Search results for: neural activation
402 The Latency-Amplitude Binomial of Waves Resulting from the Application of Evoked Potentials for the Diagnosis of Dyscalculia
Authors: Maria Isabel Garcia-Planas, Maria Victoria Garcia-Camba
Abstract:
Recent advances in cognitive neuroscience have allowed a step forward in perceiving the processes involved in learning from the point of view of acquiring new information or the modification of existing mental content. The evoked potentials technique reveals how basic brain processes interact to achieve adequate and flexible behaviours. The objective of this work, using evoked potentials, is to study if it is possible to distinguish if a patient suffers a specific type of learning disorder to decide the possible therapies to follow. The methodology used in this work is to analyze the dynamics of different brain areas during a cognitive activity to find the relationships between the other areas analyzed to understand the functioning of neural networks better. Also, the latest advances in neuroscience have revealed the exis-tence of different brain activity in the learning process that can be highlighted through the use of non-invasive, innocuous, low-cost and easy-access techniques such as, among others, the evoked potentials that can help to detect early possible neurodevelopmental difficulties for their subsequent assessment and therapy. From the study of the amplitudes and latencies of the evoked potentials, it is possible to detect brain alterations in the learning process, specifically in dyscalculia, to achieve specific corrective measures for the application of personalized psycho-pedagogical plans that allow obtaining an optimal integral development of the affected people.
Keywords: dyscalculia, neurodevelopment, evoked potentials, learning disabilities, neural networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 601401 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro Grids
Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone
Abstract:
Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.
Keywords: Short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, Gain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2602400 Nanocrystalline Mg-3%Al Alloy: its Synthesis and Investigation of its Tensile Behavior
Authors: A. Mallick
Abstract:
The tensile properties of Mg-3%Al nanocrystalline alloys were investigated at different test environment. Bulk nanocrystalline samples of these alloy was successfully prepared by mechanical alloying (MA) followed by cold compaction, sintering, and hot extrusion process. The crystal size of the consolidated milled sample was calculated by X-Ray line profile analysis. The deformation mechanism and microstructural characteristic at different test condition was discussed extensively. At room temperature, relatively lower value of activation volume (AV) and higher value of strain rate sensitivity (SRS) suggests that new rate controlling mechanism accommodating plastic flow in the present nanocrystalline sample. The deformation behavior and the microstructural character of the present samples were discussed in details.Keywords: Nanocrystalline, tensile properties, temperature effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463399 Neuro-Fuzzy Networks for Identification of Mathematical Model Parameters of Geofield
Authors: A. Pashayev, R. Sadiqov, C. Ardil, F. Ildiz , H. Karabork
Abstract:
The new technology of fuzzy neural networks for identification of parameters for mathematical models of geofields is proposed and checked. The effectiveness of that soft computing technology is demonstrated, especially in the early stage of modeling, when the information is uncertain and limited.
Keywords: Identification, interpolation methods, neuro-fuzzy networks, geofield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1333398 Effect of Aging Condition on Semisolid Cast 2024 Aluminum Alloy
Authors: Wisutmethangoon S., Pannaray S., Plookphol T., Wannasin J.
Abstract:
2024 Aluminum alloy was squeezed cast by the Gas Induced Semi Solid (GISS) process. Effect of artificial aging on microstructure and mechanical properties of this alloy was studied in the present work. The solutionized specimens were aged hardened at temperatures of 175°C, 200°C, and 225°C under various time durations. The highest hardness of about 77.7 HRE was attained from specimen aged at the temperature of 175°C for 36h. Upon investigation the microstructure by using transmission electron microscopy (TEM), the S’ phase was mainly attributed to the strengthening effect in the aged alloy. The apparent activation energy for precipitation hardening of the alloy was calculated as 133,805 J/mol.
