Search results for: Multi-State Flow Network (MSFN)
3794 A Multiple Inlet Swirler for Gas Turbine Combustors
Authors: Yehia A. Eldrainy, Hossam S. Aly, Khalid M. Saqr, Mohammad Nazri Mohd Jaafar
Abstract:
The central recirculation zone (CRZ) in a swirl stabilized gas turbine combustor has a dominant effect on the fuel air mixing process and flame stability. Most of state of the art swirlers share one disadvantage; the fixed swirl number for the same swirler configuration. Thus, in a mathematical sense, Reynolds number becomes the sole parameter for controlling the flow characteristics inside the combustor. As a result, at low load operation, the generated swirl is more likely to become feeble affecting the flame stabilization and mixing process. This paper introduces a new swirler concept which overcomes the mentioned weakness of the modern configurations. The new swirler introduces air tangentially and axially to the combustor through tangential vanes and an axial vanes respectively. Therefore, it provides different swirl numbers for the same configuration by regulating the ratio between the axial and tangential flow momenta. The swirler aerodynamic performance was investigated using four CFD simulations in order to demonstrate the impact of tangential to axial flow rate ratio on the CRZ. It was found that the length of the CRZ is directly proportional to the tangential to axial air flow rate ratio.Keywords: Swirler, Gas turbine, CFD, Numerical simulation, Recirculation zone, Swirl number
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29933793 Numerical Evaluation of the Aerodynamic Efficiency of the Stevens and Jolly Vertical- Axis Windmill (1895)
Authors: M. Raciti Castelli, E. Benini
Abstract:
This paper presents a numerical investigation of the unsteady flow around an American 19th century vertical-axis windmill: the Stevens & Jolly rotor, patented on April 16, 1895. The computational approach used is based on solving the complete transient Reynolds-Averaged Navier-Stokes (t-RANS) equations: a full campaign of numerical simulation has been performed using the k-ω SST turbulence model. Flow field characteristics have been investigated for several values of tip speed ratio and for a constant unperturbed free-stream wind velocity of 6 m/s, enabling the study of some unsteady flow phenomena in the rotor wake. Finally, the global power generated from the windmill has been determined for each simulated angular velocity, allowing the calculation of the rotor power-curve.Keywords: CFD, vertical-axis rotor, windmill.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14433792 Two Day Ahead Short Term Load Forecasting Neural Network Based
Authors: Firas M. Tuaimah
Abstract:
This paper presents an Artificial Neural Network based approach for short-term load forecasting and exactly for two days ahead. Two seasons have been discussed for Iraqi power system, namely summer and winter; the hourly load demand is the most important input variables for ANN based load forecasting. The recorded daily load profile with a lead time of 1-48 hours for July and December of the year 2012 was obtained from the operation and control center that belongs to the Ministry of Iraqi electricity.
The results of the comparison show that the neural network gives a good prediction for the load forecasting and for two days ahead.
Keywords: Short-Term Load Forecasting, Artificial Neural Networks, Back propagation learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15593791 Total Organic Carbon, Porosity and Permeability Correlation: A Tool for Carbon Dioxide Storage Potential Evaluation in Irati Formation of the Parana Basin, Brazil
Authors: Richardson M. Abraham-A., Colombo Celso Gaeta Tassinari
Abstract:
The correlation between Total Organic Carbon (TOC) and flow units have been carried out to predict and compare the carbon dioxide (CO2) storage potential of the shale and carbonate rocks in Irati Formation of the Parana Basin. The equations for permeability (K), reservoir quality index (RQI) and flow zone indicator (FZI) are redefined and engaged to evaluate the flow units in both potential reservoir rocks. Shales show higher values of TOC compared to carbonates, as such, porosity (Ф) is most likely to be higher in shales compared to carbonates. The increase in Ф corresponds to the increase in K (in both rocks). Nonetheless, at lower values of Ф, K is higher in carbonates compared to shales. This shows that at lower values of TOC in carbonates, Ф is low, yet, K is likely to be high compared to shale. In the same vein, at higher values of TOC in shales, Ф is high, yet, K is expected to be low compared to carbonates. Overall, the flow unit factors (RQI and FZI) are better in the carbonates compared to the shales. Moreso, within the study location, there are some portions where the thicknesses of the carbonate units are higher compared to the shale units. Most parts of the carbonate strata in the study location are fractured in situ, hence, this could provide easy access for the storage of CO2. Therefore, based on these points and the disparities between the flow units in the evaluated rock types, the carbonate units are expected to show better potentials for the storage of CO2. The shale units may be considered as potential cap rocks or seals.
Keywords: Total organic carbon, flow units, carbon dioxide storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8673790 Losses Analysis in TEP Considering Uncertainity in Demand by DPSO
Authors: S. Jalilzadeh, A. Kimiyaghalam, A. Ashouri
Abstract:
This paper presents a mathematical model and a methodology to analyze the losses in transmission expansion planning (TEP) under uncertainty in demand. The methodology is based on discrete particle swarm optimization (DPSO). DPSO is a useful and powerful stochastic evolutionary algorithm to solve the large-scale, discrete and nonlinear optimization problems like TEP. The effectiveness of the proposed idea is tested on an actual transmission network of the Azerbaijan regional electric company, Iran. The simulation results show that considering the losses even for transmission expansion planning of a network with low load growth is caused that operational costs decreases considerably and the network satisfies the requirement of delivering electric power more reliable to load centers.Keywords: DPSO, TEP, Uncertainty
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14753789 Generating Normally Distributed Clusters by Means of a Self-organizing Growing Neural Network– An Application to Market Segmentation –
Authors: Reinhold Decker, Christian Holsing, Sascha Lerke
Abstract:
This paper presents a new growing neural network for cluster analysis and market segmentation, which optimizes the size and structure of clusters by iteratively checking them for multivariate normality. We combine the recently published SGNN approach [8] with the basic principle underlying the Gaussian-means algorithm [13] and the Mardia test for multivariate normality [18, 19]. The new approach distinguishes from existing ones by its holistic design and its great autonomy regarding the clustering process as a whole. Its performance is demonstrated by means of synthetic 2D data and by real lifestyle survey data usable for market segmentation.Keywords: Artificial neural network, clustering, multivariatenormality, market segmentation, self-organization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11983788 MHD Non-Newtonian Nanofluid Flow over a Permeable Stretching Sheet with Heat Generation and Velocity Slip
Authors: Rama Bhargava, Mania Goyal
Abstract:
The problem of magnetohydrodynamics boundary layer flow and heat transfer on a permeable stretching surface in a second grade nanofluid under the effect of heat generation and partial slip is studied theoretically. The Brownian motion and thermophoresis effects are also considered. The boundary layer equations governed by the PDE’s are transformed into a set of ODE’s with the help of local similarity transformations. The differential equations are solved by variational finite element method. The effects of different controlling parameters on the flow field and heat transfer characteristics are examined. The numerical results for the dimensionless velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically. The comparison confirmed excellent agreement. The present study is of great interest in coating and suspensions, cooling of metallic plate, oils and grease, paper production, coal water or coal-oil slurries, heat exchangers technology, materials processing exploiting.
Keywords: Viscoelastic nanofluid, partial slip, stretching sheet, heat generation/absorption, MHD flow, FEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32743787 Unified Power Flow Controller Placement to Improve Damping of Power Oscillations
Authors: M. Salehi, A. A. Motie Birjandi, F. Namdari
Abstract:
Weak damping of low frequency oscillations is a frequent phenomenon in electrical power systems. These frequencies can be damped by power system stabilizers. Unified power flow controller (UPFC), as one of the most important FACTS devices, can be applied to increase the damping of power system oscillations and the more effect of this controller on increasing the damping of oscillations depends on its proper placement in power systems. In this paper, a technique based on controllability is proposed to select proper location of UPFC and the best input control signal in order to enhance damping of power oscillations. The effectiveness of the proposed technique is demonstrated in IEEE 9 bus power system.
