Search results for: lossless data compression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7815

Search results for: lossless data compression

6825 A Study on the Performance Characteristics of Variable Valve for Reverse Continuous Damper

Authors: Se Kyung Oh, Young Hwan Yoon, Ary Bachtiar Krishna

Abstract:

Nowadays, a passenger car suspension must has high performance criteria with light weight, low cost, and low energy consumption. Pilot controlled proportional valve is designed and analyzed to get small pressure change rate after blow-off, and to get a fast response of the damper, a reverse damping mechanism is adapted. The reverse continuous variable damper is designed as a HS-SH damper which offers good body control with reduced transferred input force from the tire, compared with any other type of suspension system. The damper structure is designed, so that rebound and compression damping forces can be tuned independently, of which the variable valve is placed externally. The rate of pressure change with respect to the flow rate after blow-off becomes smooth when the fixed orifice size increases, which means that the blow-off slope is controllable using the fixed orifice size. Damping forces are measured with the change of the solenoid current at the different piston velocities to confirm the maximum hysteresis of 20 N, linearity, and variance of damping force. The damping force variance is wide and continuous, and is controlled by the spool opening, of which scheme is usually adapted in proportional valves. The reverse continuous variable damper developed in this study is expected to be utilized in the semi-active suspension systems in passenger cars after its performance and simplicity of the design is confirmed through a real car test.

Keywords: Blow-off, damping force, pilot controlledproportional valve, reverse continuous damper.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2440
6824 A Study of Indentation Energy in Three Points Bending of Sandwich beams with Composite Laminated Faces and Foam Core

Authors: M. Sadighi, H. Pouriayevali, M. Saadati

Abstract:

This paper deals with analysis of flexural stiffness, indentation and their energies in three point loading of sandwich beams with composite faces from Eglass/epoxy and cores from Polyurethane or PVC. Energy is consumed in three stages of indentation in laminated beam, indentation of sandwich beam and bending of sandwich beam. Theory of elasticity is chosen to present equations for indentation of laminated beam, then these equations have been corrected to offer better results. An analytical model has been used assuming an elastic-perfectly plastic compressive behavior of the foam core. Classical theory of beam is used to describe three point bending. Finite element (FE) analysis of static indentation sandwich beams is performed using the FE code ABAQUS. The foam core is modeled using the crushable foam material model and response of the foam core is experimentally characterized in uniaxial compression. Three point bending and indentation have been done experimentally in two cases of low velocity and higher velocity (quasi-impact) of loading. Results can describe response of beam in terms of core and faces thicknesses, core material, indentor diameter, energy absorbed, and length of plastic area in the testing. The experimental results are in good agreement with the analytical and FE analyses. These results can be used as an introduction for impact loading and energy absorbing of sandwich structures.

Keywords: Three point Bending, Indentation, Foams, Composite laminated beam, Sandwich beams, Finite element

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2585
6823 Topic Modeling Using Latent Dirichlet Allocation and Latent Semantic Indexing on South African Telco Twitter Data

Authors: Phumelele P. Kubheka, Pius A. Owolawi, Gbolahan Aiyetoro

Abstract:

Twitter is one of the most popular social media platforms where users share their opinions on different subjects. Twitter can be considered a great source for mining text due to the high volumes of data generated through the platform daily. Many industries such as telecommunication companies can leverage the availability of Twitter data to better understand their markets and make an appropriate business decision. This study performs topic modeling on Twitter data using Latent Dirichlet Allocation (LDA). The obtained results are benchmarked with another topic modeling technique, Latent Semantic Indexing (LSI). The study aims to retrieve topics on a Twitter dataset containing user tweets on South African Telcos. Results from this study show that LSI is much faster than LDA. However, LDA yields better results with higher topic coherence by 8% for the best-performing model in this experiment. A higher topic coherence score indicates better performance of the model.