Keywords: 2024 aluminum alloy, Gas induced semi solid, T6 heat treatment, Aged hardening, Transmission electron microscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3013397 Copper Price Prediction Model for Various Economic Situations
Authors: Haidy S. Ghali, Engy Serag, A. Samer Ezeldin
Abstract:
Copper is an essential raw material used in the construction industry. During 2021 and the first half of 2022, the global market suffered from a significant fluctuation in copper raw material prices due to the aftermath of both the COVID-19 pandemic and the Russia-Ukraine war which exposed its consumers to an unexpected financial risk. Thereto, this paper aims to develop two hybrid price prediction models using artificial neural network and long short-term memory (ANN-LSTM), by Python, that can forecast the average monthly copper prices, traded in the London Metal Exchange; the first model is a multivariate model that forecasts the copper price of the next 1-month and the second is a univariate model that predicts the copper prices of the upcoming three months. Historical data of average monthly London Metal Exchange copper prices are collected from January 2009 till July 2022 and potential external factors are identified and employed in the multivariate model. These factors lie under three main categories: energy prices, and economic indicators of the three major exporting countries of copper depending on the data availability. Before developing the LSTM models, the collected external parameters are analyzed with respect to the copper prices using correlation, and multicollinearity tests in R software; then, the parameters are further screened to select the parameters that influence the copper prices. Then, the two LSTM models are developed, and the dataset is divided into training, validation, and testing sets. The results show that the performance of the 3-month prediction model is better than the 1-month prediction model; but still, both models can act as predicting tools for diverse economic situations.
Keywords: Copper prices, prediction model, neural network, time series forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 190396 Improving Air Temperature Prediction with Artificial Neural Networks
Authors: Brian A. Smith, Ronald W. McClendon, Gerrit Hoogenboom
Abstract:
The mitigation of crop loss due to damaging freezes requires accurate air temperature prediction models. Previous work established that the Ward-style artificial neural network (ANN) is a suitable tool for developing such models. The current research focused on developing ANN models with reduced average prediction error by increasing the number of distinct observations used in training, adding additional input terms that describe the date of an observation, increasing the duration of prior weather data included in each observation, and reexamining the number of hidden nodes used in the network. Models were created to predict air temperature at hourly intervals from one to 12 hours ahead. Each ANN model, consisting of a network architecture and set of associated parameters, was evaluated by instantiating and training 30 networks and calculating the mean absolute error (MAE) of the resulting networks for some set of input patterns. The inclusion of seasonal input terms, up to 24 hours of prior weather information, and a larger number of processing nodes were some of the improvements that reduced average prediction error compared to previous research across all horizons. For example, the four-hour MAE of 1.40°C was 0.20°C, or 12.5%, less than the previous model. Prediction MAEs eight and 12 hours ahead improved by 0.17°C and 0.16°C, respectively, improvements of 7.4% and 5.9% over the existing model at these horizons. Networks instantiating the same model but with different initial random weights often led to different prediction errors. These results strongly suggest that ANN model developers should consider instantiating and training multiple networks with different initial weights to establish preferred model parameters.Keywords: Decision support systems, frost protection, fruit, time-series prediction, weather modeling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2729395 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis
Authors: Abeer Aljohani
Abstract:
The COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred as corona virus which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as Omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. Numerous COVID-19 cases have produced a huge burden on hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease based on the symptoms and medical history of the patient. As machine learning is a widely accepted area and gives promising results for healthcare, this research presents an architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard University of California Irvine (UCI) dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques on the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and Principal Component Analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, Receiver Operating Characteristic (ROC) and Area under Curve (AUC). The results depict that Decision tree, Random Forest and neural networks outperform all other state-of-the-art ML techniques. This result can be used to effectively identify COVID-19 infection cases.