Keywords: Unified power flow controller (UPFC), controllability, small signal analysis, eigenvalues.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19023786 Hubs as Catalysts for Geospatial Communication in Kinship Networks
Authors: Sameer Kumar, Jariah Mohd. Jan
Abstract:
Earlier studies in kinship networks have primarily focused on observing the social relationships existing between family relatives. In this study, we pre-identified hubs in the network to investigate if they could play a catalyst role in the transfer of physical information. We conducted a case study of a ceremony performed in one of the families of a small Hindu community – the Uttar Rarhi Kayasthas. Individuals (n = 168) who resided in 11 geographically dispersed regions were contacted through our hub-based representation. We found that using this representation, over 98% of the individuals were successfully contacted within the stipulated period. The network also demonstrated a small-world property, with an average geodesic distance of 3.56.Keywords: Social Networks, Kinship Networks, Social Network Analysis, Geospatial Communication, Hubs
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19343785 Molecular Evolutionary Analysis of Yeast Protein Interaction Network
Authors: Soichi Ogishima, Takeshi Hase, So Nakagawa, Yasuhiro Suzuki, Hiroshi Tanaka
Abstract:
To understand life as biological system, evolutionary understanding is indispensable. Protein interactions data are rapidly accumulating and are suitable for system-level evolutionary analysis. We have analyzed yeast protein interaction network by both mathematical and biological approaches. In this poster presentation, we inferred the evolutionary birth periods of yeast proteins by reconstructing phylogenetic profile. It has been thought that hub proteins that have high connection degree are evolutionary old. But our analysis showed that hub proteins are entirely evolutionary new. We also examined evolutionary processes of protein complexes. It showed that member proteins of complexes were tend to have appeared in the same evolutionary period. Our results suggested that protein interaction network evolved by modules that form the functional unit. We also reconstructed standardized phylogenetic trees and calculated evolutionary rates of yeast proteins. It showed that there is no obvious correlation between evolutionary rates and connection degrees of yeast proteins.Keywords: Protein interaction network, evolution, modularity, evolutionary rate, connection degrees.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13633784 River Flow Prediction Using Nonlinear Prediction Method
Authors: N. H. Adenan, M. S. M. Noorani
Abstract:
River flow prediction is an essential to ensure proper management of water resources can be optimally distribute water to consumers. This study presents an analysis and prediction by using nonlinear prediction method involving monthly river flow data in Tanjung Tualang from 1976 to 2006. Nonlinear prediction method involves the reconstruction of phase space and local linear approximation approach. The phase space reconstruction involves the reconstruction of one-dimensional (the observed 287 months of data) in a multidimensional phase space to reveal the dynamics of the system. Revenue of phase space reconstruction is used to predict the next 72 months. A comparison of prediction performance based on correlation coefficient (CC) and root mean square error (RMSE) have been employed to compare prediction performance for nonlinear prediction method, ARIMA and SVM. Prediction performance comparisons show the prediction results using nonlinear prediction method is better than ARIMA and SVM. Therefore, the result of this study could be used to develop an efficient water management system to optimize the allocation water resources.
Keywords: River flow, nonlinear prediction method, phase space, local linear approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23643783 Dynamic Bayesian Networks Modeling for Inferring Genetic Regulatory Networks by Search Strategy: Comparison between Greedy Hill Climbing and MCMC Methods
Authors: Huihai Wu, Xiaohui Liu
Abstract:
Using Dynamic Bayesian Networks (DBN) to model genetic regulatory networks from gene expression data is one of the major paradigms for inferring the interactions among genes. Averaging a collection of models for predicting network is desired, rather than relying on a single high scoring model. In this paper, two kinds of model searching approaches are compared, which are Greedy hill-climbing Search with Restarts (GSR) and Markov Chain Monte Carlo (MCMC) methods. The GSR is preferred in many papers, but there is no such comparison study about which one is better for DBN models. Different types of experiments have been carried out to try to give a benchmark test to these approaches. Our experimental results demonstrated that on average the MCMC methods outperform the GSR in accuracy of predicted network, and having the comparable performance in time efficiency. By proposing the different variations of MCMC and employing simulated annealing strategy, the MCMC methods become more efficient and stable. Apart from comparisons between these approaches, another objective of this study is to investigate the feasibility of using DBN modeling approaches for inferring gene networks from few snapshots of high dimensional gene profiles. Through synthetic data experiments as well as systematic data experiments, the experimental results revealed how the performances of these approaches can be influenced as the target gene network varies in the network size, data size, as well as system complexity.
