Search results for: potential field method
811 Thermo-Mechanical Characterization of MWCNTs-Modified Epoxy Resin
Authors: M. Dehghan, R. Al-Mahaidi, I. Sbarski
Abstract:
An industrial epoxy adhesive used in Carbon Fiber Reinforced Polymer (CFRP) strengthening systems was modified by dispersing multi-walled carbon nanotubes (MWCNTs). Nanocomposites were fabricated using the solvent-assisted dispersion method and ultrasonic mixing. Thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and tensile tests were conducted to study the effect of nanotubes dispersion on the thermal and mechanical properties of the epoxy composite. Experimental results showed a substantial enhancement in the decomposition temperature and tensile properties of epoxy composite, while, the glass transition temperature (Tg) was slightly reduced due to the solvent effect. The morphology of the epoxy nanocomposites was investigated by SEM. It was proved that using solvent improves the nanotubes dispersion. However, at contents higher than 2 wt. %, nanotubes started to re-bundle in the epoxy matrix which negatively affected the final properties of epoxy composite.
Keywords: Carbon Fiber Reinforced Polymer, Epoxy, Multi-Walled Carbon Nanotube, Glass Transition Temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3355810 High Performance of Direct Torque and Flux Control of a Double Stator Induction Motor Drive with a Fuzzy Stator Resistance Estimator
Authors: K. Kouzi
Abstract:
In order to have stable and high performance of direct torque and flux control (DTFC) of double star induction motor drive (DSIM), proper on-line adaptation of the stator resistance is very important. This is inevitably due to the variation of the stator resistance during operating conditions, which introduces error in estimated flux position and the magnitude of the stator flux. Error in the estimated stator flux deteriorates the performance of the DTFC drive. Also, the effect of error in estimation is very important especially at low speed. Due to this, our aim is to overcome the sensitivity of the DTFC to the stator resistance variation by proposing on-line fuzzy estimation stator resistance. The fuzzy estimation method is based on an on-line stator resistance correction through the variations of the stator current estimation error and its variations. The fuzzy logic controller gives the future stator resistance increment at the output. The main advantage of the suggested algorithm control is to avoid the drive instability that may occur in certain situations and ensure the tracking of the actual stator resistance. The validity of the technique and the improvement of the whole system performance are proved by the results.
Keywords: Direct torque control, dual stator induction motor, fuzzy logic estimation, stator resistance adaptation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1162809 Correlation and Prediction of Biodiesel Density
Authors: Nieves M. C. Talavera-Prieto, Abel G. M. Ferreira, António T. G. Portugal, Rui J. Moreira, Jaime B. Santos
Abstract:
The knowledge of biodiesel density over large ranges of temperature and pressure is important for predicting the behavior of fuel injection and combustion systems in diesel engines, and for the optimization of such systems. In this study, cottonseed oil was transesterified into biodiesel and its density was measured at temperatures between 288 K and 358 K and pressures between 0.1 MPa and 30 MPa, with expanded uncertainty estimated as ±1.6 kg⋅m- 3. Experimental pressure-volume-temperature (pVT) cottonseed data was used along with literature data relative to other 18 biodiesels, in order to build a database used to test the correlation of density with temperarure and pressure using the Goharshadi–Morsali–Abbaspour equation of state (GMA EoS). To our knowledge, this is the first that density measurements are presented for cottonseed biodiesel under such high pressures, and the GMA EoS used to model biodiesel density. The new tested EoS allowed correlations within 0.2 kg·m-3 corresponding to average relative deviations within 0.02%. The built database was used to develop and test a new full predictive model derived from the observed linear relation between density and degree of unsaturation (DU), which depended from biodiesel FAMEs profile. The average density deviation of this method was only about 3 kg.m-3 within the temperature and pressure limits of application. These results represent appreciable improvements in the context of density prediction at high pressure when compared with other equations of state.
Keywords: Biodiesel, Correlation, Density, Equation of state, Prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3511808 A Method to Compute Efficient 3D Helicopters Flight Trajectories Based on a Motion Polymorph-Primitives Algorithm
Authors: Konstanca Nikolajevic, Nicolas Belanger, David Duvivier, Rabie Ben Atitallah, Abdelhakim Artiba
Abstract:
Finding the optimal 3D path of an aerial vehicle under flight mechanics constraints is a major challenge, especially when the algorithm has to produce real time results in flight. Kinematics models and Pythagorian Hodograph curves have been widely used in mobile robotics to solve this problematic. The level of difficulty is mainly driven by the number of constraints to be saturated at the same time while minimizing the total length of the path. In this paper, we suggest a pragmatic algorithm capable of saturating at the same time most of dimensioning helicopter 3D trajectories’ constraints like: curvature, curvature derivative, torsion, torsion derivative, climb angle, climb angle derivative, positions. The trajectories generation algorithm is able to generate versatile complex 3D motion primitives feasible by a helicopter with parameterization of the curvature and the climb angle. An upper ”motion primitives’ concatenation” algorithm is presented based. In this article we introduce a new way of designing three-dimensional trajectories based on what we call the ”Dubins gliding symmetry conjecture”. This extremely performing algorithm will be soon integrated to a real-time decisional system dealing with inflight safety issues.Keywords: Aerial robots, Motion primitives, Robotics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181807 Surface Pressure Distribution of a Flapped-Airfoil for Different Momentum Injection at the Leading Edge
Authors: Mohammad Mashud, S. M. Nahid Hasan
Abstract:
The aim of the research work is to modify the NACA 4215 airfoil with flap and rotary cylinder at the leading edge of the airfoil and experimentally study the static pressure distribution over the airfoil completed with flap and leading-edge vortex generator. In this research, NACA 4215 wing model has been constructed by generating the profile geometry using the standard equations and design software such as AutoCAD and SolidWorks. To perform the experiment, three wooden models are prepared and tested in subsonic wind tunnel. The experiments were carried out in various angles of attack. Flap angle and momentum injection rate are changed to observe the characteristics of pressure distribution. In this research, a new concept of flow separation control mechanism has been introduced to improve the aerodynamic characteristics of airfoil. Control of flow separation over airfoil which experiences a vortex generator (rotating cylinder) at the leading edge of airfoil is experimentally simulated under the effects of momentum injection. The experimental results show that the flow separation control is possible by the proposed mechanism, and benefits can be achieved by momentum injection technique. The wing performance is significantly improved due to control of flow separation by momentum injection method.
Keywords: Airfoil, momentum injection, flap and pressure distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 629806 Concept to Enhance the Project Success and Promote the Implementation of Success Factors in Infrastructure Projects
Abstract:
Infrastructure projects are often subjected to delays and cost overruns and mistakenly described as unsuccessful projects. These projects have many peculiarities such as public attention, impact on the environment, subjected to special regulations, etc. They also deal with several stakeholders with different motivations and face unique risks. With this in mind we need to reconsider our approach to manage them, define their success factors and implement these success factors. Infrastructure projects are not only lacking a unified meaning of project success or a definition of success factors, but also a clear method to implement these factors. This paper investigates this gap and introduces a concept to implement success factors in an efficient way, taking into consideration the specific characteristics of infrastructure projects. This concept consists of six enablers such as project organization, project team, project management workflow, contract management, communication and knowledge transfer and project documentations. These enablers allow other success factors to be efficiently implemented in projects. In conclusion, this paper provides project managers as well as company managers with a tool to define and implement success factors efficiently in their projects, along with upgrading their assets for the coming projects. This tool consists of processes and validated checklists to ensure the best use of company resources and knowledge. Due to the special features of infrastructure projects this tool will be tested in the German infrastructure market. However, it is meant to be adaptable to other markets and industries.
Keywords: Infrastructure projects, enablers, project success, success factors, transportation projects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 994805 An Empirical Evaluation of Performance of Machine Learning Techniques on Imbalanced Software Quality Data
Authors: Ruchika Malhotra, Megha Khanna
Abstract:
The development of change prediction models can help the software practitioners in planning testing and inspection resources at early phases of software development. However, a major challenge faced during the training process of any classification model is the imbalanced nature of the software quality data. A data with very few minority outcome categories leads to inefficient learning process and a classification model developed from the imbalanced data generally does not predict these minority categories correctly. Thus, for a given dataset, a minority of classes may be change prone whereas a majority of classes may be non-change prone. This study explores various alternatives for adeptly handling the imbalanced software quality data using different sampling methods and effective MetaCost learners. The study also analyzes and justifies the use of different performance metrics while dealing with the imbalanced data. In order to empirically validate different alternatives, the study uses change data from three application packages of open-source Android data set and evaluates the performance of six different machine learning techniques. The results of the study indicate extensive improvement in the performance of the classification models when using resampling method and robust performance measures.Keywords: Change proneness, empirical validation, imbalanced learning, machine learning techniques, object-oriented metrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520804 Event Information Extraction System (EIEE): FSM vs HMM
Authors: Shaukat Wasi, Zubair A. Shaikh, Sajid Qasmi, Hussain Sachwani, Rehman Lalani, Aamir Chagani
Abstract:
Automatic Extraction of Event information from social text stream (emails, social network sites, blogs etc) is a vital requirement for many applications like Event Planning and Management systems and security applications. The key information components needed from Event related text are Event title, location, participants, date and time. Emails have very unique distinctions over other social text streams from the perspective of layout and format and conversation style and are the most commonly used communication channel for broadcasting and planning events. Therefore we have chosen emails as our dataset. In our work, we have employed two statistical NLP methods, named as Finite State Machines (FSM) and Hidden Markov Model (HMM) for the extraction of event related contextual information. An application has been developed providing a comparison among the two methods over the event extraction task. It comprises of two modules, one for each method, and works for both bulk as well as direct user input. The results are evaluated using Precision, Recall and F-Score. Experiments show that both methods produce high performance and accuracy, however HMM was good enough over Title extraction and FSM proved to be better for Venue, Date, and time.Keywords: Emails, Event Extraction, Event Detection, Finite state machines, Hidden Markov Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2317803 University Curriculum Policy Processes in Chile: A Case Study
Authors: Victoria C. Valdebenito
Abstract:
Located within the context of accelerating globalization in the 21st-century knowledge society, this paper focuses on one selected university in Chile at which radical curriculum policy changes have been taking place, diverging from the traditional curriculum in Chile at the undergraduate level as a section of a larger investigation. Using a ‘policy trajectory’ framework, and guided by the interpretivist approach to research, interview transcripts and institutional documents were analyzed in relation to the meso (university administration) and the micro (academics) level. Inside the case study, participants from the university administration and academic levels were selected both via snow-ball technique and purposive selection, thus they had different levels of seniority, with some participating actively in the curriculum reform processes. Guided by an interpretivist approach to research, documents and interview transcripts were analyzed to reveal major themes emerging from the data. A further ‘bigger picture’ analysis guided by critical theory was then undertaken, involving interrogation of underlying ideologies and how political and economic interests influence the cultural production of policy. The case-study university was selected because it represents a traditional and old case of university setting in the country, undergoing curriculum changes based on international trends such as the competency model and the liberal arts. Also, it is representative of a particular socioeconomic sector of the country. Access to the university was gained through email contact. Qualitative research methods were used, namely interviews and analysis of institutional documents. In all, 18 people were interviewed. The number was defined by when the saturation criterion was met. Semi-structured interview schedules were based on the four research questions about influences, policy texts, policy enactment and longer-term outcomes. Triangulation of information was used for the analysis. While there was no intention to generalize the specific findings of the case study, the results of the research were used as a focus for engagement with broader themes, often evident in global higher education policy developments. The research results were organized around major themes in three of the four contexts of the ‘policy trajectory’. Regarding the context of influences and the context of policy text production, themes relate to hegemony exercised by first world countries’ universities in the higher education field, its associated neoliberal ideology, with accountability and the discourse of continuous improvement, the local responses to those pressures, and the value of interdisciplinarity. Finally, regarding the context of policy practices and effects (enactment), themes emerged around the impacts of the curriculum changes on university staff, students, and resistance amongst academics. The research concluded with a few recommendations that potentially provide ‘food for thought’ beyond the localized settings of this study, as well as possibilities for further research.
Keywords: Curriculum, policy, higher education, global-local dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 596802 Effect of Scarp Topography on Seismic Ground Motion
Authors: Haiping Ding, Rongchu Zhu, Zhenxia Song
Abstract:
Local irregular topography has a great impact on earthquake ground motion. For scarp topography, using numerical simulation method, the influence extent and scope of the scarp terrain on scarp's upside and downside ground motion are discussed in case of different vertical incident SV waves. The results show that: (1) The amplification factor of scarp's upside region is greater than that of the free surface, while the amplification factor of scarp's downside part is less than that of the free surface; (2) When the slope angle increases, for x component, amplification factors of the scarp upside also increase, while the downside part decrease with it. For z component, both of the upside and downside amplification factors will increase; (3) When the slope angle changes, the influence scope of scarp's downside part is almost unchanged, but for the upside part, it slightly becomes greater with the increase of slope angle; (4) Due to the existence of the scarp, the z component ground motion appears at the surface. Its amplification factor increases for larger slope angle, and the peaks of the surface responses are related with incident waves. However, the input wave has little effects on the x component amplification factors.Keywords: Scarp topography, ground motion, amplification factor, vertical incident wave.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 801801 Spread Spectrum Code Estimationby Particle Swarm Algorithm
Authors: Vahid R. Asghari, Mehrdad Ardebilipour
Abstract:
In the context of spectrum surveillance, a new method to recover the code of spread spectrum signal is presented, while the receiver has no knowledge of the transmitter-s spreading sequence. In our previous paper, we used Genetic algorithm (GA), to recover spreading code. Although genetic algorithms (GAs) are well known for their robustness in solving complex optimization problems, but nonetheless, by increasing the length of the code, we will often lead to an unacceptable slow convergence speed. To solve this problem we introduce Particle Swarm Optimization (PSO) into code estimation in spread spectrum communication system. In searching process for code estimation, the PSO algorithm has the merits of rapid convergence to the global optimum, without being trapped in local suboptimum, and good robustness to noise. In this paper we describe how to implement PSO as a component of a searching algorithm in code estimation. Swarm intelligence boasts a number of advantages due to the use of mobile agents. Some of them are: Scalability, Fault tolerance, Adaptation, Speed, Modularity, Autonomy, and Parallelism. These properties make swarm intelligence very attractive for spread spectrum code estimation. They also make swarm intelligence suitable for a variety of other kinds of channels. Our results compare between swarm-based algorithms and Genetic algorithms, and also show PSO algorithm performance in code estimation process.Keywords: Code estimation, Particle Swarm Optimization(PSO), Spread spectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2136800 GIS-based Non-point Sources of Pollution Simulation in Cameron Highlands, Malaysia
Authors: M. Eisakhani, A. Pauzi, O. Karim, A. Malakahmad, S.R. Mohamed Kutty, M. H. Isa
Abstract:
