
 

 

 
Abstract—Metadata is one of the most important aspects for 

advancing data management practices within all research 
communities. Definitions and schemes of metadata are inter alia of 
particular significance in the domain of neutron and photon scattering 
experiments covering a broad area of different scientific disciplines. 
The demand of describing continuously evolving highly non-
standardized experiments, including the resulting processed and 
published data, constitutes a considerable challenge for a static 
definition of metadata. Here, we present the concept of dynamic 
metadata for the neutron and photon scientific community, which 
enriches a static set of defined basic metadata. We explore the idea of 
dynamic metadata with the help of the use case of X-ray Photon 
Correlation Spectroscopy (XPCS), which is a synchrotron-based 
scattering technique that allows the investigation of nanoscale dynamic 
processes. It serves here as a demonstrator of how dynamic metadata 
can improve data acquisition, sharing, and analysis workflows. Our 
approach enables researchers to tailor metadata definitions 
dynamically and adapt them to the evolving demands of describing 
data and results from a diverse set of experiments. We demonstrate that 
dynamic metadata standards yield advantages that enhance data 
reproducibility, interoperability, and the dissemination of knowledge. 
 

Keywords—Big data, metadata, schemas, XPCS, X-ray Photon 
Correlation Spectroscopy.  

I. INTRODUCTION 

N scientific research,  data is undergoing a transformative 
increase in both size and flow. Therefore, the quality and 

depth of metadata has become crucial for organizing data and 
sharing knowledge [1]. In the field of photon and neutron 
science, a set of metadata shall at least describe the basic 
experimental parameters such as photon energy, sample 
detector distance, detector etc. and the sample system 
investigated. However, the details of experimental setups and 
sample systems vary quite strongly from beamline to beamline 
and even within a beamline several experimental techniques are 
usually offered to the users. This challenge of depth, precision 
and volume of metadata is increased by the fact that many 
experiments are often non-standardized with set-ups and 
samples installed only for a few days and then transported back 
to the home laboratory after the beam time. Several user 
consortia started to work on this problem, such as PANSOC, 
EXPANDS and DAPHNE4NFDI to agree within the user 
community on a basic set of metadata needed [2].  
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A basic metadata scheme usually describes the process of 
raw data production. In many instances, however, the processed 
data and the finally published data are also of great if not even 
more interest to the scientific user community. In this context 
of data analysis and re-processing raw data, the scientific details 
start to matter which are difficult to describe in a static metadata 
scheme. Typical examples are details of background 
subtraction, normalization schemes, data rejection, region of 
interest selection, data pre-selection, fitting results, etc. - all of 
them are constantly changing and so diverse that it appears 
almost impossible to request them from the scientists in a 
standardized way. This in turn makes the realization of the 
FAIR principles for complex non-standardized experiments 
difficult because FAIR requires a set of metadata which allows 
to reproduce results from raw data. Key aspects of this metadata 
within the framework of the FAIR principles have been 
highlighted by [3] and can by summarized as follows:  
 Adaptability: Metadata should be flexible to cater to varied 

researcher needs, allowing customization of data views to 
highlight specific research elements. 

 Detectability: Data should be easily accessible, 
necessitating organized metadata in a structured catalog. 
Efficient indexing and detailed annotations assist 
researchers in identifying relevant datasets. 

 Proactivity: Given the large data output from scientific 
projects, metadata should effectively manage this volume, 
ensuring data is accessible and user centric.  

II. SYNCHROTRON USER COMMUNITY 

Synchrotron radiation is used as a research tool to investigate 
structural and dynamic properties of matter in various 
disciplines, such as materials science, chemistry, biology, 
engineering, medicine, and environmental studies. The 
experiments are typically conducted by a user team during a few 
days of granted beamtime with the users bringing experimental 
equipment and samples to a specific beamline (experimental 
station) suited for their scientific question. Some of these 
beamlines and experimental techniques are highly standardized 
allowing for a relatively easy capture of metadata but most of 
the stations and experimental techniques are not easy to 
standardize. This constitutes a challenge for implementing the 
FAIR principles [1]. In Germany, the National Research Data 
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Infrastructure (NFDI) initiative has been funded with the aim of 
tackling these problems which are typical in experimental 
sciences and make data FAIR across the disciplines. The 
synchrotron user community together with the large-scale 
synchrotron and neutron facilities is organized in the 
DAPHNE4NFDI consortium [4]. 

III. X-RAY PHOTON CORRELATION SPECTROSCOPY AS A USE 

CASE 

 

Fig. 1 A typical XPCS experimental setup [5] highlighting the 
complexity of the experimental and analysis metadata 

 
As a typical use case demonstrating the challenge of 

metadata collection, we use here the technique of X-ray Photon 
Correlation Spectroscopy (XPCS) [5]. XPCS is a spectroscopic 
scattering technique that utilizes the coherence of X-ray beams 
for studying the dynamics of materials at the nanoscale. By 
analyzing the temporal fluctuations in the scattered intensity, 
XPCS can extract information about the motion, relaxation, and 
structural changes of materials over time. The method thus 
provides insights into a range of phenomena, from the diffusion 
of proteins and nanoparticles to the dynamics of polymers and 
complex fluids, making it a powerful tool for understanding the 
behavior of materials under various conditions [5]-[7]. 

A typical experimental setup for XPCS consists of fixed 
beamline specific components such as X-ray optics and 
detectors yielding a basic fundamental metadata set which is 
automatically recorded during the experiment. In contrast, the 
user specific components consist for example of a sample 
environment which is engineered to provide control over 
external parameters, such as temperature or pressure 
constituting a first set of user specific metadata more difficult 
to capture. During the experiment, the X-rays are scattered from 
the sample and the resulting diffraction patterns are captured 
using a pixelated 2D array detector (see Fig. 1). In this way, a 
series of patterns are recorded over time which exhibit 
fluctuations in their intensity mirroring the sample dynamics. 
Correlating intensities, for example via classical intensity 
autocorrelation functions in time, yields then information about 
the temporal evolution of the density-density correlation 
functions in the sample.  

A. Data Structure and Analysis Pipeline 

The generic XPCS raw data structure consists of time-series 
of images representing photon intensity over time, where each 

data point corresponds to a specific intensity, pixel number and 
time stamp. In a first step, these raw data are preprocessed by 
removing noise, subtracting background signals, selecting areas 
of interest, and normalizing the dataset. The central part of the 
XPCS data analysis is then to calculate the correlation functions 
(known as g2), which measures how intensity changes over 
different time intervals for a selected area representing a 
specific area q in reciprocal space (reciprocal space, i.e., length 
scale, L ~ 2 π/q). Upon completing a successful analysis 
pipeline, one processes the series of images into a 1D 
correlation function, illustrated in the bottom right of Fig. 1. 
This curve is generally saved as a 1D array and is often 
represented by an exponentially decaying function: 

 

𝑔 𝑞, 𝑡 𝐴  β. 𝑒 /  
 
where, τ is the characteristic relaxation time, β is the scattering 
contrast, and γ is the stretching exponent called Kohlrausch-
Williams-Watts (KWW) exponent. γ = 1 stands for simple 
diffusive dynamics, and γ > 1 indicates a compressed 
exponential decay, and γ < 1 stands for the slower dynamics 
than diffusion.  

In another scenario, for a non-equilibrium system, the 
intensity correlation function (ICF) can be derived as a function 
of time without temporal averaging. This is expressed in the 
form of a two-time correlation function (TTC), as given by: 

 

𝐶 𝑞, 𝑡1, 𝑡2 , ,

, ,
1  

 
where the function C quantifies the progression of the ICF with 
respect to the average time, t_age, which is calculated as t_age 
= (t1+t2)/2. TTC is commonly saved as a 2D array. A typical 
TTC can be seen in Fig. 2. 

 

 

Fig. 2 A typical example of a TTC [8] in which the degree of 
correlation between images taken at times t1 and t2 is shown as a 

heatmap 
 

These TTCs are used for further analysis by extracting cuts 
along specific directions representing correlations as a function 
of external parameters such as waiting time after externally 
driving the systems or as a function of X-ray dose, X-ray dose 
rate or q-value - to name just a few. Obviously, both the 
production and the further data analysis of such TTCs functions 
are highly user and experiment dependent which cannot be 
described by a fixed set of metadata. Other synchrotron and 
neutron use cases will face a similar problem.  
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The correlation functions are extensively analyzed both 
quantitatively and comparatively. They are then fitted to 
designated models to obtain parameters, notably relaxation 
times and diffusion coefficients. Fig. 3 presents a high-level 
overview of the primary elements of the analysis process. Each 
element encompasses a series of steps and analysis procedures, 
which vary based on the user and the objective of the 
experiment and are not standardized. Prior to analysis, the 
acquired raw data must be preprocessed, which includes 
improving the signal-to-noise ratio, producing the integrated 
intensity image, and implementing data masking to identify the 
regions of interest. After preprocessing, the TTC is generated 
as previously mentioned. The TTC is then analyzed, its results 
visualized, and, when relevant, compared or modeled against 
reference or simulation data. Each step is purposeful and 
tailored to its application, suggesting the absence of a single 
standardized analysis approach. Notably, each procedural step 
provides metadata that describes the performed actions which 
is crucial for an in-depth understanding and further data reuse. 

In practice, the correlation functions fall into one of four 
categories: 
1) Published Data: This refers to data that have already been 

presented in a scholarly article or publication. 
2) Reduced Data (Pre-published): This indicates data that 

have been processed and is in the final stages of preparation 
for publication. 

3) Simulated Data: These are correlation functions generated 
through computational modeling or simulation techniques, 
also potentially training data for machine learning. 

4) Reference Data (Calibration Data): This represents 
theoretical or standard data used for comparison purposes 
to ensure the accuracy and consistency of measurements. 

 

 

Fig. 3 A typical data analysis pipeline 
 

Beyond the metadata generated within the analytical 
framework, every correlation function dataset should inherently 
include essential metadata such as beamline, photon energy, 
and detector specifics. Furthermore, distinct metadata is 
requisite based on the category of the correlation function. For 
instance, published data necessitate an associated article or 
publication link, while simulated data demand disclosure of the 
parameters employed in the computational model. The 
measurement's objective or its applied purpose remain 
paramount. Certain measurements mandate supplementary 
details, including dose, dose-rate, specimen age, decay rates, 
and noise considerations, ensuring meticulous analysis and 
dependable outcomes. 

IV. STATE OF ART IN METADATA 

Researchers often emphasize the importance of accurate and 

complete metadata in various scientific disciplines. A study [9] 
shows a comprehensive exploration of how people retrieve 
information from scientific data. It aims to understand the 
complex concepts of metadata and relevance criteria. The study 
demonstrates that users considered 45 different types of 
metadata and used nine relevance criteria to judge the 
importance of scientific data, providing valuable insights into 
their information-seeking behavior. 

Another study introduces an innovative project aimed at 
improving metadata quality assessment in the context of 
Research Data Support, a third-party curation service for 
researchers [10]. The primary goal was to establish a fair 
evaluation process for metadata quality. The paper outlines the 
methodology, which involved single-blind user testing, and 
presents the results obtained from this experimentation. It also 
briefly highlights the development and implementation of 
curation services that followed initial testing.  

Open Archives Initiative Protocol for Metadata Harvesting 
(OAI-PMH) is another approach to harvest metadata [11]. OAI-
PMH serves as an easily accessible approach to facilitate 
repository interoperability, with Data Providers being 
repositories that make their structured metadata available 
through this protocol. 

In our study, we explore the innovative concept of dynamic 
metadata, designed to adaptively alter metadata definitions 
based on evolving needs for documenting data and 
experimental findings. This method aspires to embody the 
FAIR data principles for metadata, offering the scientific 
community a versatile strategy for metadata management. 

V. THE DYNAMIC METADATA PARADIGM 

A. An Overview 

The Dynamic Metadata Paradigm represents an approach 
that responds to the key considerations in metadata. It views 
metadata as a dynamic and continuously developing 
component, evolving in tandem with the data it represents; 
capable of adapting alongside the data it describes. In contrast 
to the traditional metadata which functions as a fixed descriptor 
for datasets, this paradigm offers a more flexible and adaptive 
role for metadata. To enhance the tailorability, Dynamic 
Metadata leverages the concept of the Internet of Things (IoT) 
to enable community members to easily share their own 
metadata items and content, such as descriptions, tags, or 
annotations, within a unified framework or a cloud-based 
schema. This central metadata repository serves as a collective 
pool of knowledge and resources, offering a more collaborative 
and efficient environment for the community.  

A vital component of dynamic metadata lies in its foundation 
on cutting-edge indexed database technologies. By efficiently 
organizing these databases adeptly, one can substantially 
enhance the metadata's detectability. To achieve a balance 
between adaptability and detectability, it is recommended to 
employ a mix of relational and non-relational database 
technologies. This concept will be explored in the following 
sections.  

To ensure proactive handling of metadata under high-rate 
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data scenarios, dynamic metadata recommends a framework 
architecture where data and metadata are maintained on two 
separated systems (i.e., MetaData Manager (MDM) and 
primary data manager) that can seamlessly interact with each 
other, as explained in the following section. 

B.  The Proposed Dual-System Framework 

Considering the complexities of managing both data and its 
associated metadata, dynamic metadata suggests a dual-system 
framework: 
 MetaData Manager (MDM) 
 Role: Exclusively dedicated to managing metadata, it 

oversees the collection, storage, update, and retrieval of all 

metadata. 
 Advantages: By focusing solely on metadata, the MDM can 

employ specialized algorithms and storage structures 
optimized for metadata's unique characteristics. This can 
lead to faster queries, updates, and better organization. 

 Primary Data Manager: 
 Role: It is directly responsible for handling the actual data, 

ensuring its integrity, storage, retrieval, and backup. 
 Advantages: Without the overhead of managing metadata, 

the primary data manager can provide faster and more 
efficient data operations. 

 

 

Fig. 4 A scheme of the proposed dual-system 
 

Fig. 4 illustrates the schematic of the proposed system, 
comprising two interlinked subsystems. It is composed of a web 
application user interface that connects via HTTPS. The core 
module, denoted as "MDM," manages both metadata and data. 
For metadata operations, the MDM offers features like 
authentication, search, creation, deletion, and editing. It 
connects to a cloud database containing two metadata 
categories: "Fundamental Metadata" and "Life-spin Metadata". 
For data file operations, functions like upload, download, edit, 
and delete are supported. These files are directed to the Data 
Manager, overseeing data transfer and file queries. This 
manager then communicates with the specified data storage, 
referred to as the data lake. 

C.  The Anatomy of the Dynamic Metadata 

This section demonstrates the principles of the dynamic 
metadata approach and elaborates on how the MDM structures 
and oversees its management. The core of this schema is its 
structural composition, which consists of two main 
components: the fundamental metadata and the life-spin 
metadata. 

Fundamental Metadata 

The fundamental metadata serves as the foundational support 
for the platform's operations. Provided directly by the platform, 
it adheres to specific rules within a designated namespace, 
which facilitates communication between the MDM and the 
primary data manager. It is systematically structured in a 
tabulated manner, ensuring efficient and consistent data storage 
and retrieval. Essentially, it directs the platform's data 
management and presentation, ensuring seamless and reliable 
operations. 

In technical terms, fundamental metadata falls under the 
category of administrative metadata. It provides details such as 
data file properties, data location, access control, ownership and 
rights, retention, and disposal, and more. These metadata items 
are required whenever a corresponding task is carried out. That 
is why it is recommended to keep them as minimal as possible. 
This helps lighten the load for users and makes for a better user 
experience.  