Keywords: Genetic regulatory network, Dynamic Bayesian network, GSR, MCMC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18853782 The Using Artificial Neural Network to Estimate of Chemical Oxygen Demand
Authors: S. Areerachakul
Abstract:
Nowadays, the increase of human population every year results in increasing of water usage and demand. Saen Saep canal is important canal in Bangkok. The main objective of this study is using Artificial Neural Network (ANN) model to estimate the Chemical Oxygen Demand (COD) on data from 11 sampling sites. The data is obtained from the Department of Drainage and Sewerage, Bangkok Metropolitan Administration, during 2007-2011. The twelve parameters of water quality are used as the input of the models. These water quality indices affect the COD. The experimental results indicate that the ANN model provides a high correlation coefficient (R=0.89).
Keywords: Artificial neural network, chemical oxygen demand, estimate, surface water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22643781 Predicting the Success of Bank Telemarketing Using Artificial Neural Network
Authors: Mokrane Selma
Abstract:
The shift towards decision making (DM) based on artificial intelligence (AI) techniques will change the way in which consumer markets and our societies function. Through AI, predictive analytics is being used by businesses to identify these patterns and major trends with the objective to improve the DM and influence future business outcomes. This paper proposes an Artificial Neural Network (ANN) approach to predict the success of telemarketing calls for selling bank long-term deposits. To validate the proposed model, we uses the bank marketing data of 41188 phone calls. The ANN attains 98.93% of accuracy which outperforms other conventional classifiers and confirms that it is credible and valuable approach for telemarketing campaign managers.
Keywords: Bank telemarketing, prediction, decision making, artificial intelligence, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31483780 Video-On-Demand QoE Evaluation across Different Age-Groups and Its Significance for Network Capacity
Authors: Mujtaba Roshan, John A. Schormans
Abstract:
Quality of Experience (QoE) drives churn in the broadband networks industry, and good QoE plays a large part in the retention of customers. QoE is known to be affected by the Quality of Service (QoS) factors packet loss probability (PLP), delay and delay jitter caused by the network. Earlier results have shown that the relationship between these QoS factors and QoE is non-linear, and may vary from application to application. We use the network emulator Netem as the basis for experimentation, and evaluate how QoE varies as we change the emulated QoS metrics. Focusing on Video-on-Demand, we discovered that the reported QoE may differ widely for users of different age groups, and that the most demanding age group (the youngest) can require an order of magnitude lower PLP to achieve the same QoE than is required by the most widely studied age group of users. We then used a bottleneck TCP model to evaluate the capacity cost of achieving an order of magnitude decrease in PLP, and found it be (almost always) a 3-fold increase in link capacity that was required.
Keywords: Quality of experience, quality of service, packet loss probability, network capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9403779 Optimization of the Input Layer Structure for Feed-Forward Narx Neural Networks
Authors: Zongyan Li, Matt Best
Abstract:
This paper presents an optimization method for reducing the number of input channels and the complexity of the feed-forward NARX neural network (NN) without compromising the accuracy of the NN model. By utilizing the correlation analysis method, the most significant regressors are selected to form the input layer of the NN structure. An application of vehicle dynamic model identification is also presented in this paper to demonstrate the optimization technique and the optimal input layer structure and the optimal number of neurons for the neural network is investigated.Keywords: Correlation analysis, F-ratio, Levenberg-Marquardt, MSE, NARX, neural network, optimisation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21873778 Spreading Dynamics of a Viral Infection in a Complex Network
Authors: Khemanand Moheeput, Smita S. D. Goorah, Satish K. Ramchurn
Abstract:
We report a computational study of the spreading dynamics of a viral infection in a complex (scale-free) network. The final epidemic size distribution (FESD) was found to be unimodal or bimodal depending on the value of the basic reproductive number R0 . The FESDs occurred on time-scales long enough for intermediate-time epidemic size distributions (IESDs) to be important for control measures. The usefulness of R0 for deciding on the timeliness and intensity of control measures was found to be limited by the multimodal nature of the IESDs and by its inability to inform on the speed at which the infection spreads through the population. A reduction of the transmission probability at the hubs of the scale-free network decreased the occurrence of the larger-sized epidemic events of the multimodal distributions. For effective epidemic control, an early reduction in transmission at the index cell and its neighbors was essential.
