Search results for: Financial Decision Support Systems
6181 Hybrid Finite Element Analysis of Expansion Joints for Piping Systems in Aircraft Engine External Configurations and Nuclear Power Plants
Authors: Dong Wook Lee
Abstract:
This paper presents a method to analyze the stiffness of the expansion joint with structural support using a hybrid method combining computational and analytical methods. Many expansion joints found in tubes and ducts of mechanical structures are designed to absorb thermal expansion mismatch between their structural members and deal with misalignments introduced from the assembly/manufacturing processes. One of the important design perspectives is the system’s vibrational characteristics. We calculate the stiffness as a characterization parameter for structural joint systems using a combined Finite Element Analysis (FEA) and an analytical method. We apply the methods to two sample applications: external configurations of aircraft engines and nuclear power plant structures.Keywords: Expansion joint, expansion joint stiffness, Finite Element Analysis, FEA, nuclear power plants, aircraft engine external configurations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7036180 Modeling and Control of an Acrobot Using MATLAB and Simulink
Authors: Dong Sang Yoo
Abstract:
The problem of finding control laws for underactuated systems has attracted growing attention since these systems are characterized by the fact that they have fewer actuators than the degrees of freedom to be controlled. The acrobot, which is a planar two-link robotic arm in the vertical plane with an actuator at the elbow but no actuator at the shoulder, is a representative in underactuated systems. In this paper, the dynamic model of the acrobot is implemented using Mathworks’ Simscape. And the sliding mode control is constructed using MATLAB and Simulink.Keywords: Acrobot, MATLAB and Simulink, sliding mode control, underactuated systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42656179 E-Learning Recommender System Based on Collaborative Filtering and Ontology
Authors: John Tarus, Zhendong Niu, Bakhti Khadidja
Abstract:
In recent years, e-learning recommender systems has attracted great attention as a solution towards addressing the problem of information overload in e-learning environments and providing relevant recommendations to online learners. E-learning recommenders continue to play an increasing educational role in aiding learners to find appropriate learning materials to support the achievement of their learning goals. Although general recommender systems have recorded significant success in solving the problem of information overload in e-commerce domains and providing accurate recommendations, e-learning recommender systems on the other hand still face some issues arising from differences in learner characteristics such as learning style, skill level and study level. Conventional recommendation techniques such as collaborative filtering and content-based deal with only two types of entities namely users and items with their ratings. These conventional recommender systems do not take into account the learner characteristics in their recommendation process. Therefore, conventional recommendation techniques cannot make accurate and personalized recommendations in e-learning environment. In this paper, we propose a recommendation technique combining collaborative filtering and ontology to recommend personalized learning materials to online learners. Ontology is used to incorporate the learner characteristics into the recommendation process alongside the ratings while collaborate filtering predicts ratings and generate recommendations. Furthermore, ontological knowledge is used by the recommender system at the initial stages in the absence of ratings to alleviate the cold-start problem. Evaluation results show that our proposed recommendation technique outperforms collaborative filtering on its own in terms of personalization and recommendation accuracy.
Keywords: Collaborative filtering, e-learning, ontology, recommender system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31146178 Evaluating Contractors in Construction Projects by Multi-Criteria Decision Making and Supply Chain Approach
Authors: Sara Najiazarpour, Mahsa Najiazarpour
Abstract:
There are many problems in contracting projects and their performance. At each project stage and due to different reasons, these problems affect cost, time, and quality. Hence, in order to increase the efficiency and performance in all levels of the chain and with supply chain management approach, there will be a coordination from the beginning of a project to the end of project (handover of project). Contractor selection is the foremost part of construction projects which in this multi-criteria decision-making, the best contractor is determined by expert judgment, different variables, and their priorities. In this paper for selecting the best contractor, numerous criteria were collected by asking from adept experts and then among them, 16 criteria with highest frequency were considered for questionnaire. This questionnaire was distributed between experts. Cronbach's alpha coefficient was used and then based on Borda function important criteria were selected which was categorized in four main criteria as follows: Environmental factors and physical equipment, past performance and technical expertise, affordability and standards. Then with PROMTHEE method, the criteria were normalized and monitored, finally the best alternative was selected. A case study had been done, and the best contractor was selected based on all criteria and their priorities.
Keywords: Evaluation and selecting contractors, project development, supply chain management, multi-criteria decision-making.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 846177 Indonesian News Classification using Support Vector Machine
Authors: Dewi Y. Liliana, Agung Hardianto, M. Ridok
Abstract:
Digital news with a variety topics is abundant on the internet. The problem is to classify news based on its appropriate category to facilitate user to find relevant news rapidly. Classifier engine is used to split any news automatically into the respective category. This research employs Support Vector Machine (SVM) to classify Indonesian news. SVM is a robust method to classify binary classes. The core processing of SVM is in the formation of an optimum separating plane to separate the different classes. For multiclass problem, a mechanism called one against one is used to combine the binary classification result. Documents were taken from the Indonesian digital news site, www.kompas.com. The experiment showed a promising result with the accuracy rate of 85%. This system is feasible to be implemented on Indonesian news classification.Keywords: classification, Indonesian news, text processing, support vector machine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34886176 Stability Analysis of Fractional Order Systems with Time Delay
Authors: Hong Li, Shou-Ming Zhong, Hou-Biao Li
Abstract:
In this paper, we mainly study the stability of linear and interval linear fractional systems with time delay. By applying the characteristic equations, a necessary and sufficient stability condition is obtained firstly, and then some sufficient conditions are deserved. In addition, according to the equivalent relationship of fractional order systems with order 0 < α ≤ 1 and with order 1 ≤ β < 2, one may get more relevant theorems. Finally, two examples are provided to demonstrate the effectiveness of our results.
Keywords: Fractional order systems, Time delay, Characteristic equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36616175 Biologically Inspired Controller for the Autonomous Navigation of a Mobile Robot in an Evasion Task
Authors: Dejanira Araiza-Illan, Tony J. Dodd
Abstract:
A novel biologically inspired controller for the autonomous navigation of a mobile robot in an evasion task is proposed. The controller takes advantage of the environment by calculating a measure of danger and subsequently choosing the parameters of a reinforcement learning based decision process. Two different reinforcement learning algorithms were used: Qlearning and Sarsa (λ). Simulations show that selecting dynamic parameters reduce the time while executing the decision making process, so the robot can obtain a policy to succeed in an escaping task in a realistic time.Keywords: Autonomous navigation, mobile robots, reinforcement learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14806174 Selective Intra Prediction Mode Decision for H.264/AVC Encoders
Authors: Jun Sung Park, Hyo Jung Song
Abstract:
H.264/AVC offers a considerably higher improvement in coding efficiency compared to other compression standards such as MPEG-2, but computational complexity is increased significantly. In this paper, we propose selective mode decision schemes for fast intra prediction mode selection. The objective is to reduce the computational complexity of the H.264/AVC encoder without significant rate-distortion performance degradation. In our proposed schemes, the intra prediction complexity is reduced by limiting the luma and chroma prediction modes using the directional information of the 16×16 prediction mode. Experimental results are presented to show that the proposed schemes reduce the complexity by up to 78% maintaining the similar PSNR quality with about 1.46% bit rate increase in average.Keywords: Video encoding, H.264, Intra prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34686173 Mining Implicit Knowledge to Predict Political Risk by Providing Novel Framework with Using Bayesian Network
Authors: Siavash Asadi Ghajarloo
Abstract:
Nowadays predicting political risk level of country has become a critical issue for investors who intend to achieve accurate information concerning stability of the business environments. Since, most of the times investors are layman and nonprofessional IT personnel; this paper aims to propose a framework named GECR in order to help nonexpert persons to discover political risk stability across time based on the political news and events. To achieve this goal, the Bayesian Networks approach was utilized for 186 political news of Pakistan as sample dataset. Bayesian Networks as an artificial intelligence approach has been employed in presented framework, since this is a powerful technique that can be applied to model uncertain domains. The results showed that our framework along with Bayesian Networks as decision support tool, predicted the political risk level with a high degree of accuracy.Keywords: Bayesian Networks, Data mining, GECRframework, Predicting political risk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21746172 A Hybrid GMM/SVM System for Text Independent Speaker Identification
Authors: Rafik Djemili, Mouldi Bedda, Hocine Bourouba
Abstract:
This paper proposes a novel approach that combines statistical models and support vector machines. A hybrid scheme which appropriately incorporates the advantages of both the generative and discriminant model paradigms is described and evaluated. Support vector machines (SVMs) are trained to divide the whole speakers' space into small subsets of speakers within a hierarchical tree structure. During testing a speech token is assigned to its corresponding group and evaluation using gaussian mixture models (GMMs) is then processed. Experimental results show that the proposed method can significantly improve the performance of text independent speaker identification task. We report improvements of up to 50% reduction in identification error rate compared to the baseline statistical model.Keywords: Speaker identification, Gaussian mixture model (GMM), support vector machine (SVM), hybrid GMM/SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22376171 Decision-Making Strategies on Smart Dairy Farms: A Review
Authors: L. Krpalkova, N. O' Mahony, A. Carvalho, S. Campbell, G. Corkery, E. Broderick, J. Walsh
Abstract:
Farm management and operations will drastically change due to access to real-time data, real-time forecasting and tracking of physical items in combination with Internet of Things (IoT) developments to further automate farm operations. Dairy farms have embraced technological innovations and procured vast amounts of permanent data streams during the past decade; however, the integration of this information to improve the whole farm decision-making process does not exist. It is now imperative to develop a system that can collect, integrate, manage, and analyze on-farm and off-farm data in real-time for practical and relevant environmental and economic actions. The developed systems, based on machine learning and artificial intelligence, need to be connected for useful output, a better understanding of the whole farming issue and environmental impact. Evolutionary Computing (EC) can be very effective in finding the optimal combination of sets of some objects and finally, in strategy determination. The system of the future should be able to manage the dairy farm as well as an experienced dairy farm manager with a team of the best agricultural advisors. All these changes should bring resilience and sustainability to dairy farming as well as improving and maintaining good animal welfare and the quality of dairy products. This review aims to provide an insight into the state-of-the-art of big data applications and EC in relation to smart dairy farming and identify the most important research and development challenges to be addressed in the future. Smart dairy farming influences every area of management and its uptake has become a continuing trend.
Keywords: Big data, evolutionary computing, cloud, precision technologies
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7566170 AHP and Extent Fuzzy AHP Approach for Prioritization of Performance Measurement Attributes
Authors: Remica Aggarwal, Sanjeet Singh
Abstract:
The decision to recruit manpower in an organization requires clear identification of the criteria (attributes) that distinguish successful from unsuccessful performance. The choice of appropriate attributes or criteria in different levels of hierarchy in an organization is a multi-criteria decision problem and therefore multi-criteria decision making (MCDM) techniques can be used for prioritization of such attributes. Analytic Hierarchy Process (AHP) is one such technique that is widely used for deciding among the complex criteria structure in different levels. In real applications, conventional AHP still cannot reflect the human thinking style as precise data concerning human attributes are quite hard to be extracted. Fuzzy logic offers a systematic base in dealing with situations, which are ambiguous or not well defined. This study aims at defining a methodology to improve the quality of prioritization of an employee-s performance measurement attributes under fuzziness. To do so, a methodology based on the Extent Fuzzy Analytic Hierarchy Process is proposed. Within the model, four main attributes such as Subject knowledge and achievements, Research aptitude, Personal qualities and strengths and Management skills with their subattributes are defined. The two approaches conventional AHP approach and the Extent Fuzzy Analytic Hierarchy Process approach have been compared on the same hierarchy structure and criteria set.Keywords: AHP, Extent analysis method, Fuzzy AHP, Prioritization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48936169 Designing a Patient Monitoring System Using Cloud and Semantic Web Technologies
Authors: Chryssa Thermolia, Ekaterini S. Bei, Stelios Sotiriadis, Kostas Stravoskoufos, Euripides G.M. Petrakis
Abstract:
Moving into a new era of healthcare, new tools and devices are developed to extend and improve health services, such as remote patient monitoring and risk prevention. In this concept, Internet of Things (IoT) and Cloud Computing present great advantages by providing remote and efficient services, as well as cooperation between patients, clinicians, researchers and other health professionals. This paper focuses on patients suffering from bipolar disorder, a brain disorder that belongs to a group of conditions called affective disorders, which is characterized by great mood swings. We exploit the advantages of Semantic Web and Cloud Technologies to develop a patient monitoring system to support clinicians. Based on intelligently filtering of evidence-knowledge and individual-specific information we aim to provide treatment notifications and recommended function tests at appropriate times or concluding into alerts for serious mood changes and patient’s nonresponse to treatment. We propose an architecture as the back-end part of a cloud platform for IoT, intertwining intelligence devices with patients’ daily routine and clinicians’ support.
Keywords: Bipolar disorder, intelligent systems patient monitoring, semantic web technologies, IoT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24416168 Theoretical Appraisal of Satisfactory Decisions: Uncertainty, Evolutionary Ideas and Beliefs, and Satisfactory Time Use
Authors: Okay Gunes
Abstract:
Unsatisfactory experiences due to an information shortage regarding the future pay-offs of actual choices, yield satisficing decision-making. This research will examine, for the first time in the literature, the motivation behind suboptimal decisions due to uncertainty by subjecting Adam Smith’s and Jeremy Bentham’s assumptions about the nature of the actions that lead to satisficing behavior, in order to clarify the theoretical background of a “consumption-based satisfactory time” concept. The contribution of this paper with respect to the existing literature is threefold: firstly, it is showed in this paper that Adam Smith’s uncertainty is related to the problem of the constancy of ideas and not related directly to beliefs. Secondly, possessions, as in Jeremy Bentham’s oeuvre, are assumed to be just as pleasing, as protecting and improving the actual or expected quality of life, so long as they reduce any displeasure due to the undesired outcomes of uncertainty. Finally, each consumption decision incurs its own satisfactory time period, owed to not feeling hungry, being healthy, not having transportation…etc. This reveals that the level of satisfaction is indeed a behavioral phenomenon where its value would depend on the simultaneous satisfaction derived from all activities.
Keywords: Decision-making, idea and belief, satisficing, uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19306167 RUPSec: An Extension on RUP for Developing Secure Systems - Requirements Discipline
Authors: Mohammad Reza Ayatollahzadeh Shirazi, Pooya Jaferian, Golnaz Elahi, Hamid Baghi, Babak Sadeghian
Abstract:
The world is moving rapidly toward the deployment of information and communication systems. Nowadays, computing systems with their fast growth are found everywhere and one of the main challenges for these systems is increasing attacks and security threats against them. Thus, capturing, analyzing and verifying security requirements becomes a very important activity in development process of computing systems, specially in developing systems such as banking, military and e-business systems. For developing every system, a process model which includes a process, methods and tools is chosen. The Rational Unified Process (RUP) is one of the most popular and complete process models which is used by developers in recent years. This process model should be extended to be used in developing secure software systems. In this paper, the Requirement Discipline of RUP is extended to improve RUP for developing secure software systems. These proposed extensions are adding and integrating a number of Activities, Roles, and Artifacts to RUP in order to capture, document and model threats and security requirements of system. These extensions introduce a group of clear and stepwise activities to developers. By following these activities, developers assure that security requirements are captured and modeled. These models are used in design, implementation and test activitie Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28116166 Transparency of Audit Firms in Croatia
Authors: Marko Čular
Abstract:
The aim of this paper is to raise general awareness of transparency importance for audit firms and for audit services’ users. This paper analyzes transparency of audit firms that audited financial statements of listed companies, for year 2011 and 2012. We use this two years because in the meantime Code of Ethics for Professional Accountants has been adopted. This paper investigates whether transparency reports of audit firms are in accordance with the Croatian Audit Act and whether there is a difference on transparency in observed years. For this paper quality index of transparency report and financial indicators of audit firms are used to get conclusion about condition of audit firms transparency reporting. Results of our study indicate that audit firms are not fully transparent, looking for both years. Transparency of audit firms in 2012 has improved significantly, compared with transparency in 2011.
Keywords: Transparency report, Index quality of transparency report, Croatian Audit Act, Code of Ethics for Professional Accountants.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23026165 Stability of a Special Class of Switched Positive Systems
Authors: Xiuyong Ding, Lan Shu, Xiu Liu
Abstract:
This paper is concerned with the existence of a linear copositive Lyapunov function(LCLF) for a special class of switched positive linear systems(SPLSs) composed of continuousand discrete-time subsystems. Firstly, by using system matrices, we construct a special kind of matrices in appropriate manner. Secondly, our results reveal that the Hurwitz stability of these matrices is equivalent to the existence of a common LCLF for arbitrary finite sets composed of continuous- and discrete-time positive linear timeinvariant( LTI) systems. Finally, a simple example is provided to illustrate the implication of our results.
Keywords: Linear co-positive Lyapunov functions, positive systems, switched systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15196164 Distinguishing Innocent Murmurs from Murmurs caused by Aortic Stenosis by Recurrence Quantification Analysis
Authors: Christer Ahlstrom, Katja Höglund, Peter Hult, Jens Häggström, Clarence Kvart, Per Ask
Abstract:
It is sometimes difficult to differentiate between innocent murmurs and pathological murmurs during auscultation. In these difficult cases, an intelligent stethoscope with decision support abilities would be of great value. In this study, using a dog model, phonocardiographic recordings were obtained from 27 boxer dogs with various degrees of aortic stenosis (AS) severity. As a reference for severity assessment, continuous wave Doppler was used. The data were analyzed with recurrence quantification analysis (RQA) with the aim to find features able to distinguish innocent murmurs from murmurs caused by AS. Four out of eight investigated RQA features showed significant differences between innocent murmurs and pathological murmurs. Using a plain linear discriminant analysis classifier, the best pair of features (recurrence rate and entropy) resulted in a sensitivity of 90% and a specificity of 88%. In conclusion, RQA provide valid features which can be used for differentiation between innocent murmurs and murmurs caused by AS.Keywords: Bioacoustics, murmur, phonocardiographic signal, recurrence quantification analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20056163 Business Intelligence for N=1 Analytics using Hybrid Intelligent System Approach
Authors: Rajendra M Sonar
Abstract:
The future of business intelligence (BI) is to integrate intelligence into operational systems that works in real-time analyzing small chunks of data based on requirements on continuous basis. This is moving away from traditional approach of doing analysis on ad-hoc basis or sporadically in passive and off-line mode analyzing huge amount data. Various AI techniques such as expert systems, case-based reasoning, neural-networks play important role in building business intelligent systems. Since BI involves various tasks and models various types of problems, hybrid intelligent techniques can be better choice. Intelligent systems accessible through web services make it easier to integrate them into existing operational systems to add intelligence in every business processes. These can be built to be invoked in modular and distributed way to work in real time. Functionality of such systems can be extended to get external inputs compatible with formats like RSS. In this paper, we describe a framework that use effective combinations of these techniques, accessible through web services and work in real-time. We have successfully developed various prototype systems and done few commercial deployments in the area of personalization and recommendation on mobile and websites.Keywords: Business Intelligence, Customer Relationship Management, Hybrid Intelligent Systems, Personalization and Recommendation (P&R), Recommender Systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20776162 Research on Weakly Hard Real-Time Constraints and Their Boolean Combination to Support Adaptive QoS
Authors: Xiangbin Zhu
Abstract:
Advances in computing applications in recent years have prompted the demand for more flexible scheduling models for QoS demand. Moreover, in practical applications, partly violated temporal constraints can be tolerated if the violation meets certain distribution. So we need extend the traditional Liu and Lanland model to adapt to these circumstances. There are two extensions, which are the (m, k)-firm model and Window-Constrained model. This paper researches on weakly hard real-time constraints and their combination to support QoS. The fact that a practical application can tolerate some violations of temporal constraint under certain distribution is employed to support adaptive QoS on the open real-time system. The experiment results show these approaches are effective compared to traditional scheduling algorithms.Keywords: Weakly Hard Real-Time, Real-Time, Scheduling, Quality of Service.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15796161 Sustainability Assessment of Municipal Wastewater Treatment
Authors: Yousra Zakaria Ahmed, Ahmed El Gendy, Salah El Haggar
Abstract:
In this paper, our methodology to assess sustainability of wastewater treatment technologies in Egypt is presented. The preliminary list of factors to be considered, as well as their ranking listed. The factors include, but are not limited to pollutants removal efficiency and energy consumption under the environmental dimension, construction cost, operation and maintenance costs and required land area cost under the economic dimension and public acceptance, noise and generating job opportunities for local residents. This methodology is intended to be a user-friendly screening tool to support the decision making process when investigating different wastewater treatment technologies in Egypt. Based on the research work results presented in this paper, it can be generally concluded that the categorization of some of the social and environmental aspects of sustainability is subjective and highly dependent on the local conditions and researchers’ background.
Keywords: Sustainability, wastewater treatment, sustainability assessment, Egypt.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15856160 International Tourists’ Travel Motivation by Push-Pull Factors and the Decision Making for Selecting Thailand as Destination Choice
Authors: Siripen Yiamjanya, Kevin Wongleedee
Abstract:
This research paper aims to identify travel motivation by push and pull factors that affected decision making of international tourists in selecting Thailand as their destination choice. A total of 200 international tourists who traveled to Thailand during January and February, 2014 were used as the sample in this study. A questionnaire was employed as a tool in collecting the data, conducted in Bangkok. The list consisted of 30 attributes representing both psychological factors as “push- based factors” and destination factors as “pull-based factors”. Mean and standard deviation were used in order to find the top ten travel motives that were important determinants in the respondents’ decision making process to select Thailand as their destination choice. The finding revealed the top ten travel motivations influencing international tourists to select Thailand as their destination choice included [i] getting experience in foreign land; [ii] Thai food; [iii] learning new culture; [iv] relaxing in foreign land; [v] wanting to learn new things; [vi] being interested in Thai culture, and traditional markets; [vii] escaping from same daily life; [viii] enjoying activities; [ix] adventure; and [x] good weather. Classification of push- based and pull- based motives suggested that getting experience in foreign land was the most important push motive for international tourists to travel, while Thai food portrayed its highest significance as pull motive. Discussion and suggestions were also made for tourism industry of Thailand.
Keywords: Decision Making, Destination Choice, International Tourist, Pull Factor, Push Factor, Thailand, Travel Motivation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163836159 Global and Local Structure of Supported Pd Catalysts
Authors: V. Rednic, N. Aldea, P. Marginean, D. Macovei, C. M. Teodorescu, E. Dorolti, F. Matei
Abstract:
The supported Pd catalysts were analyzed by X-ray diffraction and X-ray absorption spectroscopy in order to determine their global and local structure. The average particle size of the supported Pd catalysts was determined by X-ray diffraction method. One of the main purposes of the present contribution is to focus on understanding the specific role of the Pd particle size determined by X-ray diffraction and that of the support oxide. Based on X-ray absorption fine structure spectroscopy analysis we consider that the whole local structure of the investigated samples are distorted concerning the atomic number but the distances between atoms are almost the same as for standard Pd sample. Due to the strong modifications of the Pd cluster local structure, the metal-support interface may influence the electronic properties of metal clusters and thus their reactivity for absorption of the reactant molecules.Keywords: metal-support interaction, supported metal catalysts, synchrotron radiation, X-ray absorption spectroscopy, X-raydiffraction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15356158 Design of Multiple Clouds Based Global Performance Evaluation Service Broker System
Authors: Dong-Jae Kang, Nam-Woo Kim, Duk-Joo Son, Sung-In Jung
Abstract:
According to dramatic growth of internet services, an easy and prompt service deployment has been important for internet service providers to successfully maintain time-to-market. Before global service deployment, they have to pay the big cost for service evaluation to make a decision of the proper system location, system scale, service delay and so on. But, intra-Lab evaluation tends to have big gaps in the measured data compared with the realistic situation, because it is very difficult to accurately expect the local service environment, network congestion, service delay, network bandwidth and other factors. Therefore, to resolve or ease the upper problems, we propose multiple cloud based GPES Broker system and use case that helps internet service providers to alleviate the above problems in beta release phase and to make a prompt decision for their service launching. By supporting more realistic and reliable evaluation information, the proposed GPES Broker system saves the service release cost and enables internet service provider to make a prompt decision about their service launching to various remote regions.
Keywords: GPES Broker system, Cloud Service Broker, Multiple Cloud, Global performance evaluation service (GPES), Service provisioning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20476157 Predicting the Success of Bank Telemarketing Using Artificial Neural Network
Authors: Mokrane Selma
Abstract:
The shift towards decision making (DM) based on artificial intelligence (AI) techniques will change the way in which consumer markets and our societies function. Through AI, predictive analytics is being used by businesses to identify these patterns and major trends with the objective to improve the DM and influence future business outcomes. This paper proposes an Artificial Neural Network (ANN) approach to predict the success of telemarketing calls for selling bank long-term deposits. To validate the proposed model, we uses the bank marketing data of 41188 phone calls. The ANN attains 98.93% of accuracy which outperforms other conventional classifiers and confirms that it is credible and valuable approach for telemarketing campaign managers.
Keywords: Bank telemarketing, prediction, decision making, artificial intelligence, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31506156 Defining a Pathway to Zero Energy Building: A Case Study on Retrofitting an Old Office Building into a Net Zero Energy Building for Hot-Humid Climate
Authors: Kwame B. O. Amoah
Abstract:
This paper focuses on retrofitting an old existing office building to a net-zero energy building (NZEB). An existing small office building in Melbourne, Florida, was chosen as a case study to integrate state-of-the-art design strategies and energy-efficient building systems to improve building performance and reduce energy consumption. The study aimed to explore possible ways to maximize energy savings and renewable energy generation sources to cover the building's remaining energy needs necessary to achieve net-zero energy goals. A series of retrofit options were reviewed and adopted with some significant additional decision considerations. Detailed processes and considerations leading to zero energy are well documented in this study, with lessons learned adequately outlined. Based on building energy simulations, multiple design considerations were investigated, such as emerging state-of-the-art technologies, material selection, improvements to the building envelope, optimization of the HVAC, lighting systems, and occupancy loads analysis, as well as the application of renewable energy sources. The comparative analysis of simulation results was used to determine how specific techniques led to energy saving and cost reductions. The research results indicate that this small office building can meet net-zero energy use after appropriate design manipulations and renewable energy sources.
Keywords: Energy consumption, building energy analysis, energy retrofits, energy-efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3406155 AI-Driven Cloud Security: Proactive Defense Against Evolving Cyber Threats
Authors: Ashly Joseph
Abstract:
Cloud computing has become an essential component of enterprises and organizations globally in the current era of digital technology. The cloud has a multitude of advantages, including scalability, flexibility, and cost-effectiveness, rendering it an appealing choice for data storage and processing. The increasing storage of sensitive information in cloud environments has raised significant concerns over the security of such systems. The frequency of cyber threats and attacks specifically aimed at cloud infrastructure has been increasing, presenting substantial dangers to the data, reputation, and financial stability of enterprises. Conventional security methods can become inadequate when confronted with ever intricate and dynamic threats. Artificial Intelligence (AI) technologies possess the capacity to significantly transform cloud security through their ability to promptly identify and thwart assaults, adjust to emerging risks, and offer intelligent perspectives for proactive security actions. The objective of this research study is to investigate the utilization of AI technologies in augmenting the security measures within cloud computing systems. This paper aims to offer significant insights and recommendations for businesses seeking to protect their cloud-based assets by analyzing the present state of cloud security, the capabilities of AI, and the possible advantages and obstacles associated with using AI into cloud security policies.
Keywords: Machine Learning, Natural Learning Processing, Denial-of-Service attacks, Sentiment Analysis, Cloud computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876154 Spatial Clustering Model of Vessel Trajectory to Extract Sailing Routes Based on AIS Data
Authors: Lubna Eljabu, Mohammad Etemad, Stan Matwin
Abstract:
The automatic extraction of shipping routes is advantageous for intelligent traffic management systems to identify events and support decision-making in maritime surveillance. At present, there is a high demand for the extraction of maritime traffic networks that resemble the real traffic of vessels accurately, which is valuable for further analytical processing tasks for vessels trajectories (e.g., naval routing and voyage planning, anomaly detection, destination prediction, time of arrival estimation). With the help of big data and processing huge amounts of vessels’ trajectory data, it is possible to learn these shipping routes from the navigation history of past behaviour of other, similar ships that were travelling in a given area. In this paper, we propose a spatial clustering model of vessels’ trajectories (SPTCLUST) to extract spatial representations of sailing routes from historical Automatic Identification System (AIS) data. The whole model consists of three main parts: data preprocessing, path finding, and route extraction, which consists of clustering and representative trajectory extraction. The proposed clustering method provides techniques to overcome the problems of: (i) optimal input parameters selection; (ii) the high complexity of processing a huge volume of multidimensional data; (iii) and the spatial representation of complete representative trajectory detection in the context of trajectory clustering algorithms. The experimental evaluation showed the effectiveness of the proposed model by using a real-world AIS dataset from the Port of Halifax. The results contribute to further understanding of shipping route patterns. This could aid surveillance authorities in stable and sustainable vessel traffic management.
Keywords: Vessel trajectory clustering, trajectory mining, Spatial Clustering, marine intelligent navigation, maritime traffic network extraction, sdailing routes extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4556153 Positive Analysis on Vulnerability, Information Security Incidents, and the Countermeasures of Japanese Internet Service Providers
Authors: Toshihiko Takemura, Makoto Osajima, Masatoshi Kawano
Abstract:
This paper includes a positive analysis to quantitatively grasp the relationship among vulnerability, information security incidents, and the countermeasures by using data based on a 2007 questionnaire survey for Japanese ISPs (Internet Service Providers). To grasp the relationships, logistic regression analysis is used. The results clarify that there are relationships between information security incidents and the countermeasures. Concretely, there is a positive relationship between information security incidents and the number of information security systems introduced as well as a negative relationship between information security incidents and information security education. It is also pointed out that (especially, local) ISPs do not execute efficient information security countermeasures/ investment concerned with systems, and it is suggested that they should positively execute information security education. In addition, to further heighten the information security level of Japanese telecommunication infrastructure, the necessity and importance of the government to implement policy to support the countermeasures of ISPs is insisted.
Keywords: Information security countermeasures, information security incidents, internet service providers, positive analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16656152 Transformative Leadership and Learning Management Systems Implementation: Leadership Practices in Instructional Design for Online Learning
Authors: Felix Brito
Abstract:
With the growth of online learning, several higher education institutions have attempted to incorporate technology in their curriculum. Successful technology implementation projects really on technology infrastructure and on the acceptance of education professionals towards innovation. This research study is aimed at illustrating the relevance of the human component in technology implementation projects in higher education by describing the Learning Management System implementation project executed by instructional designers working for a higher education institution in the southeast region of the United States. An analysis of the Transformative Leadership Theory, the Technology Acceptance Model, and the Diffusion of Innovation Process provide the support for a solid understanding of this issue and address recommendations for future technology implementation projects in higher education institutions.
Keywords: Learning management systems, transformative leadership theory, technology acceptance model, diffusion of innovation process, leadership, instructional design, online learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566