Search results for: shape detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2269

Search results for: shape detection

1279 Web Proxy Detection via Bipartite Graphs and One-Mode Projections

Authors: Zhipeng Chen, Peng Zhang, Qingyun Liu, Li Guo

Abstract:

With the Internet becoming the dominant channel for business and life, many IPs are increasingly masked using web proxies for illegal purposes such as propagating malware, impersonate phishing pages to steal sensitive data or redirect victims to other malicious targets. Moreover, as Internet traffic continues to grow in size and complexity, it has become an increasingly challenging task to detect the proxy service due to their dynamic update and high anonymity. In this paper, we present an approach based on behavioral graph analysis to study the behavior similarity of web proxy users. Specifically, we use bipartite graphs to model host communications from network traffic and build one-mode projections of bipartite graphs for discovering social-behavior similarity of web proxy users. Based on the similarity matrices of end-users from the derived one-mode projection graphs, we apply a simple yet effective spectral clustering algorithm to discover the inherent web proxy users behavior clusters. The web proxy URL may vary from time to time. Still, the inherent interest would not. So, based on the intuition, by dint of our private tools implemented by WebDriver, we examine whether the top URLs visited by the web proxy users are web proxies. Our experiment results based on real datasets show that the behavior clusters not only reduce the number of URLs analysis but also provide an effective way to detect the web proxies, especially for the unknown web proxies.

Keywords: Bipartite graph, clustering, one-mode projection, web proxy detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 746
1278 Durian Marker Kit for Durian (Durio zibethinus Murr.) Identity

Authors: Emma K. Sales

Abstract:

Durian is the flagship fruit of Mindanao and there is an abundance of several cultivars with many confusing identities/ names. The project was conducted to develop procedure for reliable and rapid detection and sorting of durian planting materials. Moreover, it is also aimed to establish specific genetic or DNA markers for routine testing and authentication of durian cultivars in question. The project developed molecular procedures for routine testing. SSR primers were also screened and identified for their utility in discriminating durian cultivars collected. Results of the study showed the following accomplishments: 1. Twenty (29) SSR primers were selected and identified based on their ability to discriminate durian cultivars, 2. Optimized and established standard procedure for identification and authentication of Durian cultivars 3. Genetic profile of durian is now available at Biotech Unit Our results demonstrate the relevance of using molecular techniques in evaluating and identifying durian clones. The most polymorphic primers tested in this study could be useful tools for detecting variation even at the early stage of the plant especially for commercial purposes. The process developed combines the efficiency of the microsatellites development process with the optimization of non-radioactive detection process resulting in a user-friendly protocol that can be performed in two (2) weeks and easily incorporated into laboratories about to start microsatellite development projects. This can be of great importance to extend microsatellite analyses to other crop species where minimal genetic information is currently available. With this, the University can now be a service laboratory for routine testing and authentication of durian clones.

Keywords: DNA, SSR Analysis, genotype, genetic diversity, cultivars.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3406
1277 A method for Music Classification Based On Perceived Mood Detection for Indian Bollywood Music

Authors: Vallabha Hampiholi

Abstract:

A lot of research has been done in the past decade in the field of audio content analysis for extracting various information from audio signal. One such significant information is the "perceived mood" or the "emotions" related to a music or audio clip. This information is extremely useful in applications like creating or adapting the play-list based on the mood of the listener. This information could also be helpful in better classification of the music database. In this paper we have presented a method to classify music not just based on the meta-data of the audio clip but also include the "mood" factor to help improve the music classification. We propose an automated and efficient way of classifying music samples based on the mood detection from the audio data. We in particular try to classify the music based on mood for Indian bollywood music. The proposed method tries to address the following problem statement: Genre information (usually part of the audio meta-data) alone does not help in better music classification. For example the acoustic version of the song "nothing else matters by Metallica" can be classified as melody music and thereby a person in relaxing or chill out mood might want to listen to this track. But more often than not this track is associated with metal / heavy rock genre and if a listener classified his play-list based on the genre information alone for his current mood, the user shall miss out on listening to this track. Currently methods exist to detect mood in western or similar kind of music. Our paper tries to solve the issue for Indian bollywood music from an Indian cultural context

Keywords: Mood, music classification, music genre, rhythm, music analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3476
1276 The Analysis of Nanoptenna for Extreme Fast Communication (XFC) over Short Distance

Authors: Shruti Taksali

Abstract:

This paper focuses on the analysis of Nanoptenna for extreme fast communication. The Nanoptenna is basically a nano antenna designed for communication at optical range of frequencies. Since, this range of frequencies includes the visible spectrum of the light, so there is a high possibility of the data transfer at high rates and extreme fast communication (XFC). The shape chosen for the analysis is a bow tie structure due to its various characteristics of electric field enhancement.

Keywords: Nanoptenna, communication, optical range, XFC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355
1275 Using Time-Series NDVI to Model Land Cover Change: A Case Study in the Berg River Catchment Area, Western Cape, South Africa

Authors: A. S. Adesuyi, Z. Munch

Abstract:

This study investigates the use of a time-series of MODIS NDVI data to identify agricultural land cover change on an annual time step (2007 - 2012) and characterize the trend. Following an ISODATA classification of the MODIS imagery to selectively mask areas not agriculture or semi-natural, NDVI signatures were created to identify areas cereals and vineyards with the aid of ancillary, pictometry and field sample data for 2010. The NDVI signature curve and training samples were used to create a decision tree model in WEKA 3.6.9 using decision tree classifier (J48) algorithm; Model 1 including ISODATA classification and Model 2 not. These two models were then used to classify all data for the study area for 2010, producing land cover maps with classification accuracies of 77% and 80% for Model 1 and 2 respectively. Model 2 was subsequently used to create land cover classification and change detection maps for all other years. Subtle changes and areas of consistency (unchanged) were observed in the agricultural classes and crop practices. Over the years as predicted by the land cover classification. Forty one percent of the catchment comprised of cereals with 35% possibly following a crop rotation system. Vineyards largely remained constant with only one percent conversion to vineyard from other land cover classes.

Keywords: Change detection, Land cover, NDVI, time-series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2290
1274 Novel Design of Quantum Dot Arrays to Enhance Near-Fields Excitation Resonances

Authors: N. H. Ismail, A. A. A. Nassar, K. H. Baz

Abstract:

Semiconductor crystals smaller than about 10 nm, known as quantum dots, have properties that differ from large samples, including a band gap that becomes larger for smaller particles. These properties create several applications for quantum dots. In this paper new shapes of quantum dot arrays are used to enhance the photo physical properties of gold nano-particles. This paper presents a study of the effect of nano-particles shape, array, and size on their absorption characteristics.

Keywords: Quantum Dots, Nano-Particles, LSPR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802
1273 Use of Magnetic Nanoparticles in Cancer Detection with MRI

Authors: A. Taqaddas

Abstract:

Magnetic Nanoparticles (MNPs) have great potential to overcome many of the shortcomings of the present diagnostic and therapeutic approaches used in cancer diagnosis and treatment. This Literature review discusses the use of Magnetic Nanoparticles focusing mainly on Iron oxide based MNPs in cancer imaging using MRI.

Keywords: Cancer, Imaging, Magnetic Nanoparticles, MRI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3149
1272 Diagnosis of Induction Machine Faults by DWT

Authors: Hamidreza Akbari

Abstract:

In this paper, for detection of inclined eccentricity in an induction motor, time–frequency analysis of the stator startup current is carried out. For this purpose, the discrete wavelet transform is used. Data are obtained from simulations, using winding function approach. The results show the validity of the approach for detecting the fault and discriminating with respect to other faults.

Keywords: Induction machine, Fault, DWT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
1271 Modern Vibration Signal Processing Techniques for Vehicle Gearbox Fault Diagnosis

Authors: Mohamed El Morsy, Gabriela Achtenová

Abstract:

This paper presents modern vibration signalprocessing techniques for vehicle gearbox fault diagnosis, via the wavelet analysis and the Squared Envelope (SE) technique. The wavelet analysis is regarded as a powerful tool for the detection of sudden changes in non-stationary signals. The Squared Envelope (SE) technique has been extensively used for rolling bearing diagnostics. In the present work a scheme of using the Squared Envelope technique for early detection of gear tooth pit. The pitting defect is manufactured on the tooth side of a fifth speed gear on the intermediate shaft of a vehicle gearbox. The objective is to supplement the current techniques of gearbox fault diagnosis based on using the raw vibration and ordered signals. The test stand is equipped with three dynamometers; the input dynamometer serves as the internal combustion engine, the output dynamometers introduce the load on the flanges of output joint shafts. The gearbox used for experimental measurements is the type most commonly used in modern small to mid-sized passenger cars with transversely mounted powertrain and front wheel drive; a five-speed gearbox with final drive gear and front wheel differential. The results show that the approaches methods are effective for detecting and diagnosing localized gear faults in early stage under different operation conditions, and are more sensitive and robust than current gear diagnostic techniques.

Keywords: Wavelet analysis, Squared Envelope, gear faults.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2576
1270 A Sensitive Approach on Trace Analysis of Methylparaben in Wastewater and Cosmetic Products Using Molecularly Imprinted Polymer

Authors: Soukaina Motia, Nadia El Alami El Hassani, Alassane Diouf, Benachir Bouchikhi, Nezha El Bari

Abstract:

Parabens are the antimicrobial molecules largely used in cosmetic products as a preservative agent. Among them, the methylparaben (MP) is the most frequently used ingredient in cosmetic preparations. Nevertheless, their potential dangers led to the development of sensible and reliable methods for their determination in environmental samples. Firstly, a sensitive and selective molecular imprinted polymer (MIP) based on screen-printed gold electrode (Au-SPE), assembled on a polymeric layer of carboxylated poly(vinyl-chloride) (PVC-COOH), was developed. After the template removal, the obtained material was able to rebind MP and discriminate it among other interfering species such as glucose, sucrose, and citric acid. The behavior of molecular imprinted sensor was characterized by Cyclic Voltammetry (CV), Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS) techniques. Then, the biosensor was found to have a linear detection range from 0.1 pg.mL-1 to 1 ng.mL-1 and a low limit of detection of 0.12 fg.mL-1 and 5.18 pg.mL-1 by DPV and EIS, respectively. For applications, this biosensor was employed to determine MP content in four wastewaters in Meknes city and two cosmetic products (shower gel and shampoo). The operational reproducibility and stability of this biosensor were also studied. Secondly, another MIP biosensor based on tungsten trioxide (WO3) functionalized by gold nanoparticles (Au-NPs) assembled on a polymeric layer of PVC-COOH was developed. The main goal was to increase the sensitivity of the biosensor. The developed MIP biosensor was successfully applied for the MP determination in wastewater samples and cosmetic products.

Keywords: Cosmetic products, methylparaben, molecularly imprinted polymer, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1006
1269 Vehicle Gearbox Fault Diagnosis Based On Cepstrum Analysis

Authors: Mohamed El Morsy, Gabriela Achtenová

Abstract:

Research on damage of gears and gear pairs using vibration signals remains very attractive, because vibration signals from a gear pair are complex in nature and not easy to interpret. Predicting gear pair defects by analyzing changes in vibration signal of gears pairs in operation is a very reliable method. Therefore, a suitable vibration signal processing technique is necessary to extract defect information generally obscured by the noise from dynamic factors of other gear pairs.This article presents the value of cepstrum analysis in vehicle gearbox fault diagnosis. Cepstrum represents the overall power content of a whole family of harmonics and sidebands when more than one family of sidebands is present at the same time. The concept for the measurement and analysis involved in using the technique are briefly outlined. Cepstrum analysis is used for detection of an artificial pitting defect in a vehicle gearbox loaded with different speeds and torques. The test stand is equipped with three dynamometers; the input dynamometer serves asthe internal combustion engine, the output dynamometers introduce the load on the flanges of the output joint shafts. The pitting defect is manufactured on the tooth side of a gear of the fifth speed on the secondary shaft. Also, a method for fault diagnosis of gear faults is presented based on order Cepstrum. The procedure is illustrated with the experimental vibration data of the vehicle gearbox. The results show the effectiveness of Cepstrum analysis in detection and diagnosis of the gear condition.

Keywords: Cepstrum analysis, fault diagnosis, gearbox.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3310
1268 Social Interventation from Social Maternage to Peer Advocacy

Authors: Gioacchino Lavanco, Elisabetta Di Giovanni, Floriana Romano

Abstract:

The aim of this paper is to study in depth some methodological aspects of social interventation, focusing on desirable passage from social maternage method to peer advocacy method. For this purpose, we intend analyze social and organizative components, that affect operator-s professional action and that are part of his psychological environment, besides the physical and social one. In fact, operator-s interventation should not be limited to a pure supply of techniques, nor to take shape as improvised action, but “full of good purposes".

Keywords: Advocacy, Education, Relationship, Social Mandate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1363
1267 Port Positions on the Mixing Efficiency of a Rotor-Type Mixer – A Numerical Study

Authors: Y. C. Liou, J. M. Miao, T. L. Liu, M. H. Ho

Abstract:

