Search results for: structure learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4538

Search results for: structure learning

3578 Design of a Novel Fractal Multiband Planar Antenna with a CPW-Feed

Authors: T. Benyetho, L. El Abdellaoui, J. Terhzaz, H. Bennis, N. Ababssi, A. Tajmouati, A. Tribak, M. Latrach

Abstract:

This work presents a new planar multiband antenna based on fractal geometry. This structure is optimized and validated into simulation by using CST-MW Studio. To feed this antenna we have used a CPW line which makes it easy to be incorporated with integrated circuits. The simulation results presents a good matching input impedance and radiation pattern in the GSM band at 900 MHz and ISM band at 2.4 GHz. The final structure is a dual band fractal antenna with 70 x 70 mm² as a total area by using an FR4 substrate.

Keywords: Antenna, CPW, Fractal, GSM, Multiband.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2723
3577 Spatial Structure of First-Order Voronoi for the Future of Roundabout Cairo since 1867

Authors: Ali Essam El Shazly

Abstract:

The Haussmannization plan of Cairo in 1867 formed a regular network of roundabout spaces, though deteriorated at present. The method of identifying the spatial structure of roundabout Cairo for conservation matches the voronoi diagram with the space syntax through their geometrical property of spatial convexity. In this initiative, the primary convex hull of first-order voronoi adopts the integral and control measurements of space syntax on Cairo’s roundabout generators. The functional essence of royal palaces optimizes the roundabout structure in terms of spatial measurements and the symbolic voronoi projection of 'Tahrir Roundabout' over the Giza Nile and Pyramids. Some roundabouts of major public and commercial landmarks surround the pole of 'Ezbekia Garden' with a higher control than integral measurements, which filter the new spatial structure from the adjacent traditional town. Nevertheless, the least integral and control measures correspond to the voronoi contents of pollutant workshops and the plateau of old Cairo Citadel with the visual compensation of new royal landmarks on top. Meanwhile, the extended suburbs of infinite voronoi polygons arrange high control generators of chateaux housing in 'garden city' environs. The point pattern of roundabouts determines the geometrical characteristics of voronoi polygons. The measured lengths of voronoi edges alternate between the zoned short range at the new poles of Cairo and the distributed structure of longer range. Nevertheless, the shortest range of generator-vertex geometry concentrates at 'Ezbekia Garden' where the crossways of vast Cairo intersect, which maximizes the variety of choice at different spatial resolutions. However, the symbolic 'Hippodrome' which is the largest public landmark forms exclusive geometrical measurements, while structuring a most integrative roundabout to parallel the royal syntax. Overview of the symbolic convex hull of voronoi with space syntax interconnects Parisian Cairo with the spatial chronology of scattered monuments to conceive one universal Cairo structure. Accordingly, the approached methodology of 'voronoi-syntax' prospects the future conservation of roundabout Cairo at the inferred city-level concept.

Keywords: Roundabout Cairo, first-order Voronoi, space syntax, spatial structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
3576 Adding Edges between One Node and Every Other Node with the Same Depth in a Complete K-ary Tree

Authors: Kiyoshi Sawada, Takashi Mitsuishi

Abstract:

This paper proposes a model of adding relations between members of the same level in a pyramid organization structure which is a complete K-ary tree such that the communication of information between every member in the organization becomes the most efficient. When edges between one node and every other node with the same depth N in a complete K-ary tree of height H are added, an optimal depth N* = H is obtained by minimizing the total path length which is the sum of lengths of shortest paths between every pair of all nodes.

Keywords: complete K-ary tree, organization structure, shortest path

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1360
3575 A Case Study of Mobile Game Based Learning Design for Gender Responsive STEM Education

Authors: Raluca Ionela Maxim

Abstract:

Designing a gender responsive Science, Technology, Engineering and Mathematics (STEM) mobile game based learning solution (mGBL) is a challenge in terms of content, gamification level and equal engagement of girls and boys. The goal of this case study was to research and create a high-fidelity prototype design of a mobile game that contains role-models as avatars that guide and expose girls and boys to STEM learning content. For this research purpose it was applied the methodology of design sprint with five-phase process that combines design thinking principles. The technique of this methodology comprises smart interviews with STEM experts, mind-map creation, sketching, prototyping and usability testing of the interactive prototype of the gender responsive STEM mGBL. The results have shown that the effect of the avatar/role model had a positive impact. Therefore, by exposing students (boys and girls) to STEM role models in an mGBL tool is helpful for the decreasing of the gender inequalities in STEM fields.

Keywords: Design thinking, design sprint, gender-responsive STEM education, mobile game based learning, role-models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
3574 Online Think–Pair–Share in a Third-Age ICT Course

Authors: Daniele Traversaro

Abstract:

Problem: Senior citizens have been facing a challenging reality as a result of strict public health measures designed to protect people from the COVID-19 outbreak. These include the risk of social isolation due to the inability of the elderly to integrate with technology. Never before have Information and Communication Technology (ICT) skills become essential for their everyday life. Although third-age ICT education and lifelong learning are widely supported by universities and governments, there is a lack of literature on which teaching strategy/methodology to adopt in an entirely online ICT course aimed at third-age learners. This contribution aims to present an application of the Think-Pair-Share (TPS) learning method in an ICT third-age virtual classroom with an intergenerational approach to conducting online group labs and review activities. Research Question: Is collaborative learning suitable and effective, in terms of student engagement and learning outcomes, in an online ICT course for the elderly? Methods: In the TPS strategy a problem is posed by the teacher, students have time to think about it individually, and then they work in pairs (or small groups) to solve the problem and share their ideas with the entire class. We performed four experiments in the ICT course of the University of the Third Age of Genova (University of Genova, Italy) on the Microsoft Teams platform. The study cohort consisted of 26 students over the age of 45. Data were collected through online questionnaires. Two have been proposed, one at the end of the first activity and another at the end of the course. They consisted of five and three close-ended questions, respectively. The answers were on a Likert scale (from 1 to 4) except two questions (which asked the number of correct answers given individually and in groups) and the field for free comments/suggestions. Results: Groups achieve better results than individual students (with scores greater than one order of magnitude) and most students found TPS helpful to work in groups and interact with their peers. Insights: From these early results, it appears that TPS is suitable for an online third-age ICT classroom and useful for promoting discussion and active learning. Despite this, our work has several limitations. First of all, the results highlight the need for more data to be able to perform a statistical analysis in order to determine the effectiveness of this methodology in terms of student engagement and learning outcomes as future direction.

Keywords: Collaborative learning, information technology education, lifelong learning, older adult education, think-pair-share.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 649
3573 An Intelligent System Framework for Generating Activity List of a Project Using WBS Mind map and Semantic Network

Authors: H. