:

When sinters are filled into the cooler from the sintering machine, and the non-uniform distribution of the sinters leads to uneven cooling. This causes the temperature difference of the sinters leaving the cooler to be so large that it results in the conveyors being deformed by the heat. The present work applies CFD method to investigate the thermo flowfield phenomena in a sinter cooler by the Porous Media Model. Using the obtained experimental data to simulate porosity (Ε), permeability (κ), inertial coefficient (F), specific heat (Cp) and effective thermal conductivity (keff) of the sinter packed beds. The physical model is a similar geometry whose Darcy numbers (Da) are similar to the sinter cooler. Using the Cooling Index (CI) and Uniformity Index (UI) to analyze the thermo flowfield in the sinter packed bed obtains the cooling performance of the sinter cooler.

Keywords: Porous media, sinter, cooling index, uniformity index, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
482 Using Discrete Event Simulation Approach to Reduce Waiting Times in Computed Tomography Radiology Department

Authors: Mwafak Shakoor

Abstract:

The purpose of this study was to reduce patient waiting times, improve system throughput and improve resources utilization in radiology department. A discrete event simulation model was developed using Arena simulation software to investigate different alternatives to improve the overall system delivery based on adding resource scenarios due to the linkage between patient waiting times and resource availability. The study revealed that there is no addition investment need to procure additional scanner but hospital management deploy managerial tactics to enhance machine utilization and reduce the long waiting time in the department.

Keywords: Arena, Computed Tomography (CT), Discrete event simulation, Healthcare modeling, Radiology department, Waiting time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3557
481 A Linearization and Decomposition Based Approach to Minimize the Non-Productive Time in Transfer Lines

Authors: Hany Osman, M. F. Baki

Abstract:

We address the balancing problem of transfer lines in this paper to find the optimal line balancing that minimizes the nonproductive time. We focus on the tool change time and face orientation change time both of which influence the makespane. We consider machine capacity limitations and technological constraints associated with the manufacturing process of auto cylinder heads. The problem is represented by a mixed integer programming model that aims at distributing the design features to workstations and sequencing the machining processes at a minimum non-productive time. The proposed model is solved by an algorithm established using linearization schemes and Benders- decomposition approach. The experiments show the efficiency of the algorithm in reaching the exact solution of small and medium problem instances at reasonable time.

Keywords: Transfer line balancing, Benders' decomposition, Linearization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
480 Multi-Objective Optimization of Gas Turbine Power Cycle

Authors: Mohsen Nikaein

Abstract:

Because of importance of energy, optimization of power generation systems is necessary. Gas turbine cycles are suitable manner for fast power generation, but their efficiency is partly low. In order to achieving higher efficiencies, some propositions are preferred such as recovery of heat from exhaust gases in a regenerator, utilization of intercooler in a multistage compressor, steam injection to combustion chamber and etc. However thermodynamic optimization of gas turbine cycle, even with above components, is necessary. In this article multi-objective genetic algorithms are employed for Pareto approach optimization of Regenerative-Intercooling-Gas Turbine (RIGT) cycle. In the multiobjective optimization a number of conflicting objective functions are to be optimized simultaneously. The important objective functions that have been considered for optimization are entropy generation of RIGT cycle (Ns) derives using Exergy Analysis and Gouy-Stodola theorem, thermal efficiency and the net output power of RIGT Cycle. These objectives are usually conflicting with each other. The design variables consist of thermodynamic parameters such as compressor pressure ratio (Rp), excess air in combustion (EA), turbine inlet temperature (TIT) and inlet air temperature (T0). At the first stage single objective optimization has been investigated and the method of Non-dominated Sorting Genetic Algorithm (NSGA-II) has been used for multi-objective optimization. Optimization procedures are performed for two and three objective functions and the results are compared for RIGT Cycle. In order to investigate the optimal thermodynamic behavior of two objectives, different set, each including two objectives of output parameters, are considered individually. For each set Pareto front are depicted. The sets of selected decision variables based on this Pareto front, will cause the best possible combination of corresponding objective functions. There is no superiority for the points on the Pareto front figure, but they are superior to any other point. In the case of three objective optimization the results are given in tables.

Keywords: Exergy, Entropy Generation, Brayton Cycle, DesignParameters, Optimization, Genetic Algorithm, Multi-Objective.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2530
479 FHOJ: A New Java Benchmark Framework

Authors: Vinh Quang La, Dirk Jansen

Abstract:

There are some existing Java benchmarks, application benchmarks as well as micro benchmarks or mixture both of them,such as: Java Grande, Spec98, CaffeMark, HBech, etc. But none of them deal with behaviors of multi tasks operating systems. As a result, the achieved outputs are not satisfied for performance evaluation engineers. Behaviors of multi tasks operating systems are based on a schedule management which is employed in these systems. Different processes can have different priority to share the same resources. The time is measured by estimating from applications started to it is finished does not reflect the real time value which the system need for running those programs. New approach to this problem should be done. Having said that, in this paper we present a new Java benchmark, named FHOJ benchmark, which directly deals with multi tasks behaviors of a system. Our study shows that in some cases, results from FHOJ benchmark are far more reliable in comparison with some existing Java benchmarks.

Keywords: Java Virtual Machine, Java benchmark, FHOJ framework.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
478 Causal Relation Identification Using Convolutional Neural Networks and Knowledge Based Features

Authors: Tharini N. de Silva, Xiao Zhibo, Zhao Rui, Mao Kezhi

Abstract:

Causal relation identification is a crucial task in information extraction and knowledge discovery. In this work, we present two approaches to causal relation identification. The first is a classification model trained on a set of knowledge-based features. The second is a deep learning based approach training a model using convolutional neural networks to classify causal relations. We experiment with several different convolutional neural networks (CNN) models based on previous work on relation extraction as well as our own research. Our models are able to identify both explicit and implicit causal relations as well as the direction of the causal relation. The results of our experiments show a higher accuracy than previously achieved for causal relation identification tasks.

Keywords: Causal relation identification, convolutional neural networks, natural Language Processing, Machine Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2260
477 An Approach Based on Statistics and Multi-Resolution Representation to Classify Mammograms

Authors: Nebi Gedik

Abstract:

One of the significant and continual public health problems in the world is breast cancer. Early detection is very important to fight the disease, and mammography has been one of the most common and reliable methods to detect the disease in the early stages. However, it is a difficult task, and computer-aided diagnosis (CAD) systems are needed to assist radiologists in providing both accurate and uniform evaluation for mass in mammograms. In this study, a multiresolution statistical method to classify mammograms as normal and abnormal in digitized mammograms is used to construct a CAD system. The mammogram images are represented by wave atom transform, and this representation is made by certain groups of coefficients, independently. The CAD system is designed by calculating some statistical features using each group of coefficients. The classification is performed by using support vector machine (SVM).

Keywords: Wave atom transform, statistical features, multi-resolution representation, mammogram.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 883
476 Model Predictive Fuzzy Control of Air-ratio for Automotive Engines

Authors: Hang-cheong Wong, Pak-kin Wong, Chi-man Vong, Zhengchao Xie, Shaojia Huang

Abstract:

Automotive engine air-ratio plays an important role of emissions and fuel consumption reduction while maintains satisfactory engine power among all of the engine control variables. In order to effectively control the air-ratio, this paper presents a model predictive fuzzy control algorithm based on online least-squares support vector machines prediction model and fuzzy logic optimizer. The proposed control algorithm was also implemented on a real car for testing and the results are highly satisfactory. Experimental results show that the proposed control algorithm can regulate the engine air-ratio to the stoichiometric value, 1.0, under external disturbance with less than 5% tolerance.