Keywords: Basic reproductive number, epidemic control, scalefree network, viral infection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17193777 Energy Efficient Clustering Algorithm with Global and Local Re-clustering for Wireless Sensor Networks
Authors: Ashanie Guanathillake, Kithsiri Samarasinghe
Abstract:
Wireless Sensor Networks consist of inexpensive, low power sensor nodes deployed to monitor the environment and collect data. Gathering information in an energy efficient manner is a critical aspect to prolong the network lifetime. Clustering algorithms have an advantage of enhancing the network lifetime. Current clustering algorithms usually focus on global re-clustering and local re-clustering separately. This paper, proposed a combination of those two reclustering methods to reduce the energy consumption of the network. Furthermore, the proposed algorithm can apply to homogeneous as well as heterogeneous wireless sensor networks. In addition, the cluster head rotation happens, only when its energy drops below a dynamic threshold value computed by the algorithm. The simulation result shows that the proposed algorithm prolong the network lifetime compared to existing algorithms.
Keywords: Energy efficient, Global re-clustering, Local re-clustering, Wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23693776 Anomaly Detection and Characterization to Classify Traffic Anomalies Case Study: TOT Public Company Limited Network
Authors: O. Siriporn, S. Benjawan
Abstract:
This paper represents four unsupervised clustering algorithms namely sIB, RandomFlatClustering, FarthestFirst, and FilteredClusterer that previously works have not been used for network traffic classification. The methodology, the result, the products of the cluster and evaluation of these algorithms with efficiency of each algorithm from accuracy are shown. Otherwise, the efficiency of these algorithms considering form the time that it use to generate the cluster quickly and correctly. Our work study and test the best algorithm by using classify traffic anomaly in network traffic with different attribute that have not been used before. We analyses the algorithm that have the best efficiency or the best learning and compare it to the previously used (K-Means). Our research will be use to develop anomaly detection system to more efficiency and more require in the future.
Keywords: Unsupervised, clustering, anomaly, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21113775 One Dimensional Reactor Modeling for Methanol Steam Reforming to Hydrogen
Authors: Hongfang Ma, Mingchuan Zhou, Haitao Zhang, Weiyong Ying
Abstract:
One dimensional pseudo-homogenous modeling has been performed for methanol steam reforming reactor. The results show that the models can well predict the industrial data. The reactor had minimum temperature along axial because of endothermic reaction. Hydrogen productions and temperature profiles along axial were investigated regarding operation conditions such as inlet mass flow rate and mass fraction of methanol, inlet temperature of external thermal oil. Low inlet mass flow rate of methanol, low inlet temperature, and high mass fraction of methanol decreased minimum temperature along axial. Low inlet mass flow rate of methanol, high mass fraction of methanol, and high inlet temperature of thermal oil made cold point forward. Low mass fraction, high mass flow rate, and high inlet temperature of thermal oil increased hydrogen production. One dimensional models can be a guide for industrial operation.
Keywords: Reactor, modeling, methanol, steam reforming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7453774 Comparison of Artificial Neural Network and Multivariate Regression Methods in Prediction of Soil Cation Exchange Capacity
Authors: Ali Keshavarzi, Fereydoon Sarmadian
Abstract:
Investigation of soil properties like Cation Exchange Capacity (CEC) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. Then, multivariate regression and neural network model (feedforward back propagation network) were employed to develop a pedotransfer function for predicting soil parameter using easily measurable characteristics of clay and organic carbon. The performance of the multivariate regression and neural network model was evaluated using a test data set. In order to evaluate the models, root mean square error (RMSE) was used. The value of RMSE and R2 derived by ANN model for CEC were 0.47 and 0.94 respectively, while these parameters for multivariate regression model were 0.65 and 0.88 respectively. Results showed that artificial neural network with seven neurons in hidden layer had better performance in predicting soil cation exchange capacity than multivariate regression.Keywords: Easily measurable characteristics, Feed-forwardback propagation, Pedotransfer functions, CEC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22103773 A Numerical Simulation of the Indoor Air Flow
Authors: Karel Frana, Jianshun S. Zhang, Milos Muller
Abstract:
The indoor airflow with a mixed natural/forced convection was numerically calculated using the laminar and turbulent approach. The Boussinesq approximation was considered for a simplification of the mathematical model and calculations. The results obtained, such as mean velocity fields, were successfully compared with experimental PIV flow visualizations. The effect of the distance between the cooled wall and the heat exchanger on the temperature and velocity distributions was calculated. In a room with a simple shape, the computational code OpenFOAM demonstrated an ability to numerically predict flow patterns. Furthermore, numerical techniques, boundary type conditions and the computational grid quality were examined. Calculations using the turbulence model k-omega had a significant effect on the results influencing temperature and velocity distributions.Keywords: natural and forced convections, numerical simulations, indoor airflows.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32043772 Toward Delegated Democracy: Vote by Yourself, or Trust Your Network
Authors: Hiroshi Yamakawa, Michiko Yoshida, Motohiro Tsuchiya
Abstract:
The recent development of Information and Communication Technology (ICT) enables new ways of "democratic" decision-making such as a page-ranking system, which estimates the importance of a web page based on indirect trust on that page shared by diverse group of unorganized individuals. These kinds of "democracy" have not been acclaimed yet in the world of real politics. On the other hand, a large amount of data about personal relations including trust, norms of reciprocity, and networks of civic engagement has been accumulated in a computer-readable form by computer systems (e.g., social networking systems). We can use these relations as a new type of social capital to construct a new democratic decision-making system based on a delegation network. In this paper, we propose an effective decision-making support system, which is based on empowering someone's vote whom you trust. For this purpose, we propose two new techniques: the first is for estimating entire vote distribution from a small number of votes, and the second is for estimating active voter choice to promote voting using a delegation network. We show that these techniques could increase the voting ratio and credibility of the whole decision by agent-based simulations.
Keywords: Delegation, network centrality, social network, voting ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17853771 CFD Simulation the Thermal-Hydraulic Characteristic within Fuel Rod Bundle near Grid Spacers
Authors: David Lávicka
Abstract:
This paper looks into detailed investigation of thermal-hydraulic characteristics of the flow field in a fuel rod model, especially near the spacer. The area investigate represents a source of information on the velocity flow field, vortex, and on the amount of heat transfer into the coolant all of which are critical for the design and improvement of the fuel rod in nuclear power plants. The flow field investigation uses three-dimensional Computational Fluid Dynamics (CFD) with the Reynolds stresses turbulence model (RSM). The fuel rod model incorporates a vertical annular channel where three different shapes of spacers are used; each spacer shape is addressed individually. These spacers are mutually compared in consideration of heat transfer capabilities between the coolant and the fuel rod model. The results are complemented with the calculated heat transfer coefficient in the location of the spacer and along the stainless-steel pipe.Keywords: CFD, fuel rod model, heat transfer, spacer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17723770 Big Data Strategy for Telco: Network Transformation
Abstract:
Big data has the potential to improve the quality of services; enable infrastructure that businesses depend on to adapt continually and efficiently; improve the performance of employees; help organizations better understand customers; and reduce liability risks. Analytics and marketing models of fixed and mobile operators are falling short in combating churn and declining revenue per user. Big Data presents new method to reverse the way and improve profitability. The benefits of Big Data and next-generation network, however, are more exorbitant than improved customer relationship management. Next generation of networks are in a prime position to monetize rich supplies of customer information—while being mindful of legal and privacy issues. As data assets are transformed into new revenue streams will become integral to high performance.
Keywords: Big Data, Next Generation Networks, Network Transformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25153769 Visualization of Flow Behaviour in Micro-Cavities during Micro Injection Moulding
Authors: Reza Gheisari, Paulo J. Bartolo, Nicholas Goddard
Abstract:
Polymeric micro-cantilevers (Cs) are rapidly becoming popular for MEMS applications such as chemo- and biosensing as well as purely electromechanical applications such as microrelays. Polymer materials present suitable physical and chemical properties combined with low-cost mass production. Hence, micro-cantilevers made of polymers indicate much more biocompatibility and adaptability of rapid prototyping along with mechanical properties. This research studies the effects of three process and one size factors on the filling behaviour in micro cavity, and the role of each in the replication of micro parts using different polymer materials i.e. polypropylene (PP) SABIC 56M10 and acrylonitrile butadiene styrene (ABS) Magnum 8434 . In particular, the following factors are considered: barrel temperature, mould temperature, injection speed and the thickness of micro features. The study revealed that the barrel temperature and the injection speed are the key factors affecting the flow length of micro features replicated in PP and ABS. For both materials, an increase of feature sizes improves the melt flow. However, the melt fill of micro features does not increase linearly with the increase of their thickness.Keywords: Flow length, micro-cantilevers, micro injection moulding, microfabrication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19673768 Forecasting Optimal Production Program Using Profitability Optimization by Genetic Algorithm and Neural Network
Authors: Galal H. Senussi, Muamar Benisa, Sanja Vasin
Abstract:
In our business field today, one of the most important issues for any enterprises is cost minimization and profit maximization. Second issue is how to develop a strong and capable model that is able to give us desired forecasting of these two issues. Many researches deal with these issues using different methods. In this study, we developed a model for multi-criteria production program optimization, integrated with Artificial Neural Network.