Keywords: Supervised machine learning, COVID-19 prediction, healthcare analytics, Random Forest, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 385394 Inverse Sets-based Recognition of Video Clips
Authors: Alexei M. Mikhailov
Abstract:
The paper discusses the mathematics of pattern indexing and its applications to recognition of visual patterns that are found in video clips. It is shown that (a) pattern indexes can be represented by collections of inverted patterns, (b) solutions to pattern classification problems can be found as intersections and histograms of inverted patterns and, thus, matching of original patterns avoided.Keywords: Artificial neural cortex, computational biology, data mining, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2118393 Involving Action Potential Morphology on a New Cellular Automata Model of Cardiac Action Potential Propagation
Authors: F. Pourhasanzade, S. H. Sabzpoushan
Abstract:
Computer modeling has played a unique role in understanding electrocardiography. Modeling and simulating cardiac action potential propagation is suitable for studying normal and pathological cardiac activation. This paper presents a 2-D Cellular Automata model for simulating action potential propagation in cardiac tissue. We demonstrate a novel algorithm in order to use minimum neighbors. This algorithm uses the summation of the excitability attributes of excited neighboring cells. We try to eliminate flat edges in the result patterns by inserting probability to the model. We also preserve the real shape of action potential by using linear curve fitting of one well known electrophysiological model.Keywords: Cellular Automata, Action Potential Propagation, cardiac tissue, Isotropic Pattern, accurate shape of cardiac actionpotential.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1330392 Unveiling the Mathematical Essence of Machine Learning: A Comprehensive Exploration
Authors: Randhir Singh Baghel
Abstract:
In this study, the fundamental ideas guiding the dynamic area of machine learning—where models thrive and algorithms change over time—are rooted in an innate mathematical link. This study explores the fundamental ideas that drive the development of intelligent systems, providing light on the mutually beneficial link between mathematics and machine learning.
Keywords: Machine Learning, deep learning, Neural Network, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 176391 Effect of Bentonite on the Properties of Liquid Insulating Oil
Authors: Loai Nasrat, Mervat S. Hassan
Abstract:
Bentonitic material from South Aswan, Egypt was evaluated in terms of mineral-ogy and chemical composition as bleaching clay in refining of transformer oil before and after acid activation and thermal treatment followed by acid leaching using HCl and H2SO4 for different contact times. Structural modification and refining power of bento-nite were investigated during modification by means of X-ray diffraction and infrared spectroscopy. The results revealed that the activated bentonite could be used for refining of transformer oil. The oil parameters such as; dielectric strength, viscosity and flash point had been improved. The dielectric breakdown strength of used oil increased from 29 kV for used oil treated with unactivated bentonite to 74 kV after treatment with activated bentonite. Kinematic Viscosity changed from 19 to 11 mm2 /s after treatment with activated bentonite. However, flash point achieved 149 ºC.
Keywords: Dielectric strength, unactivated bentonite, X-ray diffraction, SEM image
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2696390 Offline Handwritten Signature Recognition
Authors: Gulzar A. Khuwaja, Mohammad S. Laghari
Abstract:
Biometrics, which refers to identifying an individual based on his or her physiological or behavioral characteristics, has the capability to reliably distinguish between an authorized person and an imposter. Signature verification systems can be categorized as offline (static) and online (dynamic). This paper presents a neural network based recognition of offline handwritten signatures system that is trained with low-resolution scanned signature images.Keywords: Pattern Recognition, Computer Vision, AdaptiveClassification, Handwritten Signature Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2903389 Interaction between Respiration and Low-Frequency Cardiovascular Rhythms
Authors: Vladimir I. Ponomarenko, Mikhail D. Prokhorov, Anatoly S. Karavaev
Abstract:
The interaction between respiration and low-frequency rhythms of the cardiovascular system is studied. The obtained results count in favor of the hypothesis that low-frequency rhythms in blood pressure and R-R intervals are generated in different central neural structures involved in the autonomic control of the cardiovascular systems.Keywords: Cardiovascular system, R-R intervals, blood pressure, synchronization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648388 Study of Methylene Blue Dye Adsorption on to Activated Carbons from Olive Stones
Authors: L. Temdrara, A. Khelifi, A. Addoun
Abstract:
Activated carbons were produced from olive stones by a chemical process. The activated carbon (AC) were modified by nitric acid and used as adsorbents for the removal of methylene blue dye from aqueous solution. The activated carbons were characterized by nitrogen adsorption and enthalpy of immersion. Batch adsorption experiments were carried out to study the effect of initial different concentrations solution on dye adsorption properties. Isotherms were fitted to Langmuir model, and corresponding parameters were determined. The results showed that the increase of ration of ZnCl2 leads to increase in apparent surface areas and produces activated carbons with pore structure more developed. However, the maximum MB uptakes for all carbons were determined and correlated with activated carbons characteristics.