Keywords: Air-ratio, Fuzzy logic, online least-squares support vector machine, model predictive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811
475 Diagnosis of Static, Dynamic and Mixed Eccentricity in Line Start Permanent Magnet Synchronous Motor by Using FEM

Authors: Mohamed Moustafa Mahmoud Sedky

Abstract:

In Line start permanent magnet synchronous motor,  eccentricity is a common fault that can make it necessary to remove  the motor from the production line. However, because the motor may  be inaccessible, diagnosing the fault is not easy. This paper presents  an FEM that identifies different models, static eccentricity, dynamic  eccentricity, and mixed eccentricity, at no load and full load. The  method overcomes the difficulty of applying FEMs to transient  behavior. It simulates motor speed, torque and flux density  distribution along the air gap for SE,DE, and ME. This paper  represents the various effects of different eccentricitiestypes on the  transient performance.

Keywords: Line Start Permanent magnet, synchronous machine, Static Eccentricity, Dynamic Eccentricity, Mixed Eccentricity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3632
474 Classification Based on Deep Neural Cellular Automata Model

Authors: Yasser F. Hassan

Abstract:

Deep learning structure is a branch of machine learning science and greet achievement in research and applications. Cellular neural networks are regarded as array of nonlinear analog processors called cells connected in a way allowing parallel computations. The paper discusses how to use deep learning structure for representing neural cellular automata model. The proposed learning technique in cellular automata model will be examined from structure of deep learning. A deep automata neural cellular system modifies each neuron based on the behavior of the individual and its decision as a result of multi-level deep structure learning. The paper will present the architecture of the model and the results of simulation of approach are given. Results from the implementation enrich deep neural cellular automata system and shed a light on concept formulation of the model and the learning in it.

Keywords: Cellular automata, neural cellular automata, deep learning, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 869
473 Competitive Advantages of a Firm without Fundamental Technology: A Case Study of Sony, Casio and Nintendo

Authors: Kiyohiro Yamazaki

Abstract:

A purpose of this study is to examine how a firm without fundamental technology is able to gain the competitive advantage. This paper examines three case studies, Sony in the flat display TV industry, Casio in the digital camera industry and Nintendo in the home game machine industry. This paper maintain the firms without fundamental technology construct two advantages, economic advantage and organizational advantage. An economic advantage involves the firm can select either high-tech or cheap devices out of several device makers, and change the alternatives cheaply and quickly. In addition, organizational advantage means that a firm without fundamental technology is not restricted by organizational inertia and cognitive restraints, and exercises the characteristic of strength.

Keywords: Firm without fundamental technology, economic advantage, organizational advantage, Sony, Casio, Nintendo.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
472 An Optimal Feature Subset Selection for Leaf Analysis

Authors: N. Valliammal, S.N. Geethalakshmi

Abstract:

This paper describes an optimal approach for feature subset selection to classify the leaves based on Genetic Algorithm (GA) and Kernel Based Principle Component Analysis (KPCA). Due to high complexity in the selection of the optimal features, the classification has become a critical task to analyse the leaf image data. Initially the shape, texture and colour features are extracted from the leaf images. These extracted features are optimized through the separate functioning of GA and KPCA. This approach performs an intersection operation over the subsets obtained from the optimization process. Finally, the most common matching subset is forwarded to train the Support Vector Machine (SVM). Our experimental results successfully prove that the application of GA and KPCA for feature subset selection using SVM as a classifier is computationally effective and improves the accuracy of the classifier.

Keywords: Optimization, Feature extraction, Feature subset, Classification, GA, KPCA, SVM and Computation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2246
471 Study of Magnetic Properties on the Corrosion Behavior and Influence of Temperature in Permanent Magnet (Nd-Fe-B) Used in PMSM

Authors: N. Yogal, C. Lehrmann

Abstract:

The use of permanent magnets (PM) is increasing in permanent magnet synchronous machines (PMSM) to fulfill the requirements of high efficiency machines in modern industry. PMSM are widely used in industrial applications, wind power plants and the automotive industry. Since PMSM are used in different environmental conditions, the long-term effect of NdFeB-based magnets at high temperatures and their corrosion behavior have to be studied due to the irreversible loss of magnetic properties. In this paper, the effect of magnetic properties due to corrosion and increasing temperature in a climatic chamber has been presented. The magnetic moment and magnetic field of the magnets were studied experimentally.