The prediction of the production cost and profit per unit of a product, dealing with two obverse functions at same time can be extremely difficult, especially if there is a great amount of conflict information about production parameters.
Feed-Forward Neural Networks are suitable for generalization, which means that the network will generate a proper output as a result to input it has never seen. Therefore, with small set of examples the network will adjust its weight coefficients so the input will generate a proper output.
This essential characteristic is of the most important abilities enabling this network to be used in variety of problems spreading from engineering to finance etc.
From our results as we will see later, Feed-Forward Neural Networks has a strong ability and capability to map inputs into desired outputs.
Keywords: Project profitability, multi-objective optimization, genetic algorithm, Pareto set, Neural Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20543767 Thrust Vectoring Control of Supersonic Flow Through an Orifice Injector
Authors: Ibrahim Mnafeg, Azgal Abichou, Lotfi Beji
Abstract:
Traditional mechanical control systems in thrust vectoring are efficient in rocket thrust guidance but their costs and their weights are excessive. The fluidic injection in the nozzle divergent constitutes an alternative procedure to achieve the goal. In this paper, we present a 3D analytical model for fluidic injection in a supersonic nozzle integrating an orifice. The fluidic vectoring uses a sonic secondary injection in the divergent. As a result, the flow and interaction between the main and secondary jet has built in order to express the pressure fields from which the forces and thrust vectoring are deduced. Under various separation criteria, the present analytical model results are compared with the existing numerical and experimental data from the literature.Keywords: Flow separation, Fluidic thrust vectoring, Nozzle, Secondary jet, Shock wave.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21273766 Integrated Subset Split for Balancing Network Utilization and Quality of Routing
Authors: S. V. Kasmir Raja, P. Herbert Raj
Abstract:
The overlay approach has been widely used by many service providers for Traffic Engineering (TE) in large Internet backbones. In the overlay approach, logical connections are set up between edge nodes to form a full mesh virtual network on top of the physical topology. IP routing is then run over the virtual network. Traffic engineering objectives are achieved through carefully routing logical connections over the physical links. Although the overlay approach has been implemented in many operational networks, it has a number of well-known scaling issues. This paper proposes a new approach to achieve traffic engineering without full-mesh overlaying with the help of integrated approach and equal subset split method. Traffic engineering needs to determine the optimal routing of traffic over the existing network infrastructure by efficiently allocating resource in order to optimize traffic performance on an IP network. Even though constraint-based routing [1] of Multi-Protocol Label Switching (MPLS) is developed to address this need, since it is not widely tested or debugged, Internet Service Providers (ISPs) resort to TE methods under Open Shortest Path First (OSPF), which is the most commonly used intra-domain routing protocol. Determining OSPF link weights for optimal network performance is an NP-hard problem. As it is not possible to solve this problem, we present a subset split method to improve the efficiency and performance by minimizing the maximum link utilization in the network via a small number of link weight modifications. The results of this method are compared against results of MPLS architecture [9] and other heuristic methods.
Keywords: Constraint based routing, Link Utilization, Subsetsplit method and Traffic Engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13943765 Classifying Students for E-Learning in Information Technology Course Using ANN
Authors: S. Areerachakul, N. Ployong, S. Na Songkla
Abstract:
This research’s objective is to select the model with most accurate value by using Neural Network Technique as a way to filter potential students who enroll in IT course by Electronic learning at Suan Suanadha Rajabhat University. It is designed to help students selecting the appropriate courses by themselves. The result showed that the most accurate model was 100 Folds Cross-validation which had 73.58% points of accuracy.
Keywords: Artificial neural network, classification, students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496