Cameron Highlands is a mountainous area subjected to torrential tropical showers. It extracts 5.8 million liters of water per day for drinking supply from its rivers at several intake points. The water quality of rivers in Cameron Highlands, however, has deteriorated significantly due to land clearing for agriculture, excessive usage of pesticides and fertilizers as well as construction activities in rapidly developing urban areas. On the other hand, these pollution sources known as non-point pollution sources are diverse and hard to identify and therefore they are difficult to estimate. Hence, Geographical Information Systems (GIS) was used to provide an extensive approach to evaluate landuse and other mapping characteristics to explain the spatial distribution of non-point sources of contamination in Cameron Highlands. The method to assess pollution sources has been developed by using Cameron Highlands Master Plan (2006-2010) for integrating GIS, databases, as well as pollution loads in the area of study. The results show highest annual runoff is created by forest, 3.56 × 108 m3/yr followed by urban development, 1.46 × 108 m3/yr. Furthermore, urban development causes highest BOD load (1.31 × 106 kgBOD/yr) while agricultural activities and forest contribute the highest annual loads for phosphorus (6.91 × 104 kgP/yr) and nitrogen (2.50 × 105 kgN/yr), respectively. Therefore, best management practices (BMPs) are suggested to be applied to reduce pollution level in the area.Keywords: Cameron Highlands, Land use, Non-point Sources of Pollution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2876799 Quasi-Static Analysis of End Plate Beam-to-Column Connections
Authors: A. Al-Rifaie, Z. W. Guan, S. W. Jones
Abstract:
This paper presents a method for modelling and analysing end plate beam-to-column connections to obtain the quasi-static behaviour using non-linear dynamic explicit integration. In addition to its importance to study the static behaviour of a structural member, quasi-static behaviour is largely needed to be compared with the dynamic behaviour of such members in order to investigate the dynamic effect by proposing dynamic increase factors (DIFs). The beam-to-column bolted connections contain various contact surfaces at which the implicit procedure may have difficulties converging, resulting in a large number of iterations. Contrary, explicit procedure could deal effectively with complex contacts without converging problems. Hence, finite element modelling using ABAQUS/explicit is used in this study to address the dynamic effect may be produced using explicit procedure. Also, the effect of loading rate and mass scaling are discussed to investigate their effect on the time of analysis. The results show that the explicit procedure is valuable to model the end plate beam-to-column connections in terms of failure mode, load-displacement relationships. Also, it is concluded that loading rate and mass scaling should be carefully selected to avoid the dynamic effect in the solution.
Keywords: Quasi-static, end plate, finite element, connections.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951798 A Comparative Study on ANN, ANFIS and SVM Methods for Computing Resonant Frequency of A-Shaped Compact Microstrip Antennas
Authors: Ahmet Kayabasi, Ali Akdagli
Abstract:
In this study, three robust predicting methods, namely artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for computing the resonant frequency of A-shaped compact microstrip antennas (ACMAs) operating at UHF band. Firstly, the resonant frequencies of 144 ACMAs with various dimensions and electrical parameters were simulated with the help of IE3D™ based on method of moment (MoM). The ANN, ANFIS and SVM models for computing the resonant frequency were then built by considering the simulation data. 124 simulated ACMAs were utilized for training and the remaining 20 ACMAs were used for testing the ANN, ANFIS and SVM models. The performance of the ANN, ANFIS and SVM models are compared in the training and test process. The average percentage errors (APE) regarding the computed resonant frequencies for training of the ANN, ANFIS and SVM were obtained as 0.457%, 0.399% and 0.600%, respectively. The constructed models were then tested and APE values as 0.601% for ANN, 0.744% for ANFIS and 0.623% for SVM were achieved. The results obtained here show that ANN, ANFIS and SVM methods can be successfully applied to compute the resonant frequency of ACMAs, since they are useful and versatile methods that yield accurate results.Keywords: A-shaped compact microstrip antenna, Artificial Neural Network (ANN), adaptive Neuro-Fuzzy Inference System (ANFIS), Support Vector Machine (SVM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2215797 Ensemble Approach for Predicting Student's Academic Performance
Authors: L. A. Muhammad, M. S. Argungu
Abstract:
Educational data mining (EDM) has recorded substantial considerations. Techniques of data mining in one way or the other have been proposed to dig out out-of-sight knowledge in educational data. The result of the study got assists academic institutions in further enhancing their process of learning and methods of passing knowledge to students. Consequently, the performance of students boasts and the educational products are by no doubt enhanced. This study adopted a student performance prediction model premised on techniques of data mining with Students' Essential Features (SEF). SEF are linked to the learner's interactivity with the e-learning management system. The performance of the student's predictive model is assessed by a set of classifiers, viz. Bayes Network, Logistic Regression, and Reduce Error Pruning Tree (REP). Consequently, ensemble methods of Bagging, Boosting, and Random Forest (RF) are applied to improve the performance of these single classifiers. The study reveals that the result shows a robust affinity between learners' behaviors and their academic attainment. Result from the study shows that the REP Tree and its ensemble record the highest accuracy of 83.33% using SEF. Hence, in terms of the Receiver Operating Curve (ROC), boosting method of REP Tree records 0.903, which is the best. This result further demonstrates the dependability of the proposed model.