The purpose of this study was to explore the complex flow structure a novel active-type micromixer that based on concept of Wankle-type rotor. The characteristics of this micromixer are two folds; a rapid mixing of reagents in a limited space due to the generation of multiple vortices and a graduate increment in dynamic pressure as the mixed reagents is delivered to the output ports. Present micro-mixer is consisted of a rotor with shape of triangle column, a blending chamber and several inlet and outlet ports. The geometry of blending chamber is designed to make the rotor can be freely internal rotated with a constant eccentricity ratio. When the shape of the blending chamber and the rotor are fixed, the effects of rotating speed of rotor and the relative locations of ports on the mixing efficiency are numerical studied. The governing equations are unsteady, two-dimensional incompressible Navier-Stokes equation and the working fluid is the water. The species concentration equation is also solved to reveal the mass transfer process of reagents in various regions then to evaluate the mixing efficiency. The dynamic mesh technique was implemented to model the dynamic volume shrinkage and expansion of three individual sub-regions of blending chamber when the rotor conducted a complete rotating cycle. Six types of ports configuration on the mixing efficiency are considered in a range of Reynolds number from 10 to 300. The rapid mixing process was accomplished with the multiple vortex structures within a tiny space due to the equilibrium of shear force, viscous force and inertial force. Results showed that the highest mixing efficiency could be attained in the following conditions: two inlet and two outlet ports configuration, that is an included angle of 60 degrees between two inlets and an included angle of 120 degrees between inlet and outlet ports when Re=10.

Keywords: active micro-mixer, CFD, mixing efficiency, ports configuration, Reynolds number, Wankle-type rotor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
1266 Region Segmentation based on Gaussian Dirichlet Process Mixture Model and its Application to 3D Geometric Stricture Detection

Authors: Jonghyun Park, Soonyoung Park, Sanggyun Kim, Wanhyun Cho, Sunworl Kim

Abstract:

In general, image-based 3D scenes can now be found in many popular vision systems, computer games and virtual reality tours. So, It is important to segment ROI (region of interest) from input scenes as a preprocessing step for geometric stricture detection in 3D scene. In this paper, we propose a method for segmenting ROI based on tensor voting and Dirichlet process mixture model. In particular, to estimate geometric structure information for 3D scene from a single outdoor image, we apply the tensor voting and Dirichlet process mixture model to a image segmentation. The tensor voting is used based on the fact that homogeneous region in an image are usually close together on a smooth region and therefore the tokens corresponding to centers of these regions have high saliency values. The proposed approach is a novel nonparametric Bayesian segmentation method using Gaussian Dirichlet process mixture model to automatically segment various natural scenes. Finally, our method can label regions of the input image into coarse categories: “ground", “sky", and “vertical" for 3D application. The experimental results show that our method successfully segments coarse regions in many complex natural scene images for 3D.

Keywords: Region segmentation, tensor voting, image-based 3D, geometric structure, Gaussian Dirichlet process mixture model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
1265 Computer Countenanced Diagnosis of Skin Nodule Detection and Histogram Augmentation: Extracting System for Skin Cancer

Authors: S. Zith Dey Babu, S. Kour, S. Verma, C. Verma, V. Pathania, A. Agrawal, V. Chaudhary, A. Manoj Puthur, R. Goyal, A. Pal, T. Danti Dey, A. Kumar, K. Wadhwa, O. Ved

Abstract:

Background: Skin cancer is now is the buzzing button in the field of medical science. The cyst's pandemic is drastically calibrating the body and well-being of the global village. Methods: The extracted image of the skin tumor cannot be used in one way for diagnosis. The stored image contains anarchies like the center. This approach will locate the forepart of an extracted appearance of skin. Partitioning image models has been presented to sort out the disturbance in the picture. Results: After completing partitioning, feature extraction has been formed by using genetic algorithm and finally, classification can be performed between the trained and test data to evaluate a large scale of an image that helps the doctors for the right prediction. To bring the improvisation of the existing system, we have set our objectives with an analysis. The efficiency of the natural selection process and the enriching histogram is essential in that respect. To reduce the false-positive rate or output, GA is performed with its accuracy. Conclusions: The objective of this task is to bring improvisation of effectiveness. GA is accomplishing its task with perfection to bring down the invalid-positive rate or outcome. The paper's mergeable portion conflicts with the composition of deep learning and medical image processing, which provides superior accuracy. Proportional types of handling create the reusability without any errors.

