Search results for: surface morphology
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2276

Search results for: surface morphology

1256 Application of Statistical Approach for Optimizing CMCase Production by Bacillus tequilensis S28 Strain via Submerged Fermentation Using Wheat Bran as Carbon Source

Authors: A. Sharma, R. Tewari, S. K. Soni

Abstract:

Biofuels production has come forth as a future technology to combat the problem of depleting fossil fuels. Bio-based ethanol production from enzymatic lignocellulosic biomass degradation serves an efficient method and catching the eye of scientific community. High cost of the enzyme is the major obstacle in preventing the commercialization of this process. Thus main objective of the present study was to optimize composition of medium components for enhancing cellulase production by newly isolated strain of Bacillus tequilensis. Nineteen factors were taken into account using statistical Plackett-Burman Design. The significant variables influencing the cellulose production were further employed in statistical Response Surface Methodology using Central Composite Design for maximizing cellulase production. The optimum medium composition for cellulase production was: peptone (4.94 g/L), ammonium chloride (4.99 g/L), yeast extract (2.00 g/L), Tween-20 (0.53 g/L), calcium chloride (0.20 g/L) and cobalt chloride (0.60 g/L) with pH 7, agitation speed 150 rpm and 72 h incubation at 37oC. Analysis of variance (ANOVA) revealed high coefficient of determination (R2) of 0.99. Maximum cellulase productivity of 11.5 IU/ml was observed against the model predicted value of 13 IU/ml. This was found to be optimally active at 60oC and pH 5.5.

Keywords: Bacillus tequilensis, CMCase, Submerged Fermentation, Optimization, Plackett-Burman Design, Response Surface Methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3048
1255 Definition of Foot Size Model using Kohonen Network

Authors: Khawla Ben Abderrahim

Abstract:

In order to define a new model of Tunisian foot sizes and for building the most comfortable shoes, Tunisian industrialists must be able to offer for their customers products able to put on and adjust the majority of the target population concerned. Moreover, the use of models of shoes, mainly from others country, causes a mismatch between the foot and comfort of the Tunisian shoes. But every foot is unique; these models become uncomfortable for the Tunisian foot. We have a set of measures produced from a 3D scan of the feet of a diverse population (women, men ...) and we try to analyze this data to define a model of foot specific to the Tunisian footwear design. In this paper we propose tow new approaches to modeling a new foot sizes model. We used, indeed, the neural networks, and specially the Kohonen network. Next, we combine neural networks with the concept of half-foot size to improve the models already found. Finally, it was necessary to compare the results obtained by applying each approach and we decide what-s the best approach that give us the most model of foot improving more comfortable shoes.

Keywords: Morphology of the foot, foot size, half foot size, neural network, Kohonen network, model of foot size.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
1254 Unsteady Poiseuille Flow of an Incompressible Elastico-Viscous Fluid in a Tube of Spherical Cross Section on a Porous Boundary

Authors: Sanjay Baburao Kulkarni

Abstract:

Exact solution of an unsteady flow of elastico-viscous fluid through a porous media in a tube of spherical cross section under the influence of constant pressure gradient has been obtained in this paper. Initially, the flow is generated by a constant pressure gradient. After attaining the steady state, the pressure gradient is suddenly withdrawn and the resulting fluid motion in a tube of spherical cross section by taking into account of the porosity factor of the bounding surface is investigated. The problem is solved in twostages the first stage is a steady motion in tube under the influence of a constant pressure gradient, the second stage concern with an unsteady motion. The problem is solved employing separation of variables technique. The results are expressed in terms of a nondimensional porosity parameter (K) and elastico-viscosity parameter (β), which depends on the Non-Newtonian coefficient. The flow parameters are found to be identical with that of Newtonian case as elastic-viscosity parameter tends to zero and porosity tends to infinity. It is seen that the effect of elastico-viscosity parameter, porosity parameter of the bounding surface has significant effect on the velocity parameter.

Keywords: Elastico-viscous fluid, Porous media, Second order fluids, Spherical cross-section.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2102
1253 The Effects of Various Boundary Conditions on Thermal Buckling of Functionally Graded Beamwith Piezoelectric Layers Based on Third order Shear Deformation Theory

Authors: O. Miraliyari

Abstract:

This article attempts to analyze functionally graded beam thermal buckling along with piezoelectric layers applying based on the third order shearing deformation theory considering various boundary conditions. The beam properties are assumed to vary continuously from the lower surface to the upper surface of the beam. The equilibrium equations are derived using the total potential energy equations, Euler equations, piezoelectric material constitutive equations and third order shear deformation theory assumptions. In order to fulfill such an aim, at first functionally graded beam with piezoelectric layers applying the third order shearing deformation theory along with clamped -clamped boundary conditions are thoroughly analyzed, and then following making sure of the correctness of all the equations, the very same beam is analyzed with piezoelectric layers through simply-simply and simply-clamped boundary conditions. In this article buckling critical temperature for functionally graded beam is derived in two different ways, without piezoelectric layer and with piezoelectric layer and the results are compared together. Finally, all the conclusions obtained will be compared and contrasted with the same samples in the same and distinguished conditions through tables and charts. It would be noteworthy that in this article, the software MAPLE has been applied in order to do the numeral calculations.

Keywords: Thermal buckling, functionally graded beam, piezoelectric layer, various boundary conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
1252 Microscopic Analysis of Welded Dental Alloys

Authors: S. Porojan, L. Sandu, F. Topalâ

Abstract:

Microplasma welding is a less expensive alternative to laser welding in dental technology. The aim of the study was to highlight discontinuities present in the microplasma welded joints of dental base metal alloys by visual analysis. Five base metal alloys designated for fixed prostheses manufacture were selected for the experiments. Using these plates, preliminary tests were conducted by microplasma welding in butt joint configuration, without filler material, bilaterally and with filler material, proper for each base metal. Macroscopic visual inspection was performed to assess carefully the irregularities in the welds. Electron microscopy allowed detection of discontinuities that are not visible to the eye and revealing details regarding location, trajectory, morphology and size of discontinuities. Supplementing visual control with microscopic analysis allows to detect small discontinuities, which escapes the macroscopic control and to make a detailed study of the weld.

Keywords: base metal alloys, fixed prosthodontics, microplasmawelding, visual inspection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907
1251 Object Motion Tracking Based On Color Detection for Android Devices

Authors: Zacharenia I. Garofalaki, John T. Amorginos, John N. Ellinas

Abstract:

This paper presents the development of a robot car that can track the motion of an object by detecting its color through an Android device. The employed computer vision algorithm uses the OpenCV library, which is embedded into an Android application of a smartphone, for manipulating the captured image of the object. The captured image of the object is subjected to color conversion and is transformed to a binary image for further processing after color filtering. The desired object is clearly determined after removing pixel noise by applying image morphology operations and contour definition. Finally, the area and the center of the object are determined so that object’s motion to be tracked. The smartphone application has been placed on a robot car and transmits by Bluetooth to an Arduino assembly the motion directives so that to follow objects of a specified color. The experimental evaluation of the proposed algorithm shows reliable color detection and smooth tracking characteristics.

Keywords: Android, Arduino Uno, Image processing, Object motion detection, OpenCV library.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4553
1250 Conformation Prediction of Human Plasmin and Docking on Gold Nanoparticle

Authors: Wen-Shyong Tzou, Chih-Ching Huang, Chin-Hwa Hu, Ying-Tsang Lo, Tun-Wen Pai, Chia-Yin Chiang, Chung-Hao Li, Hong-Jyuan Jian

Abstract:

Plasmin plays an important role in the human circulatory system owing to its catalytic ability of fibrinolysis. The immediate injection of plasmin in patients of strokes has intrigued many scientists to design vectors that can transport plasmin to the desired location in human body. Here we predict the structure of human plasmin and investigate the interaction of plasmin with the gold-nanoparticle. Because the crystal structure of plasminogen has been solved, we deleted N-terminal domain (Pan-apple domain) of plasminogen and generate a mimic of the active form of this enzyme (plasmin). We conducted a simulated annealing process on plasmin and discovered a very large conformation occurs. Kringle domains 1, 4 and 5 had been observed to leave its original location relative to the main body of the enzyme and the original doughnut shape of this enzyme has been transformed to a V-shaped by opening its two arms. This observation of conformational change is consistent with the experimental results of neutron scattering and centrifugation. We subsequently docked the plasmin on the simulated gold surface to predict their interaction. The V-shaped plasmin could utilize its Kringle domain and catalytic domain to contact the gold surface. Our findings not only reveal the flexibility of plasmin structure but also provide a guide for the design of a plasmin-gold nanoparticle.

Keywords: Docking, gold nanoparticle, molecular simulation, plasmin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2422
1249 Assessment of Nickel Concentration in Surface and Ground Water of the Kowsar Dam Basin

Authors: Fardin Boustani, M Hojati , S Ebrahimzadeh

Abstract:

The Kowsar dam supply water for different usages such as drinking, industrial, agricultural and aquaculture farms usages and located next to the city of Dehdashat in Kohgiluye and Boyerahmad province in southern Iran. There are some towns and villages on the Kowsar dam watersheds, which Dehdasht and Choram are the most important and populated cities in this area. The study was undertaken to assess the status of water quality in the urban areas of the Kowsar dam. A total of 28 water samples were collected from 6 stations on surface water and 1 station from groundwater on the watershed of the Kowsar dam. All the samples were analyzed for Ni concentration using standard procedures. The results were compared with other national and international standards. Among the analyzed samples, as the maximum value of Nickel (0.01 mg/L) was observed on the station 2 at the autumn 2010, all the samples analyzed were within the maximum admissible limits by the United States Environmental Protection Agency, EU, WHO and the Iranian. In general results of the present study have shown that a Ni mean value of station No. 2 with 0.006 mg/L is higher than the other stations. Ni level of all samples and stations have had normal values and this is an indication of pollution potential and hazards because of human activity and waste water of towns in the areas, which can effect on human health implications in future. This research, therefore, recommends the government and other responsible authorities to take suitable improving measures in the Kowsar dam watersheds.

Keywords: Kowsar dam, Drinking water quality, Nickel, Maximum admissible limit, World health organization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970
1248 Performance Evaluation and Economic Analysis of Minimum Quantity Lubrication with Pressurized/Non-Pressurized Air and Nanofluid Mixture

Authors: M. Amrita, R. R. Srikant, A. V. Sita Rama Raju

Abstract:

Water miscible cutting fluids are conventionally used to lubricate and cool the machining zone. But issues related to health hazards, maintenance and disposal costs have limited their usage, leading to application of Minimum Quantity Lubrication (MQL). To increase the effectiveness of MQL, nanocutting fluids are proposed. In the present work, water miscible nanographite cutting fluids of varying concentration are applied at cutting zone by two systems A and B. System A utilizes high pressure air and supplies cutting fluid at a flow rate of 1ml/min. System B uses low pressure air and supplies cutting fluid at a flow rate of 5ml/min. Their performance in machining is evaluated by measuring cutting temperatures, tool wear, cutting forces and surface roughness and compared with dry machining and flood machining. Application of nanocutting fluid using both systems showed better performance than dry machining. Cutting temperatures and cutting forces obtained by both techniques are more than flood machining. But tool wear and surface roughness showed improvement compared to flood machining. Economic analysis has been carried out in all the cases to decide the applicability of the techniques.

Keywords: Economic analysis, Machining, Minimum Quantity lubrication, nanofluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2264
1247 Effects of Formic Acid on the Chemical State and Morphology of As-synthesized and Annealed ZnO Films

Authors: Chueh-Jung Huang, Chia-Hung Li, Hsueh-Lung Wang, Tsun-Nan Lin

Abstract:

Zinc oxide thin films with various microstructures were grown on substrates by using HCOOH-sols. The reaction mechanism of the sol system was investigated by performing an XPS analysis of as-synthesized films, due to the products of hydrolysis and condensation in the sol system contributing to the chemical state of the as-synthesized films. The chemical structures of the assynthesized films related to the microstructures of the final annealed films were also studied. The results of the Zn 2p3/2, C 1s and O1s XPS patterns indicate that the hydrolysis reaction in the sol system is strongly influenced by the HCOOH agent. The results of XRD and FE-SEM demonstrated the microstructures of the annealed films are related to the content of hydrolyzed zinc hydrate (Zn-OH) species present, and that content of the Zn-OH species in the sol system increases the HCOOH adding, and these Zn-OH species existing in the sol phase are responsible for large ZnO crystallites in the final annealed films.

Keywords: zinc oxide, hydrolysis catalyst, zinc acetate source, formic acid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
1246 Nonlinear Modelling of Sloshing Waves and Solitary Waves in Shallow Basins

Authors: Mohammad R. Jalali, Mohammad M. Jalali

Abstract:

The earliest theories of sloshing waves and solitary waves based on potential theory idealisations and irrotational flow have been extended to be applicable to more realistic domains. To this end, the computational fluid dynamics (CFD) methods are widely used. Three-dimensional CFD methods such as Navier-Stokes solvers with volume of fluid treatment of the free surface and Navier-Stokes solvers with mappings of the free surface inherently impose high computational expense; therefore, considerable effort has gone into developing depth-averaged approaches. Examples of such approaches include Green–Naghdi (GN) equations. In Cartesian system, GN velocity profile depends on horizontal directions, x-direction and y-direction. The effect of vertical direction (z-direction) is also taken into consideration by applying weighting function in approximation. GN theory considers the effect of vertical acceleration and the consequent non-hydrostatic pressure. Moreover, in GN theory, the flow is rotational. The present study illustrates the application of GN equations to propagation of sloshing waves and solitary waves. For this purpose, GN equations solver is verified for the benchmark tests of Gaussian hump sloshing and solitary wave propagation in shallow basins. Analysis of the free surface sloshing of even harmonic components of an initial Gaussian hump demonstrates that the GN model gives predictions in satisfactory agreement with the linear analytical solutions. Discrepancies between the GN predictions and the linear analytical solutions arise from the effect of wave nonlinearities arising from the wave amplitude itself and wave-wave interactions. Numerically predicted solitary wave propagation indicates that the GN model produces simulations in good agreement with the analytical solution of the linearised wave theory. Comparison between the GN model numerical prediction and the result from perturbation analysis confirms that nonlinear interaction between solitary wave and a solid wall is satisfactorilly modelled. Moreover, solitary wave propagation at an angle to the x-axis and the interaction of solitary waves with each other are conducted to validate the developed model.

Keywords: Even harmonic components of sloshing waves, Green–Naghdi equations, nonlinearity, solitary waves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 852
1245 Production of Sr-Ferrite Sub-Micron Powder by Conventional and Sol-Gel Auto-Combustion Methods

Authors: M. Ghobeiti-Hasab

Abstract:

Magnetic powder of Sr-ferrite was prepared by conventional and sol-gel auto-combustion methods. In conventional method, strontium carbonate and ferric oxide powders were mixed together and then mixture was calcined. In sol-gel auto-combustion method, a solution containing strontium nitrate, ferric nitrate and citric acid was heated until the combustion took place automatically; then, as-burnt powder was calcined. Thermal behavior, phase identification, morphology and magnetic properties of powders obtained by these two methods were compared by DTA, XRD, SEM and VSM techniques. According to the results of DTA analysis, formation temperature of Sr-ferrite obtained by conventional and solgel auto-combustion methods were 1300°C and 1000°C, respectively. XRD results confirmed the formation of pure Sr-ferrite at the mentioned temperatures. Plate and hexagonal-shape particles of Srferrite were observed using SEM. The Sr-ferrite powder obtained by sol-gel auto-combustion method had saturation magnetization of 66.03 emu/g and coercivity of 5731 Oe in comparison with values of 58.20 emu/g and 4378 Oe obtained by conventional method.

Keywords: Sr-ferrite, Sol-gel, Magnetic properties, Calcination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2459
1244 Unsteady Flow of an Incompressible Elastico-Viscous Fluid of Second order Type in Tube of Ellipsoidal Cross Section on a Porous Boundary

Authors: Sanjay Baburao Kulkarni

Abstract:

Exact solution of an unsteady flow of elastico-viscous fluid through a porous media in a tube of ellipsoidal cross section under the influence of constant pressure gradient has been obtained in this paper. Initially, the flow is generated by a constant pressure gradient. After attaining the steady state, the pressure gradient is suddenly withdrawn and the resulting fluid motion in a tube of ellipsoidal cross section by taking into account of the porosity factor of the bounding surface is investigated. The problem is solved in twostages the first stage is a steady motion in tube under the influence of a constant pressure gradient, the second stage concern with an unsteady motion. The problem is solved employing separation of variables technique. The results are expressed in terms of a nondimensional porosity parameter (K) and elastico-viscosity parameter (β), which depends on the Non-Newtonian coefficient. The flow parameters are found to be identical with that of Newtonian case as elastic-viscosity parameter tends to zero and porosity tends to infinity. It is seen that the effect of elastico-viscosity parameter and the porosity parameter of the bounding surface has significant effect on the velocity parameter.

Keywords: Elastico-viscous fluid, Ellipsoidal cross-section, Porous media, Second order fluids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
1243 Quality Properties of Fermented Mugworts and Rapid Pattern Analysis of Their Volatile Flavor Components by Electric Nose Based On SAW (Surface Acoustic Wave) Sensor in GC System

Authors: Hyo-Nam Song

Abstract:

The changes in quality properties and nutritional components in two fermented mugworts (Artemisia capillaries Thumberg, Artemisiaeasiaticae Nakai) were characterized followed by the rapid pattern analysis of volatile flavor compounds by Electric Nose based on SAW(Surface Acoustic Wave) sensor in GC system. There were remarkable decreases in the pH and small changes in the total soluble solids after fermentation. The L (lightness) and b (yellowness) values in Hunter's color system were shown to be decreased, whilst the a (redness) value was increased by fermentation. The HPLC analysis demonstrated that total amino acids were increased in quantity and the essential amino acids were contained higher in A. asiaticaeNakai than in A. capillaries Thumberg. While the total polyphenol contents were not affected by fermentation, the total sugar contents were dramatically decreased. Scopoletinwere highly abundant in A. capillarisThumberg, however, it was not detected in A. asiaticaeNakai. Volatile flavor compounds by Electric Nose showed that the intensity of several peaks were increased much and seven additional flavor peaks were newly produced after fermentation. The flavor differences of two mugworts were clearly distinguished from the image patterns of VaporPrintTM which indicate that the fermentation enables the two mugworts to have subtle flavor differences.

Keywords: Mugwort, Fermentation, Electric Nose, SAW sensor, Flavor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1718
1242 Received Signal Strength Indicator Based Localization of Bluetooth Devices Using Trilateration: An Improved Method for the Visually Impaired People

Authors: Muhammad Irfan Aziz, Thomas Owens, Uzair Khaleeq uz Zaman

Abstract:

The instantaneous and spatial localization for visually impaired people in dynamically changing environments with unexpected hazards and obstacles, is the most demanding and challenging issue faced by the navigation systems today. Since Bluetooth cannot utilize techniques like Time Difference of Arrival (TDOA) and Time of Arrival (TOA), it uses received signal strength indicator (RSSI) to measure Receive Signal Strength (RSS). The measurements using RSSI can be improved significantly by improving the existing methodologies related to RSSI. Therefore, the current paper focuses on proposing an improved method using trilateration for localization of Bluetooth devices for visually impaired people. To validate the method, class 2 Bluetooth devices were used along with the development of a software. Experiments were then conducted to obtain surface plots that showed the signal interferences and other environmental effects. Finally, the results obtained show the surface plots for all Bluetooth modules used along with the strong and weak points depicted as per the color codes in red, yellow and blue. It was concluded that the suggested improved method of measuring RSS using trilateration helped to not only measure signal strength affectively but also highlighted how the signal strength can be influenced by atmospheric conditions such as noise, reflections, etc.

Keywords: Bluetooth, indoor/outdoor localization, received signal strength indicator, visually impaired.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 768
1241 OCIRS: An Ontology-based Chinese Idioms Retrieval System

Authors: Hu Haibo, Tu Chunmei, Fu Chunlei, Fu Li, Mao Fan, Ma Yuan

Abstract:

Chinese Idioms are a type of traditional Chinese idiomatic expressions with specific meanings and stereotypes structure which are widely used in classical Chinese and are still common in vernacular written and spoken Chinese today. Currently, Chinese Idioms are retrieved in glossary with key character or key word in morphology or pronunciation index that can not meet the need of searching semantically. OCIRS is proposed to search the desired idiom in the case of users only knowing its meaning without any key character or key word. The user-s request in a sentence or phrase will be grammatically analyzed in advance by word segmentation, key word extraction and semantic similarity computation, thus can be mapped to the idiom domain ontology which is constructed to provide ample semantic relations and to facilitate description logics-based reasoning for idiom retrieval. The experimental evaluation shows that OCIRS realizes the function of searching idioms via semantics, obtaining preliminary achievement as requested by the users.

Keywords: Chinese idiom, idiom retrieval, semantic searching, ontology, semantics similarity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1704
1240 Effect of Modified Layered Silicate Nanoclay on the Dynamic Viscoelastic Properties of Thermoplastic Polymers Nanocomposites

Authors: Benalia Kouini, Aicha Serier

Abstract:

This work aims to investigate the structure–property relationship in ternary nanocomposites consisting of polypropylene as the matrix, polyamide 66 as the minor phase and treated nanoclay DELLITE 67G as the reinforcement. All PP/PA66/Nanoclay systems with polypropylene grafted maleic anhydride PP-g-MAH as a compatibilizer were prepared via melt compounding and characterized in terms of nanoclay content. Morphological structure was investigated by scanning electron microscopy. The rheological behavior of the nanocomposites was determined by various methods, viz melt flow index (MFI) and parallel plate rheological measurements. The PP/PP-g-MAH/PA66 nanocomposites showed a homogeneous morphology supporting the compatibility improvement between PP, PA66, and nanoclay. SEM results revealed the formation of nanocomposites as the nanoclay was intercalated and exfoliated. In the ternary nanocomposites, the rheological behavior showed that, the complex viscosity is increased with increasing the nanoclay. The results showed that the use of nanoclay affects the variations of storage modulus (G′), loss modulus (G″) and the melt elasticity.

Keywords: Nanocomposites, polypropylene, polyamide66, modified nanoclay, rheology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1714
1239 A Review of the Characteristics and Optimization of Optical Properties of Zirconia Ceramics for Aesthetic Dental Restorations

Authors: R. A. Shahmiri, O. C. Standard, J. N. Hart, C. C. Sorrell

Abstract:

The ceramic yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) has been used as a dental biomaterial for several decades. The strength and toughness of this material can be accounted for by its toughening mechanisms, which include transformation toughening, crack deflection, zone shielding, contact shielding, and crack bridging. Prevention of crack propagation is of critical importance in high-fatigue situations, such as those encountered in mastication and para-function. However, the poor translucence of Y-TZP in polycrystalline form is such that it may not meet the aesthetic requirements due to its white/grey appearance. To improve the optical properties of Y-TZP, more detailed study of the optical properties is required; in particular, precise evaluation of the refractive index, absorption coefficient, and scattering coefficient are necessary. The measurement of the optical parameters has been based on the assumption that light scattered from biological media is isotropically distributed over all angles. In fact, the optical behavior of real biological materials depends on the angular scattering of light due to the anisotropic nature of the materials. The purpose of the present work is to evaluate the optical properties (including color, opacity/translucence, scattering, and fluorescence) of zirconia dental ceramics and their control through modification of the chemical composition, phase composition, and surface microstructure.

Keywords: Optical properties, opacity/translucence, scattering, fluorescence, chemical composition, phase composition, surface microstructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
1238 Evaluation of Mixed-Mode Stress Intensity Factor by Digital Image Correlation and Intelligent Hybrid Method

Authors: K. Machida, H. Yamada

Abstract:

Displacement measurement was conducted on compact normal and shear specimens made of acrylic homogeneous material subjected to mixed-mode loading by digital image correlation. The intelligent hybrid method proposed by Nishioka et al. was applied to the stress-strain analysis near the crack tip. The accuracy of stress-intensity factor at the free surface was discussed from the viewpoint of both the experiment and 3-D finite element analysis. The surface images before and after deformation were taken by a CMOS camera, and we developed the system which enabled the real time stress analysis based on digital image correlation and inverse problem analysis. The great portion of processing time of this system was spent on displacement analysis. Then, we tried improvement in speed of this portion. In the case of cracked body, it is also possible to evaluate fracture mechanics parameters such as the J integral, the strain energy release rate, and the stress-intensity factor of mixed-mode. The 9-points elliptic paraboloid approximation could not analyze the displacement of submicron order with high accuracy. The analysis accuracy of displacement was improved considerably by introducing the Newton-Raphson method in consideration of deformation of a subset. The stress-intensity factor was evaluated with high accuracy of less than 1% of the error.

Keywords: Digital image correlation, mixed mode, Newton-Raphson method, stress intensity factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691
1237 Anticorrosive Polyurethane Clear Coat with Self-Cleaning Character

Authors: Nihit Madireddi, P. A. Mahanwar

Abstract:

We have aimed to produce a self-cleaning transparent polymer coating with polyurethane (PU) matrix as the latter is highly solvent, chemical and weather resistant having good mechanical properties. Nano-silica modified by 1H, 1H, 2H, 2Hperflurooctyltriethoxysilane was incorporated into the PU matrix for attaining self-cleaning ability through hydrophobicity. The modification was confirmed by particle size analysis and scanning electron microscopy (SEM). Thermo-gravimetric (TGA) studies were carried to ascertain the grafting of silane onto the silica. Several coating formulations were prepared by varying the silica loading content and compared to a commercial equivalent. The effect of dispersion and the morphology of the coated films were assessed by SEM analysis. All coating standardized tests like solvent resistance, adhesion, flexibility, acid, alkali, gloss etc. have been performed as per ASTM standards. Water contact angle studies were conducted to analyze the hydrophobic character of the coating. In addition, the coatings were also subjected to salt spray and accelerated weather testing to analyze the durability of the coating.

Keywords: FAS, nano-silica, PU clear coat, self-cleaning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2154
1236 Li4SiO4 Prepared by Sol-gel Method as Potential Host for LISICON Structured Solid Electrolytes

Authors: Syed Bahari Ramadzan Syed Adnan, Nor Sabirin Mohamed, Norwati K.A

Abstract:

In this study, Li4SiO4 powder was successfully synthesized via sol gel method followed by drying at 150oC. Lithium oxide, Li2O and silicon oxide, SiO2 were used as the starting materials with citric acid as the chelating agent. The obtained powder was then sintered at various temperatures. Crystallographic phase analysis, morphology and ionic conductivity were investigated systematically employing X-ray diffraction, Fourier Transform Infrared, Scanning Electron Microscopy and AC impedance spectroscopy. XRD result showed the formation of pure monoclinic Li4SiO4 crystal structure with lattice parameters a = 5.140 Å, b = 6.094 Å, c = 5.293 Å, β = 90o in the sample sintered at 750oC. This observation was confirmed by FTIR analysis. The bulk conductivity of this sample at room temperature was 3.35 × 10-6 S cm-1 and the highest bulk conductivity of 1.16 × 10-4 S cm-1 was obtained at 100°C. The results indicated that, the Li4SiO4 compound has potential to be used as host for LISICON structured solid electrolyte for low temperature application.

Keywords: Conductivity, LISICON, Li4SiO4, Solid electrolyte, Structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3298
1235 Clarification of Synthetic Juice through Spiral Wound Ultrafiltration Module at Turbulent Flow Region and Cleaning Study

Authors: Vijay Singh, Chandan Das

Abstract:

Synthetic juice clarification was done through spiral wound ultrafiltration (UF) membrane module. Synthetic juice was clarified at two different operating conditions, such as, with and without permeates recycle at turbulent flow regime. The performance of spiral wound ultrafiltration membrane was analyzed during clarification of synthetic juice. Synthetic juice was the mixture of deionized water, sucrose and pectin molecule. The operating conditions are: feed flowrate of 10 lpm, pressure drop of 413.7 kPa and Reynolds no of 5000. Permeate sample was analyzed in terms of volume reduction factor (VRF), viscosity (Pa.s), ⁰Brix, TDS (mg/l), electrical conductivity (μS) and turbidity (NTU). It was observe that the permeate flux declined with operating time for both conditions of with and without permeate recycle due to increase of concentration polarization and increase of gel layer on membrane surface. For without permeate recycle, the membrane fouling rate was faster compared to with permeate recycle. For without permeate recycle, the VRF rose up to 5 and for with recycle permeate the VRF is 1.9. The VRF is higher due to adsorption of solute (pectin) molecule on membrane surface and resulting permeateflux declined with VRF. With permeate recycle, quality was within acceptable limit. Fouled membrane was cleaned by applying different processes (e.g., deionized water, SDS and EDTA solution). Membrane cleaning was analyzed in terms of permeability recovery.

Keywords: Synthetic juice, Spiral wound, ultrafiltration, Reynolds No, Volume reduction factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
1234 Sensitivity Analysis of Principal Stresses in Concrete Slab of Rigid Pavement Made From Recycled Materials

Authors: Aleš Florian, Lenka Ševelová

Abstract:

Complex sensitivity analysis of stresses in a concrete slab of the real type of rigid pavement made from recycled materials is performed. The computational model of the pavement is designed as a spatial (3D) model, is based on a nonlinear variant of the finite element method that respects the structural nonlinearity, enables to model different arrangements of joints, and the entire model can be loaded by the thermal load. Interaction of adjacent slabs in joints and contact of the slab and the subsequent layer are modeled with the help of special contact elements. Four concrete slabs separated by transverse and longitudinal joints and the additional structural layers and soil to the depth of about 3m are modeled. The thickness of individual layers, physical and mechanical properties of materials, characteristics of joints, and the temperature of the upper and lower surface of slabs are supposed to be random variables. The modern simulation technique Updated Latin Hypercube Sampling with 20 simulations is used. For sensitivity analysis the sensitivity coefficient based on the Spearman rank correlation coefficient is utilized. As a result, the estimates of influence of random variability of individual input variables on the random variability of principal stresses s1 and s3 in 53 points on the upper and lower surface of the concrete slabs are obtained.