Keywords: Permanent magnets (PM), NdFeB, corrosion behavior, temperature effect, permanent magnet synchronous machine (PMSM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2561
470 Fatigue Failure of Structural Steel – Analysis Using Fracture Mechanics

Authors: Shine U P, EMS Nair

Abstract:

Fatigue is the major threat in service of steel structure subjected to fluctuating loads. With the additional effect of corrosion and presence of weld joints the fatigue failure may become more critical in structural steel. One of the apt examples of such structural is the sailing ship. This is experiencing a constant stress due to floating and a pulsating bending load due to the waves. This paper describes an attempt to verify theory of fatigue in fracture mechanics approach with experimentation to determine the constants of crack growth curve. For this, specimen is prepared from the ship building steel and it is subjected to a pulsating bending load with a known defect. Fatigue crack and its nature is observed in this experiment. Application of fracture mechanics approach in fatigue with a simple practical experiment is conducted and constants of crack growth equation are investigated.

Keywords: fatigue, fracture mechanics, fatigue testing machine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3372
469 Optimization of Acid Treatments by Assessing Diversion Strategies in Carbonate and Sandstone Formations

Authors: Ragi Poyyara, Vijaya Patnana, Mohammed Alam

Abstract:

When acid is pumped into damaged reservoirs for damage removal/stimulation, distorted inflow of acid into the formation occurs caused by acid preferentially traveling into highly permeable regions over low permeable regions, or (in general) into the path of least resistance. This can lead to poor zonal coverage and hence warrants diversion to carry out an effective placement of acid. Diversion is desirably a reversible technique of temporarily reducing the permeability of high perm zones, thereby forcing the acid into lower perm zones. The uniqueness of each reservoir can pose several challenges to engineers attempting to devise optimum and effective diversion strategies. Diversion techniques include mechanical placement and/or chemical diversion of treatment fluids, further sub-classified into ball sealers, bridge plugs, packers, particulate diverters, viscous gels, crosslinked gels, relative permeability modifiers (RPMs), foams, and/or the use of placement techniques, such as coiled tubing (CT) and the maximum pressure difference and injection rate (MAPDIR) methodology. It is not always realized that the effectiveness of diverters greatly depends on reservoir properties, such as formation type, temperature, reservoir permeability, heterogeneity, and physical well characteristics (e.g., completion type, well deviation, length of treatment interval, multiple intervals, etc.). This paper reviews the mechanisms by which each variety of diverter functions and discusses the effect of various reservoir properties on the efficiency of diversion techniques. Guidelines are recommended to help enhance productivity from zones of interest by choosing the best methods of diversion while pumping an optimized amount of treatment fluid. The success of an overall acid treatment often depends on the effectiveness of the diverting agents.

Keywords: Acid treatment, carbonate, diversion, sandstone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4049
468 Transfer Knowledge from Multiple Source Problems to a Target Problem in Genetic Algorithm

Authors: Tami Alghamdi, Terence Soule

Abstract:

To study how to transfer knowledge from multiple source problems to the target problem, we modeled the Transfer Learning (TL) process using Genetic Algorithms as the model solver. TL is the process that aims to transfer learned data from one problem to another problem. The TL process aims to help Machine Learning (ML) algorithms find a solution to the problems. The Genetic Algorithms (GA) give researchers access to information that we have about how the old problem is solved. In this paper, we have five different source problems, and we transfer the knowledge to the target problem. We studied different scenarios of the target problem. The results showed that combined knowledge from multiple source problems improves the GA performance. Also, the process of combining knowledge from several problems results in promoting diversity of the transferred population.