Keywords: Big data, latent Dirichlet allocation, latent semantic indexing, Telco, topic modeling, Twitter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 461
6822 Prediction of Compressive Strength of SCC Containing Bottom Ash using Artificial Neural Networks

Authors: Yogesh Aggarwal, Paratibha Aggarwal

Abstract:

The paper presents a comparative performance of the models developed to predict 28 days compressive strengths using neural network techniques for data taken from literature (ANN-I) and data developed experimentally for SCC containing bottom ash as partial replacement of fine aggregates (ANN-II). The data used in the models are arranged in the format of six and eight input parameters that cover the contents of cement, sand, coarse aggregate, fly ash as partial replacement of cement, bottom ash as partial replacement of sand, water and water/powder ratio, superplasticizer dosage and an output parameter that is 28-days compressive strength and compressive strengths at 7 days, 28 days, 90 days and 365 days, respectively for ANN-I and ANN-II. The importance of different input parameters is also given for predicting the strengths at various ages using neural network. The model developed from literature data could be easily extended to the experimental data, with bottom ash as partial replacement of sand with some modifications.

Keywords: Self compacting concrete, bottom ash, strength, prediction, neural network, importance factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2226
6821 A Review: Comparative Analysis of Different Categorical Data Clustering Ensemble Methods

Authors: S. Sarumathi, N. Shanthi, M. Sharmila

Abstract:

Over the past epoch a rampant amount of work has been done in the data clustering research under the unsupervised learning technique in Data mining. Furthermore several algorithms and methods have been proposed focusing on clustering different data types, representation of cluster models, and accuracy rates of the clusters. However no single clustering algorithm proves to be the most efficient in providing best results. Accordingly in order to find the solution to this issue a new technique, called Cluster ensemble method was bloomed. This cluster ensemble is a good alternative approach for facing the cluster analysis problem. The main hope of the cluster ensemble is to merge different clustering solutions in such a way to achieve accuracy and to improve the quality of individual data clustering. Due to the substantial and unremitting development of new methods in the sphere of data mining and also the incessant interest in inventing new algorithms, makes obligatory to scrutinize a critical analysis of the existing techniques and the future novelty. This paper exposes the comparative study of different cluster ensemble methods along with their features, systematic working process and the average accuracy and error rates of each ensemble methods. Consequently this speculative and comprehensive analysis will be very useful for the community of clustering practitioners and also helps in deciding the most suitable one to rectify the problem in hand.

Keywords: Clustering, Cluster Ensemble methods, Co-association matrix, Consensus function, Median partition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2604
6820 Application of Data Envelopment Analysis to Assess Quality Management Efficiency

Authors: Chuen Tse Kuah, Kuan Yew Wong, Farzad Behrouzi

Abstract:

This paper is aimed to give an illustration on the application of Data Envelopment Analysis (DEA) as a tool to assess Quality Management (QM) efficiency. A variant of DEA, slack based measure (SBM) is used for this purpose. From this study, it is found that DEA is suitable to measure QM efficiency and give improvement suggestions to the inefficient QM.

Keywords: Quality Management, Data Envelopment Analysis, Slack Based Measure, Efficiency Measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2090
6819 Exploring the Correlation between Population Distribution and Urban Heat Island under Urban Data: Taking Shenzhen Urban Heat Island as an Example

Authors: Wang Yang

Abstract:

Shenzhen is a modern city of China's reform and opening-up policy, the development of urban morphology has been established on the administration of the Chinese government. This city`s planning paradigm is primarily affected by the spatial structure and human behavior. The subjective urban agglomeration center is divided into several groups and centers. In comparisons of this effect, the city development law has better to be neglected. With the continuous development of the internet, extensive data technology has been introduced in China. Data mining and data analysis has become important tools in municipal research. Data mining has been utilized to improve data cleaning such as receiving business data, traffic data and population data. Prior to data mining, government data were collected by traditional means, then were analyzed using city-relationship research, delaying the timeliness of urban development, especially for the contemporary city. Data update speed is very fast and based on the Internet. The city's point of interest (POI) in the excavation serves as data source affecting the city design, while satellite remote sensing is used as a reference object, city analysis is conducted in both directions, the administrative paradigm of government is broken and urban research is restored. Therefore, the use of data mining in urban analysis is very important. The satellite remote sensing data of the Shenzhen city in July 2018 were measured by the satellite Modis sensor and can be utilized to perform land surface temperature inversion, and analyze city heat island distribution of Shenzhen. This article acquired and classified the data from Shenzhen by using Data crawler technology. Data of Shenzhen heat island and interest points were simulated and analyzed in the GIS platform to discover the main features of functional equivalent distribution influence. Shenzhen is located in the east-west area of China. The city’s main streets are also determined according to the direction of city development. Therefore, it is determined that the functional area of the city is also distributed in the east-west direction. The urban heat island can express the heat map according to the functional urban area. Regional POI has correspondence. The research result clearly explains that the distribution of the urban heat island and the distribution of urban POIs are one-to-one correspondence. Urban heat island is primarily influenced by the properties of the underlying surface, avoiding the impact of urban climate. Using urban POIs as analysis object, the distribution of municipal POIs and population aggregation are closely connected, so that the distribution of the population corresponded with the distribution of the urban heat island.

Keywords: POI, satellite remote sensing, the population distribution, urban heat island thermal map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 929
6818 Prototype of a Federative Factory Data Management for the Support of Factory Planning Processes

Authors: Christian Mosch, Reiner Anderl, Antonio Álvaro de Assis Moura, Klaus Schützer

Abstract:

Due to short product life cycles, increasing variety of products and short cycles of leap innovations manufacturing companies have to increase the flexibility of factory structures. Flexibility of factory structures is based on defined factory planning processes in which product, process and resource data of various partial domains have to be considered. Thus factory planning processes can be characterized as iterative, interdisciplinary and participative processes [1]. To support interdisciplinary and participative character of planning processes, a federative factory data management (FFDM) as a holistic solution will be described. FFDM is already implemented in form of a prototype. The interim results of the development of FFDM will be shown in this paper. The principles are the extracting of product, process and resource data from documents of various partial domains providing as web services on a server. The described data can be requested by the factory planner by using a FFDM-browser.

Keywords: BRAGECRIM, Factory Planning Process, FactoryData Management, Web Services

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496
6817 Analysis of a WDM System for Tanzania

Authors: Shaban Pazi, Chris Chatwin, Rupert Young, Philip Birch

Abstract:

Internet infrastructures in most places of the world have been supported by the advancement of optical fiber technology, most notably wavelength division multiplexing (WDM) system. Optical technology by means of WDM system has revolutionized long distance data transport and has resulted in high data capacity, cost reductions, extremely low bit error rate, and operational simplification of the overall Internet infrastructure. This paper analyses and compares the system impairments, which occur at data transmission rates of 2.5Gb/s and 10 Gb/s per wavelength channel in our proposed optical WDM system for Internet infrastructure in Tanzania. The results show that the data transmission rate of 2.5 Gb/s has minimum system impairments compared with a rate of 10 Gb/s per wavelength channel, and achieves a sufficient system performance to provide a good Internet access service.

Keywords: Internet infrastructure, WDM system, standard single mode fibers, system impairments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
6816 Comparison of Data Reduction Algorithms for Image-Based Point Cloud Derived Digital Terrain Models

Authors: M. Uysal, M. Yilmaz, I. Tiryakioğlu

Abstract:

Digital Terrain Model (DTM) is a digital numerical representation of the Earth's surface. DTMs have been applied to a diverse field of tasks, such as urban planning, military, glacier mapping, disaster management. In the expression of the Earth' surface as a mathematical model, an infinite number of point measurements are needed. Because of the impossibility of this case, the points at regular intervals are measured to characterize the Earth's surface and DTM of the Earth is generated. Hitherto, the classical measurement techniques and photogrammetry method have widespread use in the construction of DTM. At present, RADAR, LiDAR, and stereo satellite images are also used for the construction of DTM. In recent years, especially because of its superiorities, Airborne Light Detection and Ranging (LiDAR) has an increased use in DTM applications. A 3D point cloud is created with LiDAR technology by obtaining numerous point data. However recently, by the development in image mapping methods, the use of unmanned aerial vehicles (UAV) for photogrammetric data acquisition has increased DTM generation from image-based point cloud. The accuracy of the DTM depends on various factors such as data collection method, the distribution of elevation points, the point density, properties of the surface and interpolation methods. In this study, the random data reduction method is compared for DTMs generated from image based point cloud data. The original image based point cloud data set (100%) is reduced to a series of subsets by using random algorithm, representing the 75, 50, 25 and 5% of the original image based point cloud data set. Over the ANS campus of Afyon Kocatepe University as the test area, DTM constructed from the original image based point cloud data set is compared with DTMs interpolated from reduced data sets by Kriging interpolation method. The results show that the random data reduction method can be used to reduce the image based point cloud datasets to 50% density level while still maintaining the quality of DTM.

Keywords: DTM, unmanned aerial vehicle, UAV, random, Kriging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 810
6815 Frequent Itemset Mining Using Rough-Sets

Authors: Usman Qamar, Younus Javed

Abstract:

Frequent pattern mining is the process of finding a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set. It was proposed in the context of frequent itemsets and association rule mining. Frequent pattern mining is used to find inherent regularities in data. What products were often purchased together? Its applications include basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis. However, one of the bottlenecks of frequent itemset mining is that as the data increase the amount of time and resources required to mining the data increases at an exponential rate. In this investigation a new algorithm is proposed which can be uses as a pre-processor for frequent itemset mining. FASTER (FeAture SelecTion using Entropy and Rough sets) is a hybrid pre-processor algorithm which utilizes entropy and roughsets to carry out record reduction and feature (attribute) selection respectively. FASTER for frequent itemset mining can produce a speed up of 3.1 times when compared to original algorithm while maintaining an accuracy of 71%.

Keywords: Rough-sets, Classification, Feature Selection, Entropy, Outliers, Frequent itemset mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2434
6814 Analysis of Cross-Sectional and Retrograde Data on the Prevalence of Marginal Gingivitis

Authors: Ilma Robo, Saimir Heta, Nedja Hysi, Vera Ostreni

Abstract:

Introduction: Marginal gingivitis is a disease with considerable frequency among patients who present routinely for periodontal control and treatment. In fact, this disease may not have alarming symptoms in patients and may go unnoticed by themselves when personal hygiene conditions are optimal. The aim of this study was to collect retrograde data on the prevalence of marginal gingiva in the respective group of patients, evaluated according to specific periodontal diagnostic tools. Materials and methods: The study was conducted in two patient groups. The first group was with 34 patients, during December 2019-January 2020, and the second group was with 64 patients during 2010-2018 (each year in the mentioned monthly period). Bacterial plaque index, hemorrhage index, amount of gingival fluid, presence of xerostomia and candidiasis were recorded in patients. Results: Analysis of the collected data showed that susceptibility to marginal gingivitis shows higher values according to retrograde data, compared to cross-sectional ones. Susceptibility to candidiasis and the occurrence of xerostomia, even in the combination of both pathologies, as risk factors for the occurrence of marginal gingivitis, show higher values ​​according to retrograde data. The female are presented with a reduced bacterial plaque index than the males, but more importantly, this index in the females is also associated with a reduced index of gingival hemorrhage, in contrast to the males. Conclusions: Cross-sectional data show that the prevalence of marginal gingivitis is more reduced, compared to retrograde data, based on the hemorrhage index and the bacterial plaque index together. Changes in production in the amount of gingival fluid show a higher prevalence of marginal gingivitis in cross-sectional data than in retrograde data; this is based on the sophistication of the way data are recorded, which evolves over time and also based on professional sensitivity to this phenomenon.

Keywords: Marginal gingivitis, cross-sectional, retrograde, prevalence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 512
6813 Reducing SAGE Data Using Genetic Algorithms

Authors: Cheng-Hong Yang, Tsung-Mu Shih, Li-Yeh Chuang

Abstract:

Serial Analysis of Gene Expression is a powerful quantification technique for generating cell or tissue gene expression data. The profile of the gene expression of cell or tissue in several different states is difficult for biologists to analyze because of the large number of genes typically involved. However, feature selection in machine learning can successfully reduce this problem. The method allows reducing the features (genes) in specific SAGE data, and determines only relevant genes. In this study, we used a genetic algorithm to implement feature selection, and evaluate the classification accuracy of the selected features with the K-nearest neighbor method. In order to validate the proposed method, we used two SAGE data sets for testing. The results of this study conclusively prove that the number of features of the original SAGE data set can be significantly reduced and higher classification accuracy can be achieved.