Keywords: Ensemble, bagging, Random Forest, boosting, data mining, classifiers, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 761796 Complex Condition Monitoring System of Aircraft Gas Turbine Engine
Authors: A. M. Pashayev, D. D. Askerov, C. Ardil, R. A. Sadiqov, P. S. Abdullayev
Abstract:
Researches show that probability-statistical methods application, especially at the early stage of the aviation Gas Turbine Engine (GTE) technical condition diagnosing, when the flight information has property of the fuzzy, limitation and uncertainty is unfounded. Hence the efficiency of application of new technology Soft Computing at these diagnosing stages with the using of the Fuzzy Logic and Neural Networks methods is considered. According to the purpose of this problem training with high accuracy of fuzzy multiple linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. For GTE technical condition more adequate model making dynamics of skewness and kurtosis coefficients- changes are analysed. Researches of skewness and kurtosis coefficients values- changes show that, distributions of GTE workand output parameters of the multiple linear and non-linear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The developed GTE condition monitoring system provides stage-by-stage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine technical condition was made.Keywords: aviation gas turbine engine, technical condition, fuzzy logic, neural networks, fuzzy statistics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2545795 Modeling Aerosol Formation in an Electrically Heated Tobacco Product
Authors: Markus Nordlund, Arkadiusz K. Kuczaj
Abstract:
Philip Morris International (PMI) is developing a range of novel tobacco products with the potential to reduce individual risk and population harm in comparison to smoking cigarettes. One of these products is the Tobacco Heating System 2.2 (THS 2.2), (named as the Electrically Heated Tobacco System (EHTS) in this paper), already commercialized in a number of countries (e.g., Japan, Italy, Switzerland, Russia, Portugal and Romania). During use, the patented EHTS heats a specifically designed tobacco product (Electrically Heated Tobacco Product (EHTP)) when inserted into a Holder (heating device). The EHTP contains tobacco material in the form of a porous plug that undergoes a controlled heating process to release chemical compounds into vapors, from which an aerosol is formed during cooling. The aim of this work was to investigate the aerosol formation characteristics for realistic operating conditions of the EHTS as well as for relevant gas mixture compositions measured in the EHTP aerosol consisting mostly of water, glycerol and nicotine, but also other compounds at much lower concentrations. The nucleation process taking place in the EHTP during use when operated in the Holder has therefore been modeled numerically using an extended Classical Nucleation Theory (CNT) for multicomponent gas mixtures. Results from the performed simulations demonstrate that aerosol droplets are formed only in the presence of an aerosol former being mainly glycerol. Minor compounds in the gas mixture were not able to reach a supersaturated state alone and therefore could not generate aerosol droplets from the multicomponent gas mixture at the operating conditions simulated. For the analytically characterized aerosol composition and estimated operating conditions of the EHTS and EHTP, glycerol was shown to be the main aerosol former triggering the nucleation process in the EHTP. This implies that according to the CNT, an aerosol former, such as glycerol needs to be present in the gas mixture for an aerosol to form under the tested operating conditions. To assess if these conclusions are sensitive to the initial amount of the minor compounds and to include and represent the total mass of the aerosol collected during the analytical aerosol characterization, simulations were carried out with initial masses of the minor compounds increased by as much as a factor of 500. Despite this extreme condition, no aerosol droplets were generated when glycerol, nicotine and water were treated as inert species and therefore not actively contributing to the nucleation process. This implies that according to the CNT, an aerosol cannot be generated without the help of an aerosol former, from the multicomponent gas mixtures at the compositions and operating conditions estimated for the EHTP, even if all minor compounds are released or generated in a single puff.Keywords: Aerosol, Classical Nucleation Theory (CNT), Electrically Heated Tobacco Product (EHTP), Electrically Heated Tobacco System (EHTS), modeling, multicomponent, nucleation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2438794 An Implementation of Fuzzy Logic Technique for Prediction of the Power Transformer Faults
Authors: Omar M. Elmabrouk., Roaa Y. Taha., Najat M. Ebrahim, Sabbreen A. Mohammed
Abstract:
Power transformers are the most crucial part of power electrical system, distribution and transmission grid. This part is maintained using predictive or condition-based maintenance approach. The diagnosis of power transformer condition is performed based on Dissolved Gas Analysis (DGA). There are five main methods utilized for analyzing these gases. These methods are International Electrotechnical Commission (IEC) gas ratio, Key Gas, Roger gas ratio, Doernenburg, and Duval Triangle. Moreover, due to the importance of the transformers, there is a need for an accurate technique to diagnose and hence predict the transformer condition. The main objective of this technique is to avoid the transformer faults and hence to maintain the power electrical system, distribution and transmission grid. In this paper, the DGA was utilized based on the data collected from the transformer records available in the General Electricity Company of Libya (GECOL) which is located in Benghazi-Libya. The Fuzzy Logic (FL) technique was implemented as a diagnostic approach based on IEC gas ratio method. The FL technique gave better results and approved to be used as an accurate prediction technique for power transformer faults. Also, this technique is approved to be a quite interesting for the readers and the concern researchers in the area of FL mathematics and power transformer.
Keywords: Fuzzy logic, dissolved gas-in-oil analysis, DGA, prediction, power transformer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1357793 Optimizing of Fuzzy C-Means Clustering Algorithm Using GA
Authors: Mohanad Alata, Mohammad Molhim, Abdullah Ramini
Abstract:
Fuzzy C-means Clustering algorithm (FCM) is a method that is frequently used in pattern recognition. It has the advantage of giving good modeling results in many cases, although, it is not capable of specifying the number of clusters by itself. In FCM algorithm most researchers fix weighting exponent (m) to a conventional value of 2 which might not be the appropriate for all applications. Consequently, the main objective of this paper is to use the subtractive clustering algorithm to provide the optimal number of clusters needed by FCM algorithm by optimizing the parameters of the subtractive clustering algorithm by an iterative search approach and then to find an optimal weighting exponent (m) for the FCM algorithm. In order to get an optimal number of clusters, the iterative search approach is used to find the optimal single-output Sugenotype Fuzzy Inference System (FIS) model by optimizing the parameters of the subtractive clustering algorithm that give minimum least square error between the actual data and the Sugeno fuzzy model. Once the number of clusters is optimized, then two approaches are proposed to optimize the weighting exponent (m) in the FCM algorithm, namely, the iterative search approach and the genetic algorithms. The above mentioned approach is tested on the generated data from the original function and optimal fuzzy models are obtained with minimum error between the real data and the obtained fuzzy models.Keywords: Fuzzy clustering, Fuzzy C-Means, Genetic Algorithm, Sugeno fuzzy systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3256792 Free Convection Boundary Layer Flow of a Viscoelastic Fluid in the Presence of Heat Generation
Authors: Abdul Rahman Mohd Kasim, Mohd Ariff Admon, Sharidan Shafie
Abstract:
The present paper considers the steady free convection boundary layer flow of a viscoelastics fluid with constant temperature in the presence of heat generation. The boundary layer equations are an order higher than those for the Newtonian (viscous) fluid and the adherence boundary conditions are insufficient to determine the solution of these equations completely. The governing boundary layer equations are first transformed into non-dimensional form by using special dimensionless group. Computations are performed numerically by using Keller-box method by augmenting an extra boundary condition at infinity and the results are displayed graphically to illustrate the influence of viscoelastic K, heat generation γ , and Prandtl Number, Pr parameters on the velocity and temperature profiles. The results of the surface shear stress in terms of the local skin friction and the surface rate of heat transfer in terms of the local Nusselt number for a selection of the heat generation parameterγ (=0.0, 0.2, 0.5, 0.8, 1.0) are obtained and presented in both tabular and graphical formats. Without effect of the internal heat generation inside the fluid domain for which we take γ = 0.0, the present numerical results show an excellent agreement with previous publication.Keywords: Free Convection, Boundary Layer, CircularCylinder, Viscoelastic Fluid, Heat Generation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1924791 Development of an Omaha System-Based Remote Intervention Program for Work-Related Musculoskeletal Disorders among Front-Line Nurses
Authors: Tianqiao Zhang, Ye Tian, Yanliang Yin, Yichao Tian, Suzhai Tian, Weige Sun, Ruoliang Tang
Abstract:
Heavy biomechanical loads at workplaces may lead to high risks of work-related musculoskeletal disorders (WMSDs). However, there is a lack of investigations on the efficacy of the ergonomic interventions with theoretical frameworks. This study aimed to formulate an Omaha System based remote intervention program on the WMSDs among nurses by systematic literature review, interviews, expert consultation. After screening title and abstract, 11 articles out of the initial search results (i.e., n=1,418) were included, 12 nurses were interviewed, and 10 experts were consulted to review the initial intervention program. Modification to the draft included (1) supplementing traditional Chinese medicine practices, (2) adding the use of assistive patient handling equipment, (3) revising the on-line training method, (4) editing and proofreading the main text of the initial program, (5) adding quizzes and exercise scales, (6) it was determined that the associated coursework should be announced promptly with multiple follow-up reminders, and (7) removing bodyweight superman exercise, and peaceful/calm meditation. In the end, the final intervention program was developed.
Keywords: Omaha System, nurses, remote intervention, musculoskeletal disease.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 273790 Transform-Domain Rate-Distortion Optimization Accelerator for H.264/AVC Video Encoding
Authors: Mohammed Golam Sarwer, Lai Man Po, Kai Guo, Q.M. Jonathan Wu
Abstract:
In H.264/AVC video encoding, rate-distortion optimization for mode selection plays a significant role to achieve outstanding performance in compression efficiency and video quality. However, this mode selection process also makes the encoding process extremely complex, especially in the computation of the ratedistortion cost function, which includes the computations of the sum of squared difference (SSD) between the original and reconstructed image blocks and context-based entropy coding of the block. In this paper, a transform-domain rate-distortion optimization accelerator based on fast SSD (FSSD) and VLC-based rate estimation algorithm is proposed. This algorithm could significantly simplify the hardware architecture for the rate-distortion cost computation with only ignorable performance degradation. An efficient hardware structure for implementing the proposed transform-domain rate-distortion optimization accelerator is also proposed. Simulation results demonstrated that the proposed algorithm reduces about 47% of total encoding time with negligible degradation of coding performance. The proposed method can be easily applied to many mobile video application areas such as a digital camera and a DMB (Digital Multimedia Broadcasting) phone.Keywords: Context-adaptive variable length coding (CAVLC), H.264/AVC, rate-distortion optimization (RDO), sum of squareddifference (SSD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606789 TOSOM: A Topic-Oriented Self-Organizing Map for Text Organization
Authors: Hsin-Chang Yang, Chung-Hong Lee, Kuo-Lung Ke
Abstract:
The self-organizing map (SOM) model is a well-known neural network model with wide spread of applications. The main characteristics of SOM are two-fold, namely dimension reduction and topology preservation. Using SOM, a high-dimensional data space will be mapped to some low-dimensional space. Meanwhile, the topological relations among data will be preserved. With such characteristics, the SOM was usually applied on data clustering and visualization tasks. However, the SOM has main disadvantage of the need to know the number and structure of neurons prior to training, which are difficult to be determined. Several schemes have been proposed to tackle such deficiency. Examples are growing/expandable SOM, hierarchical SOM, and growing hierarchical SOM. These schemes could dynamically expand the map, even generate hierarchical maps, during training. Encouraging results were reported. Basically, these schemes adapt the size and structure of the map according to the distribution of training data. That is, they are data-driven or dataoriented SOM schemes. In this work, a topic-oriented SOM scheme which is suitable for document clustering and organization will be developed. The proposed SOM will automatically adapt the number as well as the structure of the map according to identified topics. Unlike other data-oriented SOMs, our approach expands the map and generates the hierarchies both according to the topics and their characteristics of the neurons. The preliminary experiments give promising result and demonstrate the plausibility of the method.
Keywords: Self-organizing map, topic identification, learning algorithm, text clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026788 Technology for Enhancing the Learning and Teaching Experience in Higher Education
Authors: Sara M. Ismael, Ali H. Al-Badi
Abstract:
The rapid development and growth of technology has changed the method of obtaining information for educators and learners. Technology has created a new world of collaboration and communication among people. Incorporating new technology into the teaching process can enhance learning outcomes. Billions of individuals across the world are now connected together, and are cooperating and contributing their knowledge and intelligence. Time is no longer wasted in waiting until the teacher is ready to share information as learners can go online and get it immediatelt.
The objectives of this paper are to understand the reasons why changes in teaching and learning methods are necessary, to find ways of improving them, and to investigate the challenges that present themselves in the adoption of new ICT tools in higher education institutes.
To achieve these objectives two primary research methods were used: questionnaires, which were distributed among students at higher educational institutes and multiple interviews with faculty members (teachers) from different colleges and universities, which were conducted to find out why teaching and learning methodology should change.
The findings show that both learners and educators agree that educational technology plays a significant role in enhancing instructors’ teaching style and students’ overall learning experience; however, time constraints, privacy issues, and not being provided with enough up-to-date technology do create some challenges.
Keywords: E-books, educational technology, educators, e-learning, learners, social media, Web 2.0, LMS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2325787 Entropy Based Spatial Design: A Genetic Algorithm Approach (Case Study)
Authors: Abbas Siefi, Mohammad Javad Karimifar
Abstract:
We study the spatial design of experiment and we want to select a most informative subset, having prespecified size, from a set of correlated random variables. The problem arises in many applied domains, such as meteorology, environmental statistics, and statistical geology. In these applications, observations can be collected at different locations and possibly at different times. In spatial design, when the design region and the set of interest are discrete then the covariance matrix completely describe any objective function and our goal is to choose a feasible design that minimizes the resulting uncertainty. The problem is recast as that of maximizing the determinant of the covariance matrix of the chosen subset. This problem is NP-hard. For using these designs in computer experiments, in many cases, the design space is very large and it's not possible to calculate the exact optimal solution. Heuristic optimization methods can discover efficient experiment designs in situations where traditional designs cannot be applied, exchange methods are ineffective and exact solution not possible. We developed a GA algorithm to take advantage of the exploratory power of this algorithm. The successful application of this method is demonstrated in large design space. We consider a real case of design of experiment. In our problem, design space is very large and for solving the problem, we used proposed GA algorithm.
Keywords: Spatial design of experiments, maximum entropy sampling, computer experiments, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657786 The Conceptual and Procedural Knowledge of Rational Numbers in Primary School Teachers
Authors: R. M. Kashim
Abstract:
The study investigates the conceptual and procedural knowledge of rational number in primary school teachers, specifically, the primary school teachers level of conceptual knowledge about rational number and the primary school teachers level of procedural knowledge about rational numbers. The study was carried out in Bauchi metropolis in Bauchi state of Nigeria. A Conceptual and Procedural Knowledge Test was used as the instrument for data collection, 54 mathematics teachers in Bauchi primary schools were involved in the study. The collections were analyzed using mean and standard deviation. The findings revealed that the primary school mathematics teachers in Bauchi metropolis posses a low level of conceptual knowledge of rational number and also possess a high level of Procedural knowledge of rational number. It is therefore recommended that to be effective, teachers teaching mathematics most posses a deep understanding of both conceptual and procedural knowledge. That way the most knowledgeable teachers in mathematics deliver highly effective rational number instructions. Teachers should not ignore the mathematical concept aspect of rational number teaching. This is because only the procedural aspect of Rational number is highlighted during instructions; this often leads to rote - learning of procedures without understanding the meanings. It is necessary for teachers to learn rational numbers teaching method that focus on both conceptual knowledge and procedural knowledge teaching.
Keywords: Conceptual knowledge, primary school teachers, procedural knowledge, rational numbers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677785 Numerical Analysis of Cold-Formed Steel Shear Wall Panels Subjected to Cyclic Loading
Authors: H. Meddah, M. Berediaf-Bourahla, B. El-Djouzi, N. Bourahla
Abstract:
Shear walls made of cold formed steel are used as lateral force resisting components in residential and low-rise commercial and industrial constructions. The seismic design analysis of such structures is often complex due to the slenderness of members and their instability prevalence. In this context, a simplified modeling technique across the panel is proposed by using the finite element method. The approach is based on idealizing the whole panel by a nonlinear shear link element which reflects its shear behavior connected to rigid body elements which transmit the forces to the end elements (studs) that resist the tension and the compression. The numerical model of the shear wall panel was subjected to cyclic loads in order to evaluate the seismic performance of the structure in terms of lateral displacement and energy dissipation capacity. In order to validate this model, the numerical results were compared with those from literature tests. This modeling technique is particularly useful for the design of cold formed steel structures where the shear forces in each panel and the axial forces in the studs can be obtained using spectrum analysis.
Keywords: Cold-formed steel, cyclic loading, modeling technique, nonlinear analysis, shear wall panel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1263784 Finding Pareto Optimal Front for the Multi- Mode Time, Cost Quality Trade-off in Project Scheduling
Authors: H. Iranmanesh, M. R. Skandari, M. Allahverdiloo
Abstract:
Project managers are the ultimate responsible for the overall characteristics of a project, i.e. they should deliver the project on time with minimum cost and with maximum quality. It is vital for any manager to decide a trade-off between these conflicting objectives and they will be benefited of any scientific decision support tool. Our work will try to determine optimal solutions (rather than a single optimal solution) from which the project manager will select his desirable choice to run the project. In this paper, the problem in project scheduling notated as (1,T|cpm,disc,mu|curve:quality,time,cost) will be studied. The problem is multi-objective and the purpose is finding the Pareto optimal front of time, cost and quality of a project (curve:quality,time,cost), whose activities belong to a start to finish activity relationship network (cpm) and they can be done in different possible modes (mu) which are non-continuous or discrete (disc), and each mode has a different cost, time and quality . The project is constrained to a non-renewable resource i.e. money (1,T). Because the problem is NP-Hard, to solve the problem, a meta-heuristic is developed based on a version of genetic algorithm specially adapted to solve multi-objective problems namely FastPGA. A sample project with 30 activities is generated and then solved by the proposed method.Keywords: FastPGA, Multi-Execution Activity Mode, Pareto Optimality, Project Scheduling, Time-Cost-Quality Trade-Off.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807783 Effect of High-Heeled Shoes on Gait: A Micro-Electro-Mechanical-Systems Based Approach
Authors: Harun Sumbul, Orhan Ozyurt
Abstract:
The accelerations generated by the shoes in the body should be known in order to prevent balance problems, degradation of body shape and to spend less energy. In this study, it is aimed to investigate the effects of the shoe heel height on the human body. The working group has been created as five women (range 27-32 years) with different characteristics and five shoes with different heel heights (1, 3.5, 5, 7 and 9 cm). Individuals in the study group wore shoes and walked along a 20-meter racecourse. The accelerations created by the shoes are measured in three axes (30.270 accelerometric data) and analyzed. Results show us that; while walking with high-heeled shoes, the foot is lifted more; in this case, more effort has been spent. So, more weight has occurred at ankles and joints. Since high-heeled shoes cause greater acceleration, women wearing high-heeled shoes tend to pay more attention when taking a step. As a result, for foot and body health, shoe heel must be designed to absorb the reaction from the ground. High heels disrupt the structure of the foot and it is damaging the body shape. In this respect, this study is considered to be a remarkable method to find of effect of high-heeled shoes on gait by using accelerometer in the literature.
Keywords: Acceleration, sensor, gait analysis, high shoe heel, micro-electro-mechanical-systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 974782 The Water Level Detection Algorithm Using the Accumulated Histogram with Band Pass Filter
Authors: Sangbum Park, Namki Lee, Youngjoon Han, Hernsoo Hahn
Abstract:
In this paper, we propose the robust water level detection method based on the accumulated histogram under small changed image which is acquired from water level surveillance camera. In general surveillance system, this is detecting and recognizing invasion from searching area which is in big change on the sequential images. However, in case of a water level detection system, these general surveillance techniques are not suitable due to small change on the water surface. Therefore the algorithm introduces the accumulated histogram which is emphasizing change of water surface in sequential images. Accumulated histogram is based on the current image frame. The histogram is cumulating differences between previous images and current image. But, these differences are also appeared in the land region. The band pass filter is able to remove noises in the accumulated histogram Finally, this algorithm clearly separates water and land regions. After these works, the algorithm converts from the water level value on the image space to the real water level on the real space using calibration table. The detected water level is sent to the host computer with current image. To evaluate the proposed algorithm, we use test images from various situations.Keywords: accumulated histogram, water level detection, band pass filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1999