Keywords: Computer-aided system, detection, image segmentation, morphology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544
1264 Performance Analysis of Reconstruction Algorithms in Diffuse Optical Tomography

Authors: K. Uma Maheswari, S. Sathiyamoorthy, G. Lakshmi

Abstract:

Diffuse Optical Tomography (DOT) is a non-invasive imaging modality used in clinical diagnosis for earlier detection of carcinoma cells in brain tissue. It is a form of optical tomography which produces gives the reconstructed image of a human soft tissue with by using near-infra-red light. It comprises of two steps called forward model and inverse model. The forward model provides the light propagation in a biological medium. The inverse model uses the scattered light to collect the optical parameters of human tissue. DOT suffers from severe ill-posedness due to its incomplete measurement data. So the accurate analysis of this modality is very complicated. To overcome this problem, optical properties of the soft tissue such as absorption coefficient, scattering coefficient, optical flux are processed by the standard regularization technique called Levenberg - Marquardt regularization. The reconstruction algorithms such as Split Bregman and Gradient projection for sparse reconstruction (GPSR) methods are used to reconstruct the image of a human soft tissue for tumour detection. Among these algorithms, Split Bregman method provides better performance than GPSR algorithm. The parameters such as signal to noise ratio (SNR), contrast to noise ratio (CNR), relative error (RE) and CPU time for reconstructing images are analyzed to get a better performance.

Keywords: Diffuse optical tomography, ill-posedness, Levenberg Marquardt method, Split Bregman, the Gradient projection for sparse reconstruction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
1263 Enzyme Involvement in the Biosynthesis of Selenium Nanoparticles by Geobacillus wiegelii Strain GWE1 Isolated from a Drying Oven

Authors: Daniela N. Correa-Llantén, Sebastián A. Muñoz-Ibacache, Mathilde Maire, Jenny M. Blamey

Abstract:

The biosynthesis of nanoparticles by microorganisms, on the contrary to chemical synthesis, is an environmentally-friendly process which has low energy requirements. In this investigation, we used the microorganism Geobacillus wiegelii, strain GWE1, an aerobic thermophile belonging to genus Geobacillus, isolated from a drying oven. This microorganism has the ability to reduce selenite evidenced by the change of color from colorless to red in the culture. Elemental analysis and composition of the particles were verified using transmission electron microscopy and energy-dispersive X-ray analysis. The nanoparticles have a defined spherical shape and a selenium elemental state. Previous experiments showed that the presence of the whole microorganism for the reduction of selenite was not necessary. The results strongly suggested that an intracellular NADPH/NADH-dependent reductase mediates selenium nanoparticles synthesis under aerobic conditions. The enzyme was purified and identified by mass spectroscopy MALDI-TOF TOF technique. The enzyme is a 1-pyrroline-5-carboxylate dehydrogenase. Histograms of nanoparticles sizes were obtained. Size distribution ranged from 40-160 nm, where 70% of nanoparticles have less than 100 nm in size. Spectroscopic analysis showed that the nanoparticles are composed of elemental selenium. To analyse the effect of pH in size and morphology of nanoparticles, the synthesis of them was carried out at different pHs (4.0, 5.0, 6.0, 7.0, 8.0). For thermostability studies samples were incubated at different temperatures (60, 80 and 100 ºC) for 1 h and 3 h. The size of all nanoparticles was less than 100 nm at pH 4.0; over 50% of nanoparticles have less than 100 nm at pH 5.0; at pH 6.0 and 8.0 over 90% of nanoparticles have less than 100 nm in size. At neutral pH (7.0) nanoparticles reach a size around 120 nm and only 20% of them were less than 100 nm. When looking at temperature effect, nanoparticles did not show a significant difference in size when they were incubated between 0 and 3 h at 60 ºC. Meanwhile at 80 °C the nanoparticles suspension lost its homogeneity. A change in size was observed from 0 h of incubation at 80ºC, observing a size range between 40-160 nm, with 20% of them over 100 nm. Meanwhile after 3 h of incubation at size range changed to 60-180 nm with 50% of them over 100 nm. At 100 °C the nanoparticles aggregate forming nanorod structures. In conclusion, these results indicate that is possible to modulate size and shape of biologically synthesized nanoparticles by modulating pH and temperature.

Keywords: Genus Geobacillus, NADPH/NADH-dependent reductase, Selenium nanoparticles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2308
1262 The Leaves of a Tree

Authors: Zhu Jiaming, Yu Mengna

Abstract:

In this article, models based on quantitative analysis, physical geometry and regression analysis are established, by using analytic hierarchy process analysis, fuzzy cluster analysis, fuzzy photographic and data fitting. The reasons of various leaf shapes among different species and the differences between the leaf shapes on same tree have been solved by using software, such as Eviews, VB and Matlab. We also successfully estimate the leaf mass of a tree and the correlation with the tree profile.

Keywords: Leaf shape; Mass; Fuzzy cluster; Regression analysis; Eviews; Matlab

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
1261 New Simultaneous High Performance Liquid Chromatographic Method for Determination of NSAIDs and Opioid Analgesics in Advanced Drug Delivery Systems and Human Plasma

Authors: Asad Ullah Madni, Mahmood Ahmad, Naveed Akhtar, Muhammad Usman

Abstract:

A new and cost effective RP-HPLC method was developed and validated for simultaneous analysis of non steroidal anti inflammatory dugs Diclofenac sodium (DFS), Flurbiprofen (FLP) and an opioid analgesic Tramadol (TMD) in advanced drug delivery systems (Liposome and Microcapsules), marketed brands and human plasma. Isocratic system was employed for the flow of mobile phase consisting of 10 mM sodium dihydrogen phosphate buffer and acetonitrile in molar ratio of 67: 33 with adjusted pH of 3.2. The stationary phase was hypersil ODS column (C18, 250×4.6 mm i.d., 5 μm) with controlled temperature of 30 C°. DFS in liposomes, microcapsules and marketed drug products was determined in range of 99.76-99.84%. FLP and TMD in microcapsules and brands formulation were 99.78 - 99.94 % and 99.80 - 99.82 %, respectively. Single step liquid-liquid extraction procedure using combination of acetonitrile and trichloroacetic acid (TCA) as protein precipitating agent was employed. The detection limits (at S/N ratio 3) of quality control solutions and plasma samples were 10, 20, and 20 ng/ml for DFS, FLP and TMD, respectively. The Assay was acceptable in linear dynamic range. All other validation parameters were found in limits of FDA and ICH method validation guidelines. The proposed method is sensitive, accurate and precise and could be applicable for routine analysis in pharmaceutical industry as well as in human plasma samples for bioequivalence and pharmacokinetics studies.

Keywords: Diclofenac Sodium, Flurbiprofen, Tramadol, HPLCUV detection, Validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1859
1260 Going beyond Social Maternage.The Principle of Brotherhood in the Community Psychology's Intervention

Authors: Gioacchino Lavanco, Elisabetta Di Giovanni, Floriana Romano

Abstract:

The aim of this paper is to study in depth some methodological aspects of social interventation, focusing on desirable passage from social maternage method to peer advocacy method. For this purpose, we intend analyze social and organizative components, that affect operator's professional action and that are part of his psychological environment, besides the physical and social one. In fact, operator's interventation should not be limited to a pure supply of techniques, nor to take shape as improvised action, but “full of good purposes".

Keywords: Advocacy, education, relationship, social mandate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1152
1259 Intelligent Assistive Methods for Diagnosis of Rheumatoid Arthritis Using Histogram Smoothing and Feature Extraction of Bone Images

Authors: SP. Chokkalingam, K. Komathy

Abstract:

Advances in the field of image processing envision a new era of evaluation techniques and application of procedures in various different fields. One such field being considered is the biomedical field for prognosis as well as diagnosis of diseases. This plethora of methods though provides a wide range of options to select from, it also proves confusion in selecting the apt process and also in finding which one is more suitable. Our objective is to use a series of techniques on bone scans, so as to detect the occurrence of rheumatoid arthritis (RA) as accurately as possible. Amongst other techniques existing in the field our proposed system tends to be more effective as it depends on new methodologies that have been proved to be better and more consistent than others. Computer aided diagnosis will provide more accurate and infallible rate of consistency that will help to improve the efficiency of the system. The image first undergoes histogram smoothing and specification, morphing operation, boundary detection by edge following algorithm and finally image subtraction to determine the presence of rheumatoid arthritis in a more efficient and effective way. Using preprocessing noises are removed from images and using segmentation, region of interest is found and Histogram smoothing is applied for a specific portion of the images. Gray level co-occurrence matrix (GLCM) features like Mean, Median, Energy, Correlation, Bone Mineral Density (BMD) and etc. After finding all the features it stores in the database. This dataset is trained with inflamed and noninflamed values and with the help of neural network all the new images are checked properly for their status and Rough set is implemented for further reduction.

Keywords: Computer Aided Diagnosis, Edge Detection, Histogram Smoothing, Rheumatoid Arthritis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2479
1258 Noninvasive Disease Diagnosis through Breath Analysis Using DNA-Functionalized SWNT Sensor Array

Authors: Wenjun Zhang, Yunqing Du, Ming L. Wang

Abstract:

Noninvasive diagnostics of diseases via breath analysis has attracted considerable scientific and clinical interest for many years and become more and more promising with the rapid advancements in nanotechnology and biotechnology. The volatile organic compounds (VOCs) in exhaled breath, which are mainly blood borne, particularly provide highly valuable information about individuals’ physiological and pathophysiological conditions. Additionally, breath analysis is noninvasive, real-time, painless, and agreeable to patients. We have developed a wireless sensor array based on single-stranded DNA (ssDNA)-functionalized single-walled carbon nanotubes (SWNT) for the detection of a number of physiological indicators in breath. Seven DNA sequences were used to functionalize SWNT sensors to detect trace amount of methanol, benzene, dimethyl sulfide, hydrogen sulfide, acetone, and ethanol, which are indicators of heavy smoking, excessive drinking, and diseases such as lung cancer, breast cancer, and diabetes. Our test results indicated that DNA functionalized SWNT sensors exhibit great selectivity, sensitivity, and repeatability; and different molecules can be distinguished through pattern recognition enabled by this sensor array. Furthermore, the experimental sensing results are consistent with the Molecular Dynamics simulated ssDNAmolecular target interaction rankings. Thus, the DNA-SWNT sensor array has great potential to be applied in chemical or biomolecular detection for the noninvasive diagnostics of diseases and personal health monitoring.

Keywords: Breath analysis, DNA-SWNT sensor array, diagnosis, noninvasive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2837
1257 Automated Video Surveillance System for Detection of Suspicious Activities during Academic Offline Examination

Authors: G. Sandhya Devi, G. Suvarna Kumar, S. Chandini

Abstract:

This research work aims to develop a system that will analyze and identify students who indulge in malpractices/suspicious activities during the course of an academic offline examination. Automated Video Surveillance provides an optimal solution which helps in monitoring the students and identifying the malpractice event immediately. This work is organized into three modules. The first module deals with performing an impersonation check using a PCA-based face recognition method which is done by cross checking his profile with the database. The presence or absence of the student is even determined in this module by implementing an image registration technique wherein a grid is formed by considering all the images registered using the frontal camera at the determined positions. Second, detecting such facial malpractices in which a student gets involved in conversation with another, trying to obtain unauthorized information etc., based on the threshold range evaluated by considering his/her mouth state whether open or closed. The third module deals with identification of unauthorized material or gadgets used in the examination hall by training the positive samples of the object through various stages. Here, a top view camera feed is analyzed to detect the suspicious activities. The system automatically alerts the administration when any suspicious activities are identified, thereby reducing the error rate caused due to manual monitoring. This work is an improvement over our previous work published in identifying suspicious activities done by examinees in an offline examination.

Keywords: Impersonation, image registration, incrimination, object detection, threshold evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
1256 Inference of Stress-Strength Model for a Lomax Distribution

Authors: H. Panahi, S. Asadi

Abstract:

In this paper, the estimation of the stress-strength parameter R = P(Y < X), when X and Y are independent and both are Lomax distributions with the common scale parameters but different shape parameters is studied. The maximum likelihood estimator of R is derived. Assuming that the common scale parameter is known, the bayes estimator and exact confidence interval of R are discussed. Simulation study to investigate performance of the different proposed methods has been carried out.

Keywords: Stress-Strength model; maximum likelihoodestimator; Bayes estimator; Lomax distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
1255 On the Study of the Electromagnetic Scattering by Large Obstacle Based on the Method of Auxiliary Sources

Authors: Sami Hidouri, Taoufik Aguili

Abstract:

We consider fast and accurate solutions of scattering problems by large perfectly conducting objects (PEC) formulated by an optimization of the Method of Auxiliary Sources (MAS). We present various techniques used to reduce the total computational cost of the scattering problem. The first technique is based on replacing the object by an array of finite number of small (PEC) object with the same shape. The second solution reduces the problem on considering only the half of the object.These t

Keywords: Method of Auxiliary Sources, Scattering, large object, RCS, computational resources.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
1254 SUPAR: System for User-Centric Profiling of Association Rules in Streaming Data

Authors: Sarabjeet Kaur Kochhar

Abstract:

With a surge of stream processing applications novel techniques are required for generation and analysis of association rules in streams. The traditional rule mining solutions cannot handle streams because they generally require multiple passes over the data and do not guarantee the results in a predictable, small time. Though researchers have been proposing algorithms for generation of rules from streams, there has not been much focus on their analysis. We propose Association rule profiling, a user centric process for analyzing association rules and attaching suitable profiles to them depending on their changing frequency behavior over a previous snapshot of time in a data stream. Association rule profiles provide insights into the changing nature of associations and can be used to characterize the associations. We discuss importance of characteristics such as predictability of linkages present in the data and propose metric to quantify it. We also show how association rule profiles can aid in generation of user specific, more understandable and actionable rules. The framework is implemented as SUPAR: System for Usercentric Profiling of Association Rules in streaming data. The proposed system offers following capabilities: i) Continuous monitoring of frequency of streaming item-sets and detection of significant changes therein for association rule profiling. ii) Computation of metrics for quantifying predictability of associations present in the data. iii) User-centric control of the characterization process: user can control the framework through a) constraint specification and b) non-interesting rule elimination.

Keywords: Data Streams, User subjectivity, Change detection, Association rule profiles, Predictability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
1253 On the Parameter of the Burr Type X under Bayesian Principles

Authors: T. N. Sindhu, M. Aslam

Abstract:

A comprehensive Bayesian analysis has been carried out in the context of informative and non-informative priors for the shape parameter of the Burr type X distribution under different symmetric and asymmetric loss functions. Elicitation of hyperparameter through prior predictive approach is also discussed. Also we derive the expression for posterior predictive distributions, predictive intervals and the credible Intervals. As an illustration, comparisons of these estimators are made through simulation study.

Keywords: Credible Intervals, Loss Functions, Posterior Predictive Distributions, Predictive Intervals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506
1252 Upgraded Rough Clustering and Outlier Detection Method on Yeast Dataset by Entropy Rough K-Means Method

Authors: P. Ashok, G. M. Kadhar Nawaz

Abstract:

Rough set theory is used to handle uncertainty and incomplete information by applying two accurate sets, Lower approximation and Upper approximation. In this paper, the rough clustering algorithms are improved by adopting the Similarity, Dissimilarity–Similarity and Entropy based initial centroids selection method on three different clustering algorithms namely Entropy based Rough K-Means (ERKM), Similarity based Rough K-Means (SRKM) and Dissimilarity-Similarity based Rough K-Means (DSRKM) were developed and executed by yeast dataset. The rough clustering algorithms are validated by cluster validity indexes namely Rand and Adjusted Rand indexes. An experimental result shows that the ERKM clustering algorithm perform effectively and delivers better results than other clustering methods. Outlier detection is an important task in data mining and very much different from the rest of the objects in the clusters. Entropy based Rough Outlier Factor (EROF) method is seemly to detect outlier effectively for yeast dataset. In rough K-Means method, by tuning the epsilon (ᶓ) value from 0.8 to 1.08 can detect outliers on boundary region and the RKM algorithm delivers better results, when choosing the value of epsilon (ᶓ) in the specified range. An experimental result shows that the EROF method on clustering algorithm performed very well and suitable for detecting outlier effectively for all datasets. Further, experimental readings show that the ERKM clustering method outperformed the other methods.

Keywords: Clustering, Entropy, Outlier, Rough K-Means, validity index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412
1251 Schema and Data Migration of a Relational Database RDB to the Extensible Markup Language XML

Authors: Alae El Alami, Mohamed Bahaj

Abstract:

This article discusses the passage of RDB to XML documents (schema and data) based on metadata and semantic enrichment, which makes the RDB under flattened shape and is enriched by the object concept. The integration and exploitation of the object concept in the XML uses a syntax allowing for the verification of the conformity of the document XML during the creation. The information extracted from the RDB is therefore analyzed and filtered in order to adjust according to the structure of the XML files and the associated object model. Those implemented in the XML document through a SQL query are built dynamically. A prototype was implemented to realize automatic migration, and so proves the effectiveness of this particular approach.

Keywords: RDB, XML, DTD, semantic enrichment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1824
1250 Modeling, Simulation and Monitoring of Nuclear Reactor Using Directed Graph and Bond Graph

Authors: A. Badoud, M. Khemliche, S. Latreche

Abstract:

The main objective developed in this paper is to find a graphic technique for modeling, simulation and diagnosis of the industrial systems. This importance is much apparent when it is about a complex system such as the nuclear reactor with pressurized water of several form with various several non-linearity and time scales. In this case the analytical approach is heavy and does not give a fast idea on the evolution of the system. The tool Bond Graph enabled us to transform the analytical model into graphic model and the software of simulation SYMBOLS 2000 specific to the Bond Graphs made it possible to validate and have the results given by the technical specifications. We introduce the analysis of the problem involved in the faults localization and identification in the complex industrial processes. We propose a method of fault detection applied to the diagnosis and to determine the gravity of a detected fault. We show the possibilities of application of the new diagnosis approaches to the complex system control. The industrial systems became increasingly complex with the faults diagnosis procedures in the physical systems prove to become very complex as soon as the systems considered are not elementary any more. Indeed, in front of this complexity, we chose to make recourse to Fault Detection and Isolation method (FDI) by the analysis of the problem of its control and to conceive a reliable system of diagnosis making it possible to apprehend the complex dynamic systems spatially distributed applied to the standard pressurized water nuclear reactor.

Keywords: Bond Graph, Modeling, Simulation, Monitoring, Analytical Redundancy Relations, Pressurized Water Reactor, Directed Graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1978