Keywords: Serial Analysis of Gene Expression, Feature selection, Genetic Algorithm, K-nearest neighbor method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
6812 Growing Self Organising Map Based Exploratory Analysis of Text Data

Authors: Sumith Matharage, Damminda Alahakoon

Abstract:

Textual data plays an important role in the modern world. The possibilities of applying data mining techniques to uncover hidden information present in large volumes of text collections is immense. The Growing Self Organizing Map (GSOM) is a highly successful member of the Self Organising Map family and has been used as a clustering and visualisation tool across wide range of disciplines to discover hidden patterns present in the data. A comprehensive analysis of the GSOM’s capabilities as a text clustering and visualisation tool has so far not been published. These functionalities, namely map visualisation capabilities, automatic cluster identification and hierarchical clustering capabilities are presented in this paper and are further demonstrated with experiments on a benchmark text corpus.

Keywords: Text Clustering, Growing Self Organizing Map, Automatic Cluster Identification, Hierarchical Clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1996
6811 Reliable Consensus Problem for Multi-Agent Systems with Sampled-Data

Authors: S. H. Lee, M. J. Park, O. M. Kwon

Abstract:

In this paper, reliable consensus of multi-agent systems with sampled-data is investigated. By using a suitable Lyapunov-Krasovskii functional and some techniques such as Wirtinger Inequality, Schur Complement and Kronecker Product, the results of such system are obtained by solving a set of Linear Matrix Inequalities (LMIs). One numerical example is included to show the effectiveness of the proposed criteria.

Keywords: Multi-agent, Linear Matrix Inequalities (LMIs), Kronecker Product, Sampled-Data, Lyapunov method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745
6810 Deep-Learning Based Approach to Facial Emotion Recognition Through Convolutional Neural Network

Authors: Nouha Khediri, Mohammed Ben Ammar, Monji Kherallah

Abstract:

Recently, facial emotion recognition (FER) has become increasingly essential to understand the state of the human mind. However, accurately classifying emotion from the face is a challenging task. In this paper, we present a facial emotion recognition approach named CV-FER benefiting from deep learning, especially CNN and VGG16. First, the data are pre-processed with data cleaning and data rotation. Then, we augment the data and proceed to our FER model, which contains five convolutions layers and five pooling layers. Finally, a softmax classifier is used in the output layer to recognize emotions. Based on the above contents, this paper reviews the works of facial emotion recognition based on deep learning. Experiments show that our model outperforms the other methods using the same FER2013 database and yields a recognition rate of 92%. We also put forward some suggestions for future work.

Keywords: CNN, deep-learning, facial emotion recognition, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 710
6809 Balanced k-Anonymization

Authors: Sabah S. Al-Fedaghi

Abstract:

The technique of k-anonymization has been proposed to obfuscate private data through associating it with at least k identities. This paper investigates the basic tabular structures that underline the notion of k-anonymization using cell suppression. These structures are studied under idealized conditions to identify the essential features of the k-anonymization notion. We optimize data kanonymization through requiring a minimum number of anonymized values that are balanced over all columns and rows. We study the relationship between the sizes of the anonymized tables, the value k, and the number of attributes. This study has a theoretical value through contributing to develop a mathematical foundation of the kanonymization concept. Its practical significance is still to be investigated.

Keywords: Balanced tables, k-anonymization, private data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1223
6808 Exploring Influence Range of Tainan City Using Electronic Toll Collection Big Data

Authors: Chen Chou, Feng-Tyan Lin

Abstract:

Big Data has been attracted a lot of attentions in many fields for analyzing research issues based on a large number of maternal data. Electronic Toll Collection (ETC) is one of Intelligent Transportation System (ITS) applications in Taiwan, used to record starting point, end point, distance and travel time of vehicle on the national freeway. This study, taking advantage of ETC big data, combined with urban planning theory, attempts to explore various phenomena of inter-city transportation activities. ETC, one of government's open data, is numerous, complete and quick-update. One may recall that living area has been delimited with location, population, area and subjective consciousness. However, these factors cannot appropriately reflect what people’s movement path is in daily life. In this study, the concept of "Living Area" is replaced by "Influence Range" to show dynamic and variation with time and purposes of activities. This study uses data mining with Python and Excel, and visualizes the number of trips with GIS to explore influence range of Tainan city and the purpose of trips, and discuss living area delimited in current. It dialogues between the concepts of "Central Place Theory" and "Living Area", presents the new point of view, integrates the application of big data, urban planning and transportation. The finding will be valuable for resource allocation and land apportionment of spatial planning.

Keywords: Big Data, ITS, influence range, living area, central place theory, visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 976
6807 A Temporal Synchronization Model for Heterogeneous Data in Distributed Systems

Authors: Jorge Estudillo Ramirez, Saul E. Pomares Hernandez

Abstract:

Multimedia distributed systems deal with heterogeneous data, such as texts, images, graphics, video and audio. The specification of temporal relations among different data types and distributed sources is an open research area. This paper proposes a fully distributed synchronization model to be used in multimedia systems. One original aspect of the model is that it avoids the use of a common reference (e.g. wall clock and shared memory). To achieve this, all possible multimedia temporal relations are specified according to their causal dependencies.

Keywords: Multimedia, Distributed Systems, Partial Ordering, Temporal Synchronization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1358
6806 Materialized View Effect on Query Performance

Authors: Yusuf Ziya Ayık, Ferhat Kahveci

Abstract:

Currently, database management systems have various tools such as backup and maintenance, and also provide statistical information such as resource usage and security. In terms of query performance, this paper covers query optimization, views, indexed tables, pre-computation materialized view, query performance analysis in which query plan alternatives can be created and the least costly one selected to optimize a query. Indexes and views can be created for related table columns. The literature review of this study showed that, in the course of time, despite the growing capabilities of the database management system, only database administrators are aware of the need for dealing with archival and transactional data types differently. These data may be constantly changing data used in everyday life, and also may be from the completed questionnaire whose data input was completed. For both types of data, the database uses its capabilities; but as shown in the findings section, instead of repeating similar heavy calculations which are carrying out same results with the same query over a survey results, using materialized view results can be in a more simple way. In this study, this performance difference was observed quantitatively considering the cost of the query.

Keywords: Materialized view, pre-computation, query cost, query performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1345
6805 Development of a Numerical Model to Predict Wear in Grouted Connections for Offshore Wind Turbine Generators

Authors: Paul Dallyn, Ashraf El-Hamalawi, Alessandro Palmeri, Bob Knight

Abstract:

In order to better understand the long term implications of the grout wear failure mode in large-diameter plainsided grouted connections, a numerical model has been developed and calibrated that can take advantage of existing operational plant data to predict the wear accumulation for the actual load conditions experienced over a given period, thus limiting the requirement for expensive monitoring systems. This model has been derived and calibrated based on site structural condition monitoring (SCM) data and supervisory control and data acquisition systems (SCADA) data for two operational wind turbine generator substructures afflicted with this challenge, along with experimentally derived wear rates.

Keywords: Grouted Connection, Numerical Model, Offshore Structure, Wear, Wind Energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2659
6804 A Novel Implementation of Application Specific Instruction-set Processor (ASIP) using Verilog

Authors: Kamaraju.M, Lal Kishore.K, Tilak.A.V.N

Abstract:

The general purpose processors that are used in embedded systems must support constraints like execution time, power consumption, code size and so on. On the other hand an Application Specific Instruction-set Processor (ASIP) has advantages in terms of power consumption, performance and flexibility. In this paper, a 16-bit Application Specific Instruction-set processor for the sensor data transfer is proposed. The designed processor architecture consists of on-chip transmitter and receiver modules along with the processing and controlling units to enable the data transmission and reception on a single die. The data transfer is accomplished with less number of instructions as compared with the general purpose processor. The ASIP core operates at a maximum clock frequency of 1.132GHz with a delay of 0.883ns and consumes 569.63mW power at an operating voltage of 1.2V. The ASIP is implemented in Verilog HDL using the Xilinx platform on Virtex4.

Keywords: ASIP, Data transfer, Instruction set, Processor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068
6803 Data Mining Applied to the Predictive Model of Triage System in Emergency Department

Authors: Wen-Tsann Lin, Yung-Tsan Jou, Yih-Chuan Wu, Yuan-Du Hsiao

Abstract:

The Emergency Department of a medical center in Taiwan cooperated to conduct the research. A predictive model of triage system is contracted from the contract procedure, selection of parameters to sample screening. 2,000 pieces of data needed for the patients is chosen randomly by the computer. After three categorizations of data mining (Multi-group Discriminant Analysis, Multinomial Logistic Regression, Back-propagation Neural Networks), it is found that Back-propagation Neural Networks can best distinguish the patients- extent of emergency, and the accuracy rate can reach to as high as 95.1%. The Back-propagation Neural Networks that has the highest accuracy rate is simulated into the triage acuity expert system in this research. Data mining applied to the predictive model of the triage acuity expert system can be updated regularly for both the improvement of the system and for education training, and will not be affected by subjective factors.

Keywords: Back-propagation Neural Networks, Data Mining, Emergency Department, Triage System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2309
6802 Dynamic Metadata Schemes in the Neutron and Photon Science Communities: A Case Study of X-Ray Photon Correlation Spectroscopy

Authors: Amir Tosson, Mohammad Reza, Christian Gutt

Abstract:

Metadata is one of the most important aspects for advancing data management practices within all research communities. Definitions and schemes of metadata are inter alia of particular significance in the domain of neutron and photon scattering experiments covering a broad area of different scientific disciplines. The demand of describing continuously evolving highly non-standardized experiments, including the resulting processed and published data, constitutes a considerable challenge for a static definition of metadata. Here, we present the concept of dynamic metadata for the neutron and photon scientific community, which enriches a static set of defined basic metadata. We explore the idea of dynamic metadata with the help of the use case of X-ray Photon Correlation Spectroscopy (XPCS), which is a synchrotron-based scattering technique that allows the investigation of nanoscale dynamic processes. It serves here as a demonstrator of how dynamic metadata can improve data acquisition, sharing, and analysis workflows. Our approach enables researchers to tailor metadata definitions dynamically and adapt them to the evolving demands of describing data and results from a diverse set of experiments. We demonstrate that dynamic metadata standards yield advantages that enhance data reproducibility, interoperability, and the dissemination of knowledge.

Keywords: Big data, metadata, schemas, XPCS, X-ray Photon Correlation Spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 149
6801 Data Collection with Bounded-Sized Messages in Wireless Sensor Networks

Authors: Min Kyung An

Abstract:

In this paper, we study the data collection problem in Wireless Sensor Networks (WSNs) adopting the two interference models: The graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR). The main issue of the problem is to compute schedules with the minimum number of timeslots, that is, to compute the minimum latency schedules, such that data from every node can be collected without any collision or interference to a sink node. While existing works studied the problem with unit-sized and unbounded-sized message models, we investigate the problem with the bounded-sized message model, and introduce a constant factor approximation algorithm. To the best known of our knowledge, our result is the first result of the data collection problem with bounded-sized model in both interference models.

Keywords: Data collection, collision-free, interference-free, physical interference model, SINR, approximation, bounded-sized message model, wireless sensor networks, WSN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1220
6800 New Data Reuse Adaptive Filters with Noise Constraint

Authors: Young-Seok Choi

Abstract:

We present a new framework of the data-reusing (DR) adaptive algorithms by incorporating a constraint on noise, referred to as a noise constraint. The motivation behind this work is that the use of the statistical knowledge of the channel noise can contribute toward improving the convergence performance of an adaptive filter in identifying a noisy linear finite impulse response (FIR) channel. By incorporating the noise constraint into the cost function of the DR adaptive algorithms, the noise constrained DR (NC-DR) adaptive algorithms are derived. Experimental results clearly indicate their superior performance over the conventional DR ones.

Keywords: Adaptive filter, data-reusing, least-mean square (LMS), affine projection (AP), noise constraint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
6799 Vibration Analysis of Magnetostrictive Nano-Plate by Using Modified Couple Stress and Nonlocal Elasticity Theories

Authors: Hamed Khani Arani, Mohammad Shariyat, Armaghan Mohammadian

Abstract:

In the present study, the free vibration of magnetostrictive nano-plate (MsNP) resting on the Pasternak foundation is investigated. Firstly, the modified couple stress (MCS) and nonlocal elasticity theories are compared together and taken into account to consider the small scale effects; in this paper not only two theories are analyzed but also it improves the MCS theory is more accurate than nonlocal elasticity theory in such problems. A feedback control system is utilized to investigate the effects of a magnetic field. First-order shear deformation theory (FSDT), Hamilton’s principle and energy method are utilized in order to drive the equations of motion and these equations are solved by differential quadrature method (DQM) for simply supported boundary conditions. The MsNP undergoes in-plane forces in x and y directions. In this regard, the dimensionless frequency is plotted to study the effects of small scale parameter, magnetic field, aspect ratio, thickness ratio and compression and tension loads. Results indicate that these parameters play a key role on the natural frequency. According to the above results, MsNP can be used in the communications equipment, smart control vibration of nanostructure especially in sensor and actuators such as wireless linear micro motor and smart nano valves in injectors.

Keywords: Feedback control system, magnetostrictive nano-plate, modified couple stress theory, nonlocal elasticity theory, vibration analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 622
6798 Mining Genes Relations in Microarray Data Combined with Ontology in Colon Cancer Automated Diagnosis System

Authors: A. Gruzdz, A. Ihnatowicz, J. Siddiqi, B. Akhgar

Abstract:

MATCH project [1] entitle the development of an automatic diagnosis system that aims to support treatment of colon cancer diseases by discovering mutations that occurs to tumour suppressor genes (TSGs) and contributes to the development of cancerous tumours. The constitution of the system is based on a) colon cancer clinical data and b) biological information that will be derived by data mining techniques from genomic and proteomic sources The core mining module will consist of the popular, well tested hybrid feature extraction methods, and new combined algorithms, designed especially for the project. Elements of rough sets, evolutionary computing, cluster analysis, self-organization maps and association rules will be used to discover the annotations between genes, and their influence on tumours [2]-[11]. The methods used to process the data have to address their high complexity, potential inconsistency and problems of dealing with the missing values. They must integrate all the useful information necessary to solve the expert's question. For this purpose, the system has to learn from data, or be able to interactively specify by a domain specialist, the part of the knowledge structure it needs to answer a given query. The program should also take into account the importance/rank of the particular parts of data it analyses, and adjusts the used algorithms accordingly.

Keywords: Bioinformatics, gene expression, ontology, selforganizingmaps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974
6797 On Methodologies for Analysing Sickness Absence Data: An Insight into a New Method

Authors: Xiaoshu Lu, Päivi Leino-Arjas, Kustaa Piha, Akseli Aittomäki, Peppiina Saastamoinen, Ossi Rahkonen, Eero Lahelma

Abstract:

Sickness absence represents a major economic and social issue. Analysis of sick leave data is a recurrent challenge to analysts because of the complexity of the data structure which is often time dependent, highly skewed and clumped at zero. Ignoring these features to make statistical inference is likely to be inefficient and misguided. Traditional approaches do not address these problems. In this study, we discuss model methodologies in terms of statistical techniques for addressing the difficulties with sick leave data. We also introduce and demonstrate a new method by performing a longitudinal assessment of long-term absenteeism using a large registration dataset as a working example available from the Helsinki Health Study for municipal employees from Finland during the period of 1990-1999. We present a comparative study on model selection and a critical analysis of the temporal trends, the occurrence and degree of long-term sickness absences among municipal employees. The strengths of this working example include the large sample size over a long follow-up period providing strong evidence in supporting of the new model. Our main goal is to propose a way to select an appropriate model and to introduce a new methodology for analysing sickness absence data as well as to demonstrate model applicability to complicated longitudinal data.

Keywords: Sickness absence, longitudinal data, methodologies, mix-distribution model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2271
6796 Phase Jitter Transfer in High Speed Data Links

Authors: Tsunwai Gary Yip

Abstract:

Phase locked loops in 10 Gb/s and faster data links are low phase noise devices. Characterization of their phase jitter transfer functions is difficult because the intrinsic noise of the PLLs is comparable to the phase noise of the reference clock signal. The problem is solved by using a linear model to account for the intrinsic noise. This study also introduces a novel technique for measuring the transfer function. It involves the use of the reference clock as a source of wideband excitation, in contrast to the commonly used sinusoidal excitations at discrete frequencies. The data reported here include the intrinsic noise of a PLL for 10 Gb/s links and the jitter transfer function of a PLL for 12.8 Gb/s links. The measured transfer function suggests that the PLL responded like a second order linear system to a low noise reference clock.

Keywords: Intrinsic phase noise, jitter in data link, PLL jitter transfer function, high speed clocking in electronic circuit

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601