Search results for: The coupled Burgers equation
532 A Novel Adaptive Voltage Control Strategy for Boost Converter via Inverse LQ Servo-Control
Authors: Sorawit Stapornchaisit, Sidshchadhaa Aumted, Hiroshi Takami
Abstract:
In this paper, we propose a novel adaptive voltage control strategy for boost converter via Inverse LQ Servo-Control. Our presented strategy is based on an analytical formula of Inverse Linear Quadratic (ILQ) design method, which is not necessary to solve Riccati’s equation directly. The optimal and adaptive controller of the voltage control system is designed. The stability and the robust control are analyzed. Whereas, we can get the analytical solution for the optimal and robust voltage control is achieved through the natural angular velocity within a single parameter and we can change the responses easily via the ILQ control theory. Our method provides effective results as the stable responses and the response times are not drifted even if the condition is changed widely.Keywords: Boost converter, optimal voltage control, inverse LQ design method, type-1 servo-system, adaptive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1719531 Nonlinear Dynamics of Cracked RC Beams under Harmonic Excitation
Authors: Atul Krishna Banik
Abstract:
Nonlinear response behaviour of a cracked RC beam under harmonic excitation is analysed to investigate various instability phenomena like, bifurcation, jump phenomena etc. The nonlinearity of the system arises due to opening and closing of the cracks in the RC beam and is modelled as a cubic polynomial. In order to trace different branches at the bifurcation point on the response curve (amplitude versus frequency of excitation plot), an arc length continuation technique along with the incremental harmonic balance (IHBC) method is employed. The stability of the solution is investigated by the Floquet theory using Hsu-s scheme. The periodic solutions obtained by the IHBC method are compared with these obtained by the numerical integration of the equation of motion. Characteristics of solutions fold bifurcation, jump phenomena and from stable to unstable zones are identified.
Keywords: Incremental harmonic balance, arc-length continuation, bifurcation, jump phenomena.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525530 Stabilization of Angular-Shaped Riprap under Overtopping Flows
Authors: Dilavar Khan, Z. Ahmad
Abstract:
Riprap is mostly used to prevent erosion by flows down the steep slopes in river engineering. A total of 53 stability tests performed on angular riprap with a median stone size ranging from 15 to 278 mm and slope ranging from 1 to 40% are used in this study. The existing equations for the prediction of medium size of angular stones are checked for their accuracy using the available data. Predictions of median size using these equations are not satisfactory and results show deviation by more than ±20% from the observed values. A multivariable power regression analysis is performed to propose a new equation relating the median size with unit discharge, bed slope, riprap thickness and coefficient of uniformity. The proposed relationship satisfactorily predicts the median angular stone size with ±20% error. Further, the required size of the rounded stone is more than the angular stone for the same unit discharge and the ratio increases with unit discharge and also with embankment slope of the riprap.Keywords: Angularity, Gradation, Riprap, Stabilization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2653529 Optimal Design of Composite Patch for a Cracked Pipe by Utilizing Genetic Algorithm and Finite Element Method
Authors: Mahdi Fakoor, Seyed Mohammad Navid Ghoreishi
Abstract:
Composite patching is a common way for reinforcing the cracked pipes and cylinders. The effects of composite patch reinforcement on fracture parameters of a cracked pipe depend on a variety of parameters such as number of layers, angle, thickness, and material of each layer. Therefore, stacking sequence optimization of composite patch becomes crucial for the applications of cracked pipes. In this study, in order to obtain the optimal stacking sequence for a composite patch that has minimum weight and maximum resistance in propagation of cracks, a coupled Multi-Objective Genetic Algorithm (MOGA) and Finite Element Method (FEM) process is proposed. This optimization process has done for longitudinal and transverse semi-elliptical cracks and optimal stacking sequences and Pareto’s front for each kind of cracks are presented. The proposed algorithm is validated against collected results from the existing literature.
Keywords: Multi objective optimization, Pareto front, composite patch, cracked pipe.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 911528 Evaluating Hourly Sulphur Dioxide and Ground Ozone Simulated with the Air Quality Model in Lima, Peru
Authors: Odón R. Sánchez-Ccoyllo, Elizabeth Ayma-Choque, Alan Llacza
Abstract:
Sulphur dioxide (SO₂) and surface-ozone (O₃) concentrations are associated with diseases. The objective of this research is to evaluate the effectiveness of the air-quality Weather Research and Forecasting model coupled to Chemistry (WRF-Chem) model with a horizontal resolution of 5 km x 5 km. For this purpose, the measurements of the hourly SO₂ and O₃ concentrations available in three air quality monitoring stations in Lima, Peru were used for the purpose of validating the simulations of the SO₂ and O₃ concentrations obtained with the WRF-Chem model in February 2018. For the quantitative evaluation of the simulations of these gases, statistical techniques were implemented, such as the average of the simulations; the average of the measurements; the Mean Bias (MeB); the Mean Error (MeE); and the Root Mean Square Error (RMSE). The results of these statistical metrics indicated that the simulated SO₂ and O₃ values over-predicted the SO₂ and O₃ measurements. For the SO₂ concentration, the MeB values varied from 0.58 to 26.35 µg/m³; the MeE values varied from 8.75 to 26.5 µg/m³; the RMSE values varied from 13.3 to 31.79 µg/m³; while for O₃ concentrations the statistical values of the MeB varied from 37.52 to 56.29 µg/m³; the MeE values varied from 37.54 to 56.70 µg/m³; the RMSE values varied from 43.05 to 69.56 µg/m³.
Keywords: Ground-ozone, Lima, Sulphur dioxide, WRF-Chem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 367527 Numerical Simulation of Fluid-Structure Interaction on Wedge Slamming Impact Using Particle Method
Authors: Sung-Chul Hwang, Di Ren, Sang-Moon Yoon, Jong-Chun Park, Abbas Khayyer, Hitoshi Gotoh
Abstract:
This paper presents a fully Lagrangian coupled Fluid-Structure Interaction (FSI) solver for simulations of fluid-structure interactions, which is based on the Moving Particle Semi-implicit (MPS) method to solve the governing equations corresponding to incompressible flows as well as elastic structures. The developed solver is verified by reproducing the high velocity impact loads of deformable thin wedges with three different materials such as mild steel, aluminium and tin during water entry. The present simulation results for aluminium are compared with analytical solution derived from the hydrodynamic Wagner model and linear Wan’s theory. And also, the impact pressure and strain on the water entry wedge with three different materials, such as mild steel, aluminium and tin, are simulated and the effects of hydro-elasticity are discussed.Keywords: Fluid-structure interaction (FSI), Moving Particle Semi-implicit (MPS) method, Elastic structure, Incompressible fluid Wedge slamming impact.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2103526 Heat Transfer, Fluid Flow, and Metallurgical Transformations in Arc Welding: Application to 16MND5 Steel
Authors: F. Roger, A. Traidia, B. Reynier
Abstract:
Arc welding creates a weld pool to realize continuity between pieces of assembly. The thermal history of the weld is dependent on heat transfer and fluid flow in the weld pool. The metallurgical transformation during welding and cooling are modeled in the literature only at solid state neglecting the fluid flow. In the present paper we associate a heat transfer – fluid flow and metallurgical model for the 16MnD5 steel. The metallurgical transformation model is based on Leblond model for the diffusion kinetics and on the Koistinen-Marburger equation for Marteniste transformation. The predicted thermal history and metallurgical transformations are compared to a simulation without fluid phase. This comparison shows the great importance of the fluid flow modeling.
Keywords: Arc welding, Weld pool, Fluid flow, Metallurgical transformations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608525 Numerical and Experimental Study of Flow from a Leaking Buried Pipe in an Unsaturated Porous Media
Authors: S.M.Hosseinalipour, H.Aghakhani
Abstract:
Considering the numerous applications of the study of the flow due to leakage in a buried pipe in unsaturated porous media, finding a proper model to explain the influence of the effective factors is of great importance.There are various important factors involved in this type of flow such as: pipe leakage size and location, burial depth, the degree of the saturation of the surrounding porous medium, characteristics of the porous medium, fluid type and pressure of the upstream.In this study, the flow through unsaturated porous media due to leakage of a buried pipe for up and down leakage location is studied experimentally and numerically and their results are compared. Study results show that Darcy equation together with BCM method (for calculating the relative permeability) have suitable ability for predicting the flow due to leakage of buried pipes in unsaturated porous media.Keywords: Buried, Leaking pipe, Porous media, Unsaturated
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2379524 Hydrothermal Behavior of G-S Magnetically Stabilized Beds Consisting of Magnetic and Non-Magnetic Admixtures
Authors: Z. Al-Qodah, M. Al-Busoul, A. Khraewish
Abstract:
The hydrothermal behavior of a bed consisting of magnetic and shale oil particle admixtures under the effect of a transverse magnetic field is investigated. The phase diagram, bed void fraction are studied under wide range of the operating conditions i.e., gas velocity, magnetic field intensity and fraction of the magnetic particles. It is found that the range of the stabilized regime is reduced as the magnetic fraction decreases. In addition, the bed voidage at the onset of fluidization decreases as the magnetic fraction decreases. On the other hand, Nusselt number and consequently the heat transfer coefficient is found to increase as the magnetic fraction decreases. An empirical equation is investigated to relate the effect of the gas velocity, magnetic field intensity and fraction of the magnetic particles on the heat transfer behavior in the bed.Keywords: Magnetic stabilization; Magnetic stabilized fluidizedbeds; Gas-fluidized beds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1354523 Surface Roughness Prediction Model for Grinding of Composite Laminate Using Factorial Design
Authors: P. Chockalingam, C. K. Kok, T. R. Vijayaram
Abstract:
Glass fiber reinforced polymer (GFRP) laminates have been widely used because of their unique mechanical and physical properties such as high specific strength, stiffness and corrosive resistance. Accordingly, the demand for precise grinding of composites has been increasing enormously. Grinding is the one of the obligatory methods for fabricating products with composite materials and it is usually the final operation in the assembly of structural laminates. In this experimental study, an attempt has been made to develop an empirical model to predict the surface roughness of ground GFRP composite laminate with respect to the influencing grinding parameters by factorial design approach of design of experiments (DOE). The significance of grinding parameters and their three factor interaction effects on grinding of GFRP composite have been analyzed in detail. An empirical equation has been developed to attain minimum surface roughness in GFRP laminate grinding.
Keywords: GFRP Laminates, Grinding, Surface Roughness, Factorial Design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2452522 CFD of Oscillating Airfoil Pitch Cycle by using PISO Algorithm
Authors: Muhammad Amjad Sohail, Rizwan Ullah
Abstract:
This research paper presents the CFD analysis of oscillating airfoil during pitch cycle. Unsteady subsonic flow is simulated for pitching airfoil at Mach number 0.283 and Reynolds number 3.45 millions. Turbulent effects are also considered for this study by using K-ω SST turbulent model. Two-dimensional unsteady compressible Navier-Stokes code including two-equation turbulence model and PISO pressure velocity coupling is used. Pressure based implicit solver with first order implicit unsteady formulation is used. The simulated pitch cycle results are compared with the available experimental data. The results have a good agreement with the experimental data. Aerodynamic characteristics during pitch cycles have been studied and validated.Keywords: Angle of attack, Centre of pressure, subsonic flow, pitching moment coefficient, turbulence mode
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2396521 Performance Evaluation of Intelligent Controllers for AGC in Thermal Systems
Authors: Muhammad Muhsin, Abhishek Mishra, Shreyansh Vishwakarma, K. Dasaratha Babu, Anudevi Samuel
Abstract:
In an interconnected power system, any sudden small load perturbation in any of the interconnected areas causes the deviation of the area frequencies, the tie line power and voltage deviation at the generator terminals. This paper deals with the study of performance of intelligent Fuzzy Logic controllers coupled with Conventional Controllers (PI and PID) for Load Frequency Control. For analysis, an isolated single area and interconnected two area thermal power systems with and without generation rate constraints (GRC) have been considered. The studies have been performed with conventional PI and PID controllers and their performance has been compared with intelligent fuzzy controllers. It can be demonstrated that these controllers can successfully bring back the excursions in area frequencies and tie line powers within acceptable limits in smaller time periods and with lesser transients as compared to the performance of conventional controllers under same load disturbance conditions. The simulations in MATLAB have been used for comparative studies.
Keywords: Area Control Error, Fuzzy Logic, Generation rate constraint, Load Frequency, Tie line Power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2460520 Mine Production Index (MPI): New Method to Evaluate Effectiveness of Mining Machinery
Authors: Amol Lanke, Hadi Hoseinie, Behzad Ghodrati
Abstract:
OEE has been used in many industries as measure of performance. However due to limitations of original OEE, it has been modified by various researchers. OEE for mining application is special version of classic equation, carries these limitation over. In this paper it has been aimed to modify the OEE for mining application by introducing the weights to the elements of it and termed as Mine Production index (MPi). As a special application of new index MPishovel has been developed by authors. This can be used for evaluating the shovel effectiveness. Based on analysis, utilization followed by performance and availability were ranked in this order. To check the applicability of this index, a case study was done on four electrical and one hydraulic shovel in a Swedish mine. The results shows that MPishovel can evaluate production effectiveness of shovels and can determine effectiveness values in optimistic view compared to OEE. MPi with calculation not only give the effectiveness but also can predict which elements should be focused for improving the productivity.