Life-Spin Metadata 

The life-span metadata functions as a collaborative hub, 
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enabling users to collectively contribute to and refine a 
continually evolving metadata schema. While the fundamental 
metadata adheres to a rigid set of predefined rules and 
structures, the life-span metadata offers a more participative 
approach. It encourages users to input metadata items based on 
their unique perspectives and experiences. Moreover, this 
communal space fosters a feedback-rich environment, where 
members can share insights and suggestions, facilitating a 
collective enhancement of the metadata schema. 

The MDM operates as a version control system, allowing 
users to track, oversee, and access different versions of the life-
span metadata. In addition to supporting Create, Read, Update, 
and Delete (CRUD) actions for items they own, it also 
facilitates commenting and ranking on items contributed by 
other users. 

In technical terms, Life-Spin metadata covers two key 
categories: descriptive and structural Metadata. Descriptive 
Metadata provides comprehensive information about a digital 
resource, such as titles, authors, dates, keywords, and other 
elements. Meanwhile, Structural Metadata dives into the 
organization and connections among digital resources, 
specifying how various components are structured and linked.  

To simplify and make Schema documentation more flexible, 
it is recommended to use JSON data representation. JSON is 
not tied to any specific programming language and is a 
commonly used format in many applications' API outputs. It 
employs key-value pairs to create a map-like structure. The key 
is a string that identifies the pair, while the value contains the 
information associated with that key. Furthermore, JSON 
parsing offers a safer approach compared to other data 
representations [12]. 

D.  Definitions and Concepts 

Concept Hierarchy 

Dynamic metadata primarily depends on two main 
categories: the method utilized and the object that is requested 
to be created. 

The method involves experimental approaches in different 
settings like radiation facilities or home laboratories (e.g., 
XPCS, XSAF, and SAXS). 

The object represents the created entity (such as a data file, 
attachment, graphics, etc.), which results from a user's creation 
action. 

Within the hierarchy, the method holds a higher position than 
the process. For each method, there should be a specific set of 
metadata schemas that match the objects that can be created 
through the platform.  

Metadata Concepts 

Item: Typically, it refers to a single unit or piece of metadata. 
Items are individual elements of metadata that provide 
descriptive information about a particular object or resource. 
These items can include details such as titles, authors, dates, 
keywords, and other attributes.  

Instance: An instance, in a conceptual sense, acts as a 
container responsible for storing or dynamically generating 
metadata items related to a specific method, task, or object.  

Unique Identifier: A unique identifier is a special code, 
name, or value used to clearly identify a specific instance. This 
identifier is designed to ensure that there is no ambiguity or 
confusion when identifying and referencing that specific 
instance.  

E.  The Naming System 

When it comes to naming elements in JSON, it is a widely 
accepted best practice to adopt a uniform naming convention. 
This helps guarantee clarity and ease of maintenance.  

In the context of this research, we strongly recommend and 
consistently employ the snake case naming convention. Snake 
case entails a specific naming pattern where spaces between 
words are replaced with underscore (_) characters, and the 
initial letter of each word is written in lowercase; for example: 
“first_name”, “last_name”, “phone_number”. 

F.  The Technical Description 

Fig. 5 provides a detailed perspective on the role of metadata 
within the community. This community consists of researchers 
who utilize “Method A” for their studies. Within Method A, 
three distinct objects, namely X, Y, and Z, can be created, each 
leading to its own unique dynamic metadata schema within the 
system. The dynamic metadata for each Method and object is 
defined by a specific UI. 

Creation Requests: These are requests forwarded by users to 
the MDM. A valid request must include a UI that represents 
both the method (like Method A) and the object (such as X, Y, 
or Z) they wish to create. Such requests are then redirected to 
their respective tasks within Method A. Administrative 
metadata (i.e., fundamental metadata) related to the object must 
be included as well. If the request meets the necessary 
requirements, it will proceed to the endpoint, leading to the 
creation of the required object. Subsequently, an instance of the 
object's current dynamic metadata will be initialized, providing 
access to the life-span metadata repository. 

Fundamental and Life-Spin Metadata: The 'Fundamental 
Metadata' is the essential data elements which are extracted 
directly from the user's request. These elements are static and 
unchanging, thereby ensuring a uniform and consistent 
framework for all stakeholders. For security and ease of 
reference, these elements will be stored and backed up in a 
tabular format. On the other hand, the 'Life-Spin Metadata' is 
housed in a cloud infrastructure. Once access is granted, users 
have the flexibility to make alterations to this life-span 
metadata. This allows them to represent their findings, insights, 
and experiences within a particular method and creation 
process.  

On Collaboration and Community Sharing: The innovation 
of this system lies in its community-centric design. Within the 
broader scope of the Method and Object, users are granted the 
flexibility to share, edit, or remove their life-span metadata 
items. To promote the collaborative environment, users can 
comment on, and rank life-spin metadata items created by their 
peers.  
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Fig. 5 The Flow of Metadata Interaction within the Method A Community - Users' Requests (X, Y, Z), Central Metadata Management, and 
Collaborative Life-Spin Metadata Updates 

 
VI. APPLICATION OF DYNAMIC METADATA IN USE CASE 

XPCS 

In the context of our use case XPCS we assume that four 
object types need to be created. 1) The experiment instance 
serves as a category to collect dataset instances such as the 
Electronic Lab Notebook (ELN) or sample details related to a 
specific measurement or the entire beamtime. 2) The dataset 
instance acts as a repository for data files (like correlation 
function data) and can also include further information, 
attachments, and code snippets. 3) The ELN serves as a hub for 
both user and facility-provided metadata and information. 4) 
The sample instance describes the sample used in the 
experiment ideally linked to further sample identifiers. The 
MDM is expected to feature four distinct dynamic metadata 
schemes, each corresponding to the four objects within the 
XPCS framework. However, it is important to note that the 
number of objects and their respective schemes might vary 
depending on the method employed and the specific 
requirements of the community.  

For a better organization and higher efficiency, we suggest 
implementing a system hierarchy tailored for XPCS, anchored 
on dynamic metadata, as shown in Fig. 6. In this system, XPCS 
users are on the top of the hierarchy representing the primary 

users or stakeholders of this system. They can create multiple 
“experiment” objects. Each object links to a particular beamline 
or a specific experiment performed at a synchrotron facility. 
Fundamentally, each experiment object is characterized by its 
name, date, facility, and owner. Upon initialization, users gain 
access to the community metadata repository, also known as the 
life-span metadata. They have the choice to either utilize its 
current version or update it to suit their specific needs. 
Importantly, any modifications or actions are shared across the 
entire XPCS user community, fostering a collaborative 
environment. Within the same experiment objects users can 
initialize three objects:  
 The "dataset" object contains the details about the actual 

datasets. Users can create multiple dataset objects within 
the same experiment, depending on the specific details of 
the experiment and their personal preferences. For 
example, they might have a separate dataset for each day 
of the experiment or for each sample measured. Inside 
these dataset objects, users can include data files (in our 
case, correlation functions data), attached files (e.g. graphs 
or reports), and code snippets to show others how to 
process this data. At its core, each dataset object is defined 
by its name, the experiment it is connected to, and its 
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creation date. Using the same method, after setting things 
up, users can tap into the shared repository of life-span 
metadata specific to the dataset object. 

 The "sample" objects serve as categories to gather data 
about the samples measured. Within a single experiment, 
users can create numerous sample objects. Each sample 
object is characterized by its name, creation date, and the 
associated parent experiment. Additional details about the 
sample, such as its manufacturer, composition, and 
production, are allocated to the life-span metadata. In 
standard practice, samples are usually associated with a 
Persistent Identifier (PID), provided by entities like the 
DAPHNE4NFDi consortium.  

 The “ELN” object serves as a repository for collecting, 
filtering, and organizing experimental metadata. This 
metadata can be input manually by users or received 
automatically from the facility. The ELN maintains both 
Fundamental and Life-Spin Metadata, ensuring 
comprehensive documentation of experimental 
procedures, modifications, and updates. Technically, in 
addition to allowing users to input details and information, 
the ELN should offer features for filtering and organizing 
the gathered metadata and present them in a manner easily 
comprehensible to humans. 

The developed XPCS platform is based on a dual-system 
approach and dynamic metadata integration. This platform is a 
web-based application using a microservice architecture. Fig. 7 
displays the platform's Unified Modeling Language (UML) 
representation, emphasizing its design tailored for managing 
XPCS data, specifically the correlation function datasets. At the 
user interface layer, interactions start with HTTP requests. 
These can be separated into two main channels: Data File 
operations and Metadata management. The former incorporates 
a Data File Manager with capabilities to save, verify, load, and 
delete data files. These data files reside in a specialized Data 
Lake, optimized for correlation function files. Concurrently, the 
Metadata section employs an MDM system, featuring four core 
classes: Experiment, Dataset, Sample, and ELN. Each class 
possesses distinct attributes such as name, date, type, and owner 
ID and accommodates CRUD operations, augmented with 
commenting and ranking functionalities. The metadata is 
systematically stored across two databases: the Fundamental 
Metadata Database and the Life-Spin Metadata Database.  

User queries are bifurcated, and metadata is directed to the 
MDM, while data files proceed to the file manager. These files 
undergo validation and verification according to community-
agreed criteria, focusing on size, structure, and type. Post-
validation, the files are stored in a data lake. Subsequently, a 
unique identifier (UID) is generated, which is relayed to the 
MDM and associated with its respective metadata.  

Queries pertaining to metadata are directed to the MDM. 
They are processed according to their classification 
(Fundamental or Life-spine), the associated entity (experiment, 
dataset, sample, or ELN), and the specified action (CRUD 
operation, commenting, or ranking). The MDM oversees 

databases for both metadata types. The life-spin metadata 
database serves as a communal repository among users, 
supervised by the MDM. Following each user query, the 
database is refreshed, allowing users to engage with the updated 
version. Additionally, the MDM offers a search functionality 
for effortless metadata item retrieval. Furthermore, a version 
control mechanism is in development to monitor the various 
versions over time. 

VII. ADDED VALUES 

The flexibility of dynamic metadata is a significant 
advantage for realizing FAIR data in experimental sciences 
with highly dynamic variable setups, samples, and analysis 
schemes. In such instances traditional fixed metadata 
approaches may have difficulties to keep up with rapidly 
changing data characteristics while dynamic metadata can 
easily be updated and expanded as new insights emerge or data 
formats evolve. In experiments that involve real-time data 
collection, dynamic metadata systems can adapt descriptions 
and annotations in real-time, ensuring that researchers and 
analysts always have access to the most relevant information. 
Furthermore, dynamic metadata contributes to improved data 
quality by providing contextual information about data sources, 
transformation processes, and lineage. This transparency 
enhances trust in the data and supports effective data 
governance. Dynamic metadata also fosters enhanced 
collaboration among researchers, as it allows for easy sharing 
and integration of data while adapting to new contexts and 
interpretations. This can promote a new concept known as 
"FAIR metadata.".  

 

 

Fig. 6 Scheme of the concept hierarchy 
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Fig. 7 UML design for the XPCS platform 
 

VIII. CONCLUSION 

Metadata plays a crucial role in enhancing data management 
across many research fields, particularly in synchrotron 
experiments spanning various scientific disciplines. Given the 
continuously changing nature of such experiments, static 
metadata definitions may fall short for realizing the FAIR 
principle. In this article, we proposed the concept of dynamic 
metadata, using XPCS as a representative use case. This 
approach allows researchers to adapt metadata definitions 
according to the evolving needs of diverse experiments. 
Implementing dynamic metadata has the potential to enhance 
data acquisition, sharing, analysis workflows, reproducibility, 
interoperability, and knowledge dissemination. We presented a 
dual-system to address metadata complexity and provided an 
architectural outline of the developing XPCS platform, 
exemplifying the dynamic metadata approach and the dual-

system. 
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