Keywords: Adsorption, activated carbon, chemical activation, enthalpy of immersion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2281387 Supervisory Controller with Three-State Energy Saving Mode for Induction Motor in Fluid Transportation
Authors: O. S. Ebrahim, K. O. Shawky, M. O. Ebrahim, P. K. Jain
Abstract:
Induction Motor (IM) driving pump is the main consumer of electricity in a typical fluid transportation system (FTS). Changing the connection of the stator windings from delta to star at no load can achieve noticeable active and reactive energy savings. This paper proposes a supervisory hysteresis liquid-level control with three-state energy saving mode (ESM) for IM in FTS including storage tank. The IM pump drive comprises modified star/delta switch and hydromantic coupler. Three-state ESM is defined, along with the normal running, and named analog to computer ESMs as follows: Sleeping mode in which the motor runs at no load with delta stator connection, hibernate mode in which the motor runs at no load with a star connection, and motor shutdown is the third energy saver mode. A logic flow-chart is synthesized to select the motor state at no-load for best energetic cost reduction, considering the motor thermal capacity used. An artificial neural network (ANN) state estimator, based on the recurrent architecture, is constructed and learned in order to provide fault-tolerant capability for the supervisory controller. Sequential test of Wald is used for sensor fault detection. Theoretical analysis, preliminary experimental testing and, computer simulations are performed to show the effectiveness of the proposed control in terms of reliability, power quality and energy/coenergy cost reduction with the suggestion of power factor correction.
Keywords: Artificial Neural Network, ANN, Energy Saving Mode, ESM, Induction Motor, IM, star/delta switch, supervisory control, fluid transportation, reliability, power quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 390386 Experimental Investigation of Hull Form for Electric Driven Ferry
Authors: Vasilij Djackov, Tomas Zapnickas, Evgenii Iamshchikov, Lukas Norkevicius, Rima Mickeviciene, Larisa Vasiljeva
Abstract:
In this paper, the resistance and pitching values of the test of an electric ferry are presented. The research was carried out in the open flow channel of Klaipėda University with a multi-axis dynamometer. The received model resistance values were recalculated to the real vessel and the preliminary chosen propulsion unit power was compared. After analyzing the results of the pitching of the model, it was concluded that the shape of the hull needs to be further improved, taking into account the possible uneven weight distribution at the ends of the ferry. Further investigation of the hull of the electric ferry is recommended, including experiments with various water depths and activation of propulsion units.
Keywords: Electrical ferry, model tests, open flow channel, pitching, resistance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 210385 Effect of Oxygen and Micro-Cracking on the Flotation of Low Grade Nickel Sulphide Ore
Authors: Edison Muzenda, Ayo S Afolabi
Abstract:
This study investigated the effect of oxygen and micro-cracking on the flotation of low grade nickel sulphide ore. The ore treated contained serpentine minerals which have a history of being difficult to process efficiently. The use of oxygen as a bubbling gas has been noted to be effective because it increases the pulp potential. The desired effect of micro cracking the ore is that the nickel sulphide minerals will become activated and this activation will render these minerals more susceptible to react with potassium amyl xanthate collectors, resulting in a higher recovery of nickel and hinder the recovery of other undesired minerals contained in the ore. Higher nickel recoveries were obtained when pure oxygen was used as a bubbling gas rather than the conventional air. Microwave cracking favored the recovery of nickel.Keywords: Flotation, Conventional air, Oven micro-cracking, Recovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200384 Characteristic on Compressive Strength of Blast Slag and Fly Ash Hybrid Geopolymer Mortar
Authors: G. S. Ryu, K. T. Koh, H. Y. Kim, G. H. An, D. W. Seo
Abstract:
Geopolymer mortar is produced by alkaline activation of pozzolanic materials such as fly ground granulated blast-furnace slag (GGBFS) and fly ash (FA). Its unique reaction pathway facilitates rapid strength development in comparison with hydration of ordinary Portland cement (OPC). Geopolymer can be fabricated using various types and dosages of alkali-activator, which effectively gives a wider control over the performance of the final product. The present study investigates the effect of types of precursors and curing conditions on the fresh state and strength development characteristics of geopolymers, thereby comparatively exploring the effect of precursors from various sources of origin. The obtained result showed that the setting time and strength development of the specimens with the identical mix proportion but different precursors displayed significant variations.
Keywords: Alkali-activated material, blast furnace slag, fly ash, Flowability, strength development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1267383 Lung Cancer Detection and Multi Level Classification Using Discrete Wavelet Transform Approach
Authors: V. Veeraprathap, G. S. Harish, G. Narendra Kumar
Abstract:
Uncontrolled growth of abnormal cells in the lung in the form of tumor can be either benign (non-cancerous) or malignant (cancerous). Patients with Lung Cancer (LC) have an average of five years life span expectancy provided diagnosis, detection and prediction, which reduces many treatment options to risk of invasive surgery increasing survival rate. Computed Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI) for earlier detection of cancer are common. Gaussian filter along with median filter used for smoothing and noise removal, Histogram Equalization (HE) for image enhancement gives the best results without inviting further opinions. Lung cavities are extracted and the background portion other than two lung cavities is completely removed with right and left lungs segmented separately. Region properties measurements area, perimeter, diameter, centroid and eccentricity measured for the tumor segmented image, while texture is characterized by Gray-Level Co-occurrence Matrix (GLCM) functions, feature extraction provides Region of Interest (ROI) given as input to classifier. Two levels of classifications, K-Nearest Neighbor (KNN) is used for determining patient condition as normal or abnormal, while Artificial Neural Networks (ANN) is used for identifying the cancer stage is employed. Discrete Wavelet Transform (DWT) algorithm is used for the main feature extraction leading to best efficiency. The developed technology finds encouraging results for real time information and on line detection for future research.
Keywords: ANN, DWT, GLCM, KNN, ROI, artificial neural networks, discrete wavelet transform, gray-level co-occurrence matrix, k-nearest neighbor, region of interest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961382 The Oxidative Stress and the Antioxidant Defense of the Lower Vegetables towards an Environmental Pollution
Authors: Fadila Khaldi, Nedjoud Grara, Houria Berrebbah, Mohamed Réda Djebar
Abstract:
The use of bioindicators plants (lichens, bryophytes and Sphagnum....) in monitoring pollution by heavy metals has been the subject of several works. However, few studies have addressed the impact of specific type-s pollutants (fertilizers, pesticides.) on these organisms. We propose in this work to make the highlighting effect of NPKs (NPK: nitrogen-phosphate-potassium-sulfate (NP2O5K2O) (15,15,15), at concentrations of 10, 20, 30 , 40 and 50mM/L) on the activity of detoxification enzymes (GSH/GST, CAT, APX and MDA) of plant bioindicators (mosses and lichens) after treatment for 3 and 7 days. This study shows the important role of the defense system in the accumulation and tolerance to chemical pollutants through the activation of enzymatic (GST (glutathione-S-transferase, APX (ascorbat peroxidase), CAT (catalase)) and nonenzymatic biomarkers (GSH (glutathione), MDA (malondialdehyde)) against oxidative stress generated by the NPKs.Keywords: NPKs, Bioindicators, lower plants, GSH / GST, CAT, APX and MDA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127381 Visualized Characterization of Molecular Mobility for Water Species in Foods
Authors: Yasuyuki Konishi, Masayoshi Kobayashi
Abstract:
Six parameters, the effective diffusivity (De), activation energy of De, pre-exponential factor of De, amount (ASOW) of self-organized water species, and amplitude (α) of the forced oscillation of the molecular mobility (1/tC) derived from the forced cyclic temperature change operation, were characterized by using six typical foods, squid, sardines, scallops, salmon, beef, and pork, as a function of the correlation time (tC) of the water molecule-s proton retained in the foods. Each of the six parameters was clearly divided into the water species A1 and A2 at a specified value of tC =10-8s (=CtC), indicating an anomalous change in the physicochemical nature of the water species at the CtC. The forced oscillation of 1/tC clearly demonstrated a characteristic mode depending on the food shown as a three dimensional map associated with 1/tC, the amount of self-organized water, and tC.Keywords: molecular mobility, self-organization, hysteresis, water species A1 and A2, forced cyclic temperature change operation (FCTCO)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404380 Low-Temperature Luminescence Spectroscopy of Violet Sr-Al-O:Eu2+ Phosphor Particles
Authors: Keiji Komatsu, Hayato Maruyama, Ariyuki Kato, Atsushi Nakamura, Shigeo Ohshio, Hiroki Akasaka, Hidetoshi Saitoh
Abstract:
Violet Sr–Al–O:Eu2+ phosphor particles were synthesized from a metal–ethylenediaminetetraacetic acid (EDTA) solution of Sr, Al, Eu, and particulate alumina via spray drying and sintering in a reducing atmosphere. The crystal structures and emission properties at 85–300 K were investigated. The composition of the violet Sr–Al–O:Eu2+ phosphor particles was determined from various Sr–Al–O:Eu2+ phosphors by their emission properties’ dependence on temperature. The highly crystalline SrAl12O19:Eu2+ emission phases were confirmed by their crystallite sizes and the activation energies for the 4f5d–8S7/2 transition of the Eu2+ ion. These results showed that the material identification for the violet Sr–Al–O:Eu2+ phosphor was accomplished by the low-temperature luminescence measurements.
Keywords: Low temperature luminescence spectroscopy, Material Identification, Strontium aluminates phosphor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2355379 Pseudo-Homogeneous Kinetic of Dilute-Acid Hydrolysis of Rice Husk for Ethanol Production: Effect of Sugar Degradation
Authors: Megawati, Wahyudi B. Sediawan, Hary Sulistyo, Muslikhin Hidayat
Abstract:
Rice husk is a lignocellulosic source that can be converted to ethanol. Three hundreds grams of rice husk was mixed with 1 L of 0.18 N sulfuric acid solutions then was heated in an autoclave. The reaction was expected to be at constant temperature (isothermal), but before that temperature was achieved, reaction has occurred. The first liquid sample was taken at temperature of 140 0C and repeated every 5 minute interval. So the data obtained are in the regions of non-isothermal and isothermal. It was observed that the degradation has significant effects on the ethanol production. The kinetic constants can be expressed by Arrhenius equation with the frequency factors for hydrolysis and sugar degradation of 1.58 x 105 1/min and 2.29 x 108 L/mole/min, respectively, while the activation energies are 64,350 J/mole and 76,571 J/mole. The highest ethanol concentration from fermentation is 1.13% v/v, attained at 220 0C.Keywords: degradation, ethanol, hydrolysis, rice husk
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979378 Pseudo-Homogeneous Kinetic of Dilute-Acid Hydrolysis of Rice Huskfor Ethanol Production: Effect of Sugar Degradation
Authors: Megawati, Wahyudi B. Sediawan, Hary Sulistyo, Muslikhin Hidayat
Abstract:
Rice husk is a lignocellulosic source that can be converted to ethanol. Three hundreds grams of rice husk was mixed with 1 L of 0.18 N sulfuric acid solutions then was heated in an autoclave. The reaction was expected to be at constant temperature (isothermal), but before that temperature was achieved, reaction has occurred. The first liquid sample was taken at temperature of 140 0C and repeated every 5 minute interval. So the data obtained are in the regions of non-isothermal and isothermal. It was observed that the degradation has significant effects on the ethanol production. The kinetic constants can be expressed by Arrhenius equation with the frequency factors for hydrolysis and sugar degradation of 1.58 x 105 min-1 and 2.29 x 108 L/mole-min, respectively, while the activation energies are 64,350 J/mole and 76,571 J/mole. The highest ethanol concentration from fermentation is 1.13% v/v, attained at 220 0C.Keywords: degradation, ethanol, hydrolysis, rice husk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035377 Prototype of an Interactive Toy from Lego Robotics Kits for Children with Autism
Authors: Ricardo A. Martins, Matheus S. da Silva, Gabriel H. F. Iarossi, Helen C. M. Senefonte, Cinthyan R. S. C. de Barbosa
Abstract:
This paper is the development of a concept of the man/robot interaction. More accurately in developing of an autistic child that have more troubles with interaction, here offers an efficient solution, even though simple; however, less studied for this public. This concept is based on code applied thought out the Lego NXT kit, built for the interpretation of the robot, thereby can create this interaction in a constructive way for children suffering with Autism.Keywords: Lego NXT, autism, ANN (Artificial Neural Network), Backpropagation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 884376 Novel Glycopolymers Containing Carbohydrate Moiety: Copolymerization and Thermal Properties
Authors: Liliana M. Ştefan, Ana M. Pană, Geza Bandur, Marcel Popa, Lucian M. Rusnac
Abstract:
Polymers are one of the most widely used materials in our every day life. The subject of renewable resources has attracted great attention in the last period of time. New polymeric materials derived from renewable resources, like carbohydrates draw attention to public eye especially because of their biocompatibility and biodegradability. The aim of our paper was to obtain environmentally compatible polymers from monosaccharides. Novel glycopolymers based on D-glucose have been obtained from copolymerization of a new monomer carrying carbohydrate moiety with methyl methacrylate (MMA) via free radical bulk polymerization. Differential scanning calorimetry (DSC) was performed in order to study the copolymerization process of the monomer into the chosen co-monomer; the activation energy of this process was evaluated using Ozawa method. The copolymers obtained were characterized using ATR-FTIR spectroscopy. The thermal stability of the obtained products was studied by thermogravimetry (TG).
Keywords: DSC, glycopolymer, monosaccarides, TG.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707375 Single and Multiple Sourcing in the Auto-Manufacturing Industry
Authors: Sung Ho Ha, Eun Kyoung Kwon, Jong Sik Jin, Hyun Sun Park
Abstract:
This article outlines a hybrid method, incorporating multiple techniques into an evaluation process, in order to select competitive suppliers in a supply chain. It enables a purchaser to do single sourcing and multiple sourcing by calculating a combined supplier score, which accounts for both qualitative and quantitative factors that have impact on supply chain performance.Keywords: Analytic hierarchy process, Data envelopment analysis, Neural network, Supply chain management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2663374 Computational Modeling of Combustion Wave in Nanoscale Thermite Reaction
Authors: Kyoungjin Kim
Abstract:
Nanoscale thermites such as the composite mixture of nano-sized aluminum and molybdenum trioxide powders possess several technical advantages such as much higher reaction rate and shorter ignition delay, when compared to the conventional energetic formulations made of micron-sized metal and oxidizer particles. In this study, the self-propagation of combustion wave in compacted pellets of nanoscale thermite composites is modeled and computationally investigated by utilizing the activation energy reduction of aluminum particles due to nanoscale particle sizes. The present computational model predicts the speed of combustion wave propagation which is good agreement with the corresponding experiments of thermite reaction. Also, several characteristics of thermite reaction in nanoscale composites are discussed including the ignition delay and combustion wave structures.
Keywords: Nanoparticles, Thermite reaction, Combustion wave, Numerical modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2454373 A Robust Visual SLAM for Indoor Dynamic Environment
Authors: Xiang Zhang, Daohong Yang, Ziyuan Wu, Lei Li, Wanting Zhou
Abstract:
Visual Simultaneous Localization and Mapping (VSLAM) uses cameras to gather information in unknown environments to achieve simultaneous localization and mapping of the environment. This technology has a wide range of applications in autonomous driving, virtual reality, and other related fields. Currently, the research advancements related to VSLAM can maintain high accuracy in static environments. But in dynamic environments, the presence of moving objects in the scene can reduce the stability of the VSLAM system, leading to inaccurate localization and mapping, or even system failure. In this paper, a robust VSLAM method was proposed to effectively address the challenges in dynamic environments. We proposed a dynamic region removal scheme based on a semantic segmentation neural network and geometric constraints. Firstly, a semantic segmentation neural network is used to extract the prior active motion region, prior static region, and prior passive motion region in the environment. Then, the lightweight frame tracking module initializes the transform pose between the previous frame and the current frame on the prior static region. A motion consistency detection module based on multi-view geometry and scene flow is used to divide the environment into static regions and dynamic regions. Thus, the dynamic object region was successfully eliminated. Finally, only the static region is used for tracking thread. Our research is based on the ORBSLAM3 system, which is one of the most effective VSLAM systems available. We evaluated our method on the TUM RGB-D benchmark and the results demonstrate that the proposed VSLAM method improves the accuracy of the original ORBSLAM3 by 70%˜98.5% under a high dynamic environment.
Keywords: Dynamic scene, dynamic visual SLAM, semantic segmentation, scene flow, VSLAM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 182