Keywords: Mining, Overall equipment efficiency (OEE), Mine Production index, Shovels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4746519 Decay Heat Contribution Analyses of Curium Isotopes in the Mixed Oxide Nuclear Fuel
Authors: S. S. Nafee, A. K. Al-Ramady, S. A. Shaheen
Abstract:
The mixed oxide nuclear fuel (MOX) of U and Pu contains several percent of fission products and minor actinides, such as neptunium, americium and curium. It is important to determine accurately the decay heat from Curium isotopes as they contribute significantly in the MOX fuel. This heat generation can cause samples to melt very quickly if excessive quantities of curium are present. In the present paper, we introduce a new approach that can predict the decay heat from curium isotopes. This work is a part of the project funded by King Abdulaziz City of Science and Technology (KASCT), Long-Term Comprehensive National Plan for Science, Technology and Innovations, and take place in King Abdulaziz University (KAU), Saudi Arabia. The approach is based on the numerical solution of coupled linear differential equations that describe decays and buildups of many nuclides to calculate the decay heat produced after shutdown. Results show the consistency and reliability of the approach applied.
Keywords: Decay heat, Mixed oxide nuclear fuel, Numerical Solution of Linear Differential Equations, and Curium isotopes
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890518 Numerical Investigation of Displacement Ventilation Effectiveness
Authors: Ramy H. Mohammed
Abstract:
Displacement ventilation of a room with an occupant is modeled using CFD. The geometry of manikin is accurately represented in CFD model to minimize potential. Indoor zero equation turbulence model is used to simulate all cases and the effect of the thermal radiation from manikin is taken into account. After validation of the code, predicted mean vote, mean age of air, and ventilation effectiveness are used to predict the thermal comfort zones and indoor air quality. The effect of the inlet velocity and temperature on the thermal comfort and indoor air quality is investigated. The results show that the inlet velocity has great effect on the thermal comfort and indoor air quality and low inlet velocity is sufficient to establish comfortable conditions inside the room. In addition, the displacement ventilation system achieves not only thermal comfort in ventilated rooms, but also energy saving of fan power.
Keywords: Displacement ventilation, Energy saving, Thermal comfort, Turbulence model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2595517 Modelling the Photovoltaic Pump Output Using Empirical Data from Local Conditions in the Vhembe District
Authors: C. Matasane, C. Dwarika, R. Naidoo
Abstract:
The mathematical analysis on radiation obtained and the development of the solar photovoltaic (PV) array groundwater pumping is needed in the rural areas of Thohoyandou for sizing and power performance subject to the climate conditions within the area. A simple methodology approach is developed for the directed coupled solar, controller and submersible ground water pump system. The system consists of a PV array, pump controller and submerged pump, battery backup and charger controller. For this reason, the theoretical solar radiation is obtained for optimal predictions and system performance in order to achieve different design and operating parameters. Here the examination of the PV schematic module in a Direct Current (DC) application is used for obtainable maximum solar power energy for water pumping. In this paper, a simple efficient photovoltaic water pumping system is presented with its theoretical studies and mathematical modeling of photovoltaics (PV) system.
Keywords: Renewable energy sources, solar groundwater pumping, theoretical and mathematical analysis of photovoltaic (PV) system, theoretical solar radiation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2521516 Operational Challenges of Marine Fiber Reinforced Polymer Composite Structures Coupled with Piezoelectric Transducers
Authors: H. Ucar, U. Aridogan
Abstract:
Composite structures become intriguing for the design of aerospace, automotive and marine applications due to weight reduction, corrosion resistance and radar signature reduction demands and requirements. Studies on piezoelectric ceramic transducers (PZT) for diagnostics and health monitoring have gained attention for their sensing capabilities, however PZT structures are prone to fail in case of heavy operational loads. In this paper, we develop a piezo-based Glass Fiber Reinforced Polymer (GFRP) composite finite element (FE) model, validate with experimental setup, and identify the applicability and limitations of PZTs for a marine application. A case study is conducted to assess the piezo-based sensing capabilities in a representative marine composite structure. A FE model of the composite structure combined with PZT patches is developed, afterwards the response and functionality are investigated according to the sea conditions. Results of this study clearly indicate the blockers and critical aspects towards industrialization and wide-range use of PZTs for marine composite applications.
Keywords: FRP, marine composite, piezoelectric transducer, sea state, wave-induced loads.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 490515 A Structural Equation Model of Knowledge Management Based On Organizational Climate in Universities
Authors: F. Nazem, M. Mozaiini, A. Seifi
Abstract:
The purpose of the present study was to provide a structural model of knowledge management in universities based on organizational climate. The population of the research included all employees of Islamic Azad University (IAU). The sample consisted of 1590 employees selected using stratified and cluster random sampling method. The research instruments were two questionnaires which were administered in 78 IAU branches and education centers: Sallis and Jones’s (2002) Knowledge Management Questionnaire (α= 0.97); and Latwin & Stringer’s (1968) Organizational Climate Questionnaire (α= 0.83). The results of path analysis using LISREL software indicated that dimensions of organizational climate had a direct effect on knowledge management with the indices of 0.94. The model also showed that the factor of support in organizational climate had the highest direct effect on the knowledge management.
Keywords: Knowledge management, Organizational climate, Structural model, Universities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2287514 Increase of Energy Efficiency by Means of Application of Active Bearings
Authors: Alexander Babin, Leonid Savin
Abstract:
In the present paper, increasing of energy efficiency of a thrust hybrid bearing with a central feeding chamber is considered. The mathematical model was developed to determine the pressure distribution and the reaction forces, based on the Reynolds equation and static characteristics’ equations. The boundary problem of pressure distribution calculation was solved using the method of finite differences. For various types of lubricants, geometry and operational characteristics, axial gaps can be determined, where the minimal friction coefficient is provided. The next part of the study considers the application of servovalves in order to maintain the desired position of the rotor. The report features the calculation results and the analysis of the influence of the operational and geometric parameters on the energy efficiency of mechatronic fluid-film bearings.
Keywords: Active bearings, energy efficiency, mathematical model, mechatronics, thrust multipad bearing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1222513 Study of Heat Transfer in the Absorber Plates of a Flat-Plate Solar Collector Using Dual-Phase-Lag Model
Authors: Yu-Ching Yang, Haw-Long Lee, Win-Jin Chang
Abstract:
The present work numerically analyzes the transient heat transfer in the absorber plates of a flat-plate solar collector based on the dual-phase-lag (DPL) heat conduction model. An efficient numerical scheme involving the hybrid application of the Laplace transform and control volume methods is used to solve the linear hyperbolic heat conduction equation. This work also examines the effect of different medium parameters on the behavior of heat transfer. Results show that, while the heat-flux phase lag induces thermal waves in the medium, the temperature-gradient phase lag smoothens the thermal waves by promoting non-Fourier diffusion-like conduction into the medium.
Keywords: Absorber plates, dual-phase-lag, non-Fourier, solar collector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1318512 Mathematical Model for the Transmission of Leptospirosis in Juvennile and Adults Humans
Authors: P. Pongsumpun
Abstract:
Leptospirosis occurs worldwide (except the poles of the earth), urban and rural areas, developed and developing countries, especially in Thailand. It can be transmitted to the human by rats through direct and indirect ways. Human can be infected by either touching the infected rats or contacting with water, soil containing urine from the infected rats through skin, eyes and nose. The data of the people who are infected with this disease indicates that most of the patients are adults. The transmission of this disease is studied through mathematical model. The population is separated into human and rat. The human is divided into two classes, namely juvenile and adult. The model equation is constructed for each class. The standard dynamical modeling method is then used for analyzing the behaviours of solutions. In addition, the conditions of the parameters for the disease free and endemic states are obtained. Numerical solutions are shown to support the theoretical predictions. The results of this study guide the way to decrease the disease outbreak.Keywords: Adult human, juvenile human, leptospirosis, mathematical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2590511 Numerical Simulation of Iron Ore Reactor Isobaric and Cooling zone to Investigate Total Carbon Formation in Sponge Iron
Authors: B. Alamsari, S. Torii, A. Trianto, Y. Bindar
Abstract:
Isobaric and cooling zone of iron ore reactor have been simulated. In this paper, heat and mass transfer equation are formulated to perform the temperature and concentration of gas and solid phase respectively. Temperature profile for isobaric zone is simulated on the range temperature of 873-1163K while cooling zone is simulated on the range temperature of 733-1139K. The simulation results have a good agreement with the plant data. Total carbon formation in the isobaric zone is only 30% of total carbon contained in the sponge iron product. The formation of Fe3C in isobaric zone reduces metallization degree up to 0.58% whereas reduction of metallization degree in cooling zone up to 1.139%. The decreasing of sponge iron temperature in the isobaric and cooling zone is around 300 K and 600 K respectively.Keywords: Mathematical Model, Iron Ore Reactor, Cooling Zone, Isobaric zone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640510 Closed Form Solution to problem of Calcium Diffusion in Cylindrical Shaped Neuron Cell
Authors: Amrita Tripathi, Neeru Adlakha
Abstract:
Calcium [Ca2+] dynamics is studied as a potential form of neuron excitability that can control many irregular processes like metabolism, secretion etc. Ca2+ ion enters presynaptic terminal and increases the synaptic strength and thus triggers the neurotransmitter release. The modeling and analysis of calcium dynamics in neuron cell becomes necessary for deeper understanding of the processes involved. A mathematical model has been developed for cylindrical shaped neuron cell by incorporating physiological parameters like buffer, diffusion coefficient, and association rate. Appropriate initial and boundary conditions have been framed. The closed form solution has been developed in terms of modified Bessel function. A computer program has been developed in MATLAB 7.11 for the whole approach.Keywords: Laplace Transform, Modified Bessel function, reaction diffusion equation, diffusion coefficient, excess buffer, calcium influx
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1964509 Experimental and Simulation Stress Strain Comparison of Hot Single Point Incremental Forming
Authors: Amar Al-Obaidi, Verena Kräusel, Dirk Landgrebe
Abstract:
Induction assisted single point incremental forming (IASPIF) is a flexible method and can be simply utilized to form a high strength alloys. Due to the interaction between the mechanical and thermal properties during IASPIF an evaluation for the process is necessary to be performed analytically. Therefore, a numerical simulation was carried out in this paper. The numerical analysis was operated at both room and elevated temperatures then compared with experimental results. Fully coupled dynamic temperature displacement explicit analysis was used to simulated the hot single point incremental forming. The numerical analysis was indicating that during hot single point incremental forming were a combination between complicated compression, tension and shear stresses. As a result, the equivalent plastic strain was increased excessively by rising both the formed part depth and the heating temperature during forming. Whereas, the forming forces were decreased from 5 kN at room temperature to 0.95 kN at elevated temperature. The simulation shows that the maximum true strain was occurred in the stretching zone which was the same as in experiment.Keywords: Induction heating, single point incremental forming, FE modeling, advanced high strength steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 937508 A Closed Form Solution for Hydrodynamic Pressure of Gravity Dams Reservoir with Effect of Viscosity under Dynamic Loading
Authors: B. Navayineya, J. Vaseghi Amiri, M. Alijani Ardeshir
Abstract:
Hydrodynamic pressures acting on upstream of concrete dams during an earthquake are an important factor in designing and assessing the safety of these structures in Earthquake regions. Due to inherent complexities, assessing exact hydrodynamic pressure is only feasible for problems with simple geometry. In this research, the governing equation of concrete gravity dam reservoirs with effect of fluid viscosity in frequency domain is solved and then compared with that in which viscosity is assumed zero. The results show that viscosity influences the reservoir-s natural frequency. In excitation frequencies near the reservoir's natural frequencies, hydrodynamic pressure has a considerable difference in compare to the results of non-viscose fluid.
Keywords: Closed form solution, concrete dams reservoir, viscosity, dynamic loads, hydrodynamic pressure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2250507 Temperature Effect on Sound Propagation in an Elastic Pipe with Viscoelastic Liquid
Authors: S. Levitsky, R. Bergman
Abstract:
Fluid rheology may have essential impact on sound propagation in a liquid-filled pipe, especially, in a low frequency range. Rheological parameters of liquid are temperature-sensitive, which ultimately results in a temperature dependence of the wave speed and attenuation in the waveguide. The study is devoted to modeling of this effect at sound propagation in an elastic pipe with polymeric liquid, described by generalized Maxwell model with non-zero high-frequency viscosity. It is assumed that relaxation spectrum is distributed according to the Spriggs law; temperature impact on the liquid rheology is described on the basis of the temperature-superposition principle and activation theory. The dispersion equation for the waveguide, considered as a thin-walled tube with polymeric solution, is obtained within a quasi-one-dimensional formulation. Results of the study illustrate the influence of temperature on sound propagation in the system.
Keywords: Elastic tube, sound propagation, temperature effect, viscoelastic liquid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977506 Optimal Design for SARMA(P,Q)L Process of EWMA Control Chart
Authors: Y. Areepong
Abstract:
The main goal of this paper is to study Statistical Process Control (SPC) with Exponentially Weighted Moving Average (EWMA) control chart when observations are serially-correlated. The characteristic of control chart is Average Run Length (ARL) which is the average number of samples taken before an action signal is given. Ideally, an acceptable ARL of in-control process should be enough large, so-called (ARL0). Otherwise it should be small when the process is out-of-control, so-called Average of Delay Time (ARL1) or a mean of true alarm. We find explicit formulas of ARL for EWMA control chart for Seasonal Autoregressive and Moving Average processes (SARMA) with Exponential white noise. The results of ARL obtained from explicit formula and Integral equation are in good agreement. In particular, this formulas for evaluating (ARL0) and (ARL1) be able to get a set of optimal parameters which depend on smoothing parameter (λ) and width of control limit (H) for designing EWMA chart with minimum of (ARL1).
Keywords: Average Run Length1, Optimal parameters, Exponentially Weighted Moving Average (EWMA) control chart.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984505 Leadership Branding for Sustainable Customer Engagement
Authors: Fauziah Sh. Ahmad, Rosmini Omar, Siti Zaleha Abdul Rasid, Muslim Amin
Abstract:
The purpose of this paper is to examine the inter relationships among various leadership branding constructs of entrepreneurs in small and medium sized enterprises (SMEs). We employ a quantitative structural equation modeling through a new leadership branding engagement model comprises constructs of leader-s or entrepreneur-s personality, branding practice and customer engagement. The results confirm that there are significant relationships between the three constructs and the major fit indices indicate that the data fits the proposed model. The findings provide insights and fill in the literature gaps on statistically validated representation of leadership branding for SMEs across new economic regions of Malaysia that may implicate other economic zones with similar situations. This study extends the establishment of a leadership branding engagement model with a new mechanism of using leaders- personality as a predictor to branding practice and customer engagement performance.Keywords: Leadership Branding, Malaysia Brands, Customer Engagement, SME Branding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2462504 Viscosity of Vegetable Oils and Biodiesel and Energy Generation
Authors: Thiago de O. Macedo, Roberto G. Pereira, Juan M. Pardal, Alexandre S. Soares, Valdir deJ. Lameira
Abstract:
The present work describes an experimental investigation concerning the determination of viscosity behavior with shear rate and temperature of edible oils: canola; sunflower; corn; soybean and the no edible oil: Jatropha curcas. Besides these, it was tested a blend of canola, corn and sunflower oils as well as sunflower and soybean biodiesel. Based on experiments, it was obtained shear stress and viscosity at different shear rates of each sample at 40ºC, as well as viscosity of each sample at various temperatures in the range of 24 to 85ºC. Furthermore, it was compared the curves obtained for the viscosity versus temperature with the curves obtained by modeling the viscosity dependency on temperature using the Vogel equation. Also a test in a stationary engine was performed in order to study the energy generation using blends of soybean oil and soybean biodiesel with diesel.Keywords: Biofuel, energy generation, vegetable oil, viscosity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9608503 Computational Initial Value Method for Vibration Analysis of Symmetrically Laminated Composite Plate
Authors: Ahmed M. Farag, Wael F. Mohamed, Atef A. Ata, Burhamy M. Burhamy
Abstract:
In the present paper, an improved initial value numerical technique is presented to analyze the free vibration of symmetrically laminated rectangular plate. A combination of the initial value method (IV) and the finite differences (FD) devices is utilized to develop the present (IVFD) technique. The achieved technique is applied to the equation of motion of vibrating laminated rectangular plate under various types of boundary conditions. Three common types of laminated symmetrically cross-ply, orthotropic and isotropic plates are analyzed here. The convergence and accuracy of the presented Initial Value-Finite Differences (IVFD) technique have been examined. Also, the merits and validity of improved technique are satisfied via comparing the obtained results with those available in literature indicating good agreements.Keywords: Free Vibrations, Initial Value, Finite Differences, Laminated plates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2534