Keywords: Transfer Learning, Multiple Sources, Knowledge Transfer, Domain Adaptation, Source, Target.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 358
467 Reference Architecture for Intelligent Enterprise Solutions

Authors: Shankar Kambhampaty, Harish Rohan Kambhampaty

Abstract:

Data in IT systems in enterprises have been growing at phenomenal pace. This has provided opportunities to run analytics to gather intelligence on key business parameters that enable them to provide better products and services to customers. While there are several Artificial Intelligence/Machine Learning (AI/ML) and Business Intelligence (BI) tools and technologies available in marketplace to run analytics, there is a need for an integrated view when developing intelligent solutions in enterprises. This paper progressively elaborates a reference model for enterprise solutions, builds an integrated view of data, information and intelligence components and presents a reference architecture for intelligent enterprise solutions. Finally, it applies the reference architecture to an insurance organization. The reference architecture is the outcome of experience and insights gathered from developing intelligent solutions for several organizations.

Keywords: Architecture, model, intelligence, artificial intelligence, business intelligence, AI, BI, ML, analytics, enterprise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1337
466 PredictionSCMS: The Implementation of an AI-Powered Supply Chain Management System

Authors: Ioannis Andrianakis, Vasileios Gkatas, Nikos Eleftheriadis, Alexios Ellinidis, Ermioni Avramidou

Abstract:

The paper discusses the main aspects involved in the development of a supply chain management system using the developed PredictionSCMS software as a basis for the discussion. The discussion is focused on three topics: the first is demand forecasting, where we present the predictive algorithms implemented and discuss related concepts such as the calculation of the safety stock, the effect of out-of-stock days etc. The second topic concerns the design of a supply chain, where the core parameters involved in the process are given, together with a methodology of incorporating these parameters in a meaningful order creation strategy. Finally, the paper discusses some critical events that can happen during the operation of a supply chain management system and how the developed software notifies the end user about their occurrence.

Keywords: Demand forecasting, machine learning, risk management, supply chain design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 236
465 Comparative Study of Filter Characteristics as Statistical Vocal Correlates of Clinical Psychiatric State in Human

Authors: Thaweesak Yingthawornsuk, Chusak Thanawattano

Abstract:

Acoustical properties of speech have been shown to be related to mental states of speaker with symptoms: depression and remission. This paper describes way to address the issue of distinguishing depressed patients from remitted subjects based on measureable acoustics change of their spoken sound. The vocal-tract related frequency characteristics of speech samples from female remitted and depressed patients were analyzed via speech processing techniques and consequently, evaluated statistically by cross-validation with Support Vector Machine. Our results comparatively show the classifier's performance with effectively correct separation of 93% determined from testing with the subjectbased feature model and 88% from the frame-based model based on the same speech samples collected from hospital visiting interview sessions between patients and psychiatrists.

Keywords: Depression, SVM, Vocal Extract, Vocal Tract

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543
464 Implementation of On-Line Cutting Stock Problem on NC Machines

Authors: Jui P. Hung, Hsia C. Chang, Yuan L. Lai

Abstract:

Introduction applicability of high-speed cutting stock problem (CSP) is presented in this paper. Due to the orders continued coming in from various on-line ways for a professional cutting company, to stay competitive, such a business has to focus on sustained production at high levels. In others words, operators have to keep the machine running to stay ahead of the pack. Therefore, the continuous stock cutting problem with setup is proposed to minimize the cutting time and pattern changing time to meet the on-line given demand. In this paper, a novel method is proposed to solve the problem directly by using cutting patterns directly. A major advantage of the proposed method in series on-line production is that the system can adjust the cutting plan according to the floating orders. Examples with multiple items are demonstrated. The results show considerable efficiency and reliability in high-speed cutting of CSP.

Keywords: Cutting stock, Optimization, Heuristics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732