Keywords: Concrete, FEM, pavement, sensitivity, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2119
1233 Delineation of Oil – Polluted Sites in Ibeno LGA, Nigeria, Using Microbiological and Physicochemical Characterization

Authors: Ime R. Udotong, Justina I. R. Udotong

Abstract:

Mobil Producing Nigeria Unlimited (MPNU), a subsidiary of ExxonMobil and the highest crude oil & condensate producer in Nigeria has its operational base and an oil terminal, the Qua Iboe terminal (QIT) located at Ibeno, Nigeria. Other oil companies like Network Exploration and Production Nigeria Ltd, Frontier Oil Ltd; Shell Petroleum Development Company Ltd; Elf Petroleum Nigeria Ltd and Nigerian Agip Energy, a subsidiary of the Italian ENI E&P operate onshore, on the continental shelf and in deep offshore of the Atlantic Ocean, respectively with the coastal waters of Ibeno, Nigeria as the nearest shoreline. This study was designed to delineate the oil-polluted sites in Ibeno, Nigeria using microbiological and physico-chemical characterization of soils, sediments and ground and surface water samples from the study area. Results obtained revealed that there have been significant recent hydrocarbon inputs into this environment as observed from the high counts of hydrocarbonoclastic microorganisms in excess of 1% at all the stations sampled. Moreover, high concentrations of THC, BTEX and heavy metals contents in all the samples analyzed corroborate the high recent crude oil input into the study area. The results also showed that the pollution of the different environmental media sampled were of varying degrees, following the trend: ground water > surface water > sediments > soils.

Keywords: Microbiological characterization, oil-polluted sites, physico-chemical analyses, total hydrocarbon content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2294
1232 Removal of Copper and Zinc Ions onto Biomodified Palm Shell Activated Carbon

Authors: Gulnaziya Issabayeva, Mohamed Kheireddine Aroua

Abstract:

commercially produced in Malaysia granular palm shell activated carbon (PSAC) was biomodified with bacterial biomass (Bacillus subtilis) to produce a hybrid biosorbent of higher efficiency. The obtained biosorbent was evaluated in terms of adsorption capacity to remove copper and zinc metal ions from aqueous solutions. The adsorption capacity was evaluated in batch adsorption experiments where concentrations of metal ions varied from 20 to 350 mg/L. A range of pH from 3 to 6 of aqueous solutions containing metal ions was tested. Langmuir adsorption model was used to interpret the experimental data. Comparison of the adsorption data of the biomodified and original palm shell activated carbon showed higher uptake of metal ions by the hybrid biosorbent. A trend in metal ions uptake increase with the increase in the solution-s pH was observed. The surface characterization data indicated a decrease in the total surface area for the hybrid biosorbent; however the uptake of copper and zinc by it was at least equal to the original PSAC at pH 4 and 5. The highest capacity of the hybrid biosorbent was observed at pH 5 and comprised 22 mg/g and 19 mg/g for copper and zinc, respectively. The adsorption capacity at the lowest pH of 3 was significantly low. The experimental results facilitated identification of potential factors influencing the adsorption of copper and zinc onto biomodified and original palm shell activated carbon.

Keywords: Adsorption, biomodification, copper, zinc, palm shell carbon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
1231 Knowledge Based Wear Particle Analysis

Authors: Mohammad S. Laghari, Qurban A. Memon, Gulzar A. Khuwaja

Abstract:

The paper describes a knowledge based system for analysis of microscopic wear particles. Wear particles contained in lubricating oil carry important information concerning machine condition, in particular the state of wear. Experts (Tribologists) in the field extract this information to monitor the operation of the machine and ensure safety, efficiency, quality, productivity, and economy of operation. This procedure is not always objective and it can also be expensive. The aim is to classify these particles according to their morphological attributes of size, shape, edge detail, thickness ratio, color, and texture, and by using this classification thereby predict wear failure modes in engines and other machinery. The attribute knowledge links human expertise to the devised Knowledge Based Wear Particle Analysis System (KBWPAS). The system provides an automated and systematic approach to wear particle identification which is linked directly to wear processes and modes that occur in machinery. This brings consistency in wear judgment prediction which leads to standardization and also less dependence on Tribologists.

Keywords: Computer vision, knowledge based systems, morphology, wear particles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729
1230 Analysis of a Lignocellulose Degrading Microbial Consortium to Enhance the Anaerobic Digestion of Rice Straws

Authors: Supanun Kangrang, Kraipat Cheenkachorn, Kittiphong Rattanaporn, Malinee Sriariyanun

Abstract:

Rice straw is lignocellulosic biomass which can be utilized as substrate for the biogas production. However, due to the property and composition of rice straw, it is difficult to be degraded by hydrolysis enzymes. One of the pretreatment methods that modify such properties of lignocellulosic biomass is the application of lignocellulose-degrading microbial consortia. The aim of this study is to investigate the effect of microbial consortia to enhance biogas production. To select the high efficient consortium, cellulase enzymes were extracted and their activities were analyzed. The results suggested that microbial consortium culture obtained from cattle manure is the best candidate compared to decomposed wood and horse manure. A microbial consortium isolated from cattle manure was then mixed with anaerobic sludge and used as inoculum for biogas production. The optimal conditions for biogas production were investigated using response surface methodology (RSM). The tested parameters were the ratio of amount of microbial consortium isolated and amount of anaerobic sludge (MI:AS), substrate to inoculum ratio (S:I) and temperature. Here, the value of the regression coefficient R2 = 0.7661 could be explained by the model which is high to advocate the significance of the model. The highest cumulative biogas yield was 104.6 ml/g-rice straw at optimum ratio of MI:AS, ratio of S:I, and temperature of 2.5:1, 15:1 and 44°C respectively.

Keywords: Lignocellulolytic biomass, microbial consortium, cellulase, biogas, Response Surface Methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3299
1229 Unsteady MHD Flow of an Incompressible Elastico-Viscous Fluid in a Tube of Spherical Cross Section on a Porous Boundary

Authors: Sanjay Baburao Kulkarni

Abstract:

Exact solution of an unsteady MHD flow of elasticoviscous fluid through a porous media in a tube of spherical cross section under the influence of magnetic field and constant pressure gradient has been obtained in this paper. Initially, the flow is generated by a constant pressure gradient. After attaining the steady state, the pressure gradient is suddenly withdrawn and the resulting fluid motion in a tube of spherical cross section by taking into account of the porosity factor and magnetic parameter of the bounding surface is investigated. The problem is solved in two-stages the first stage is a steady motion in tube under the influence of a constant pressure gradient, the second stage concern with an unsteady motion. The problem is solved employing separation of variables technique. The results are expressed in terms of a non-dimensional porosity parameter (K), magnetic parameter (m) and elasticoviscosity parameter (β), which depends on the Non-Newtonian coefficient. The flow parameters are found to be identical with that of Newtonian case as elastic-viscosity parameter and magnetic parameter tends to zero and porosity tends to infinity. It is seen that the effect of elastico-viscosity parameter, porosity parameter and magnetic parameter of the bounding surface has significant effect on the velocity parameter.

Keywords: Elastico-viscous fluid, Porous media, Second order fluids, Spherical cross-section, Magnetic parameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1623
1228 Interaction Effect of Feed Rate and Cutting Speed in CNC-Turning on Chip Micro-Hardness of 304- Austenitic Stainless Steel

Authors: G. H. Senussi

Abstract:

The present work is concerned with the effect of turning process parameters (cutting speed, feed rate, and depth of cut) and distance from the center of work piece as input variables on the chip micro-hardness as response or output. Three experiments were conducted; they were used to investigate the chip micro-hardness behavior at diameter of work piece for 30[mm], 40[mm], and 50[mm]. Response surface methodology (R.S.M) is used to determine and present the cause and effect of the relationship between true mean response and input control variables influencing the response as a two or three dimensional hyper surface. R.S.M has been used for designing a three factor with five level central composite rotatable factors design in order to construct statistical models capable of accurate prediction of responses. The results obtained showed that the application of R.S.M can predict the effect of machining parameters on chip micro-hardness. The five level factorial designs can be employed easily for developing statistical models to predict chip micro-hardness by controllable machining parameters. Results obtained showed that the combined effect of cutting speed at it?s lower level, feed rate and depth of cut at their higher values, and larger work piece diameter can result increasing chi micro-hardness.

Keywords: Machining Parameters, Chip Micro-Hardness, CNCMachining, 304-Austenic Stainless Steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3273
1227 Hygrothermal Assessment of Internally Insulated Prefabricated Concrete Wall in Polish Climatic Condition

Authors: D. Kaczorek

Abstract:

Internal insulation of external walls is often problematic due to increased moisture content in the wall and interstitial or surface condensation risk. In this paper, the hygrothermal performance of prefabricated, concrete, large panel, external wall typical for WK70 system, commonly used in Poland in the 70’s, with inside, additional insulation was investigated. Thermal insulation board made out of hygroscopic, natural materials with moisture buffer capacity and extruded polystyrene (EPS) board was used as interior insulation. Experience with this natural insulation is rare in Poland. The analysis was performed using WUFI software. First of all, the impact of various standard boundary conditions on the behavior of the different wall assemblies was tested. The comparison of results showed that the moisture class according to the EN ISO 13788 leads to too high values of total moisture content in the wall since the boundary condition according to the EN 15026 should be usually applied. Then, hygrothermal 1D-simulations were conducted by WUFI Pro for analysis of internally added insulation, and the weak point like the joint of the wall with the concrete ceiling was verified using 2D simulations. Results showed that, in the Warsaw climate and the indoor conditions adopted in accordance with EN 15026, in the tested wall assemblies, regardless of the type of interior insulation, there would not be any problems with moisture - inside the structure and on the interior surface.

Keywords: Concrete large panel wall, hygrothermal simulation, internal insulation, moisture related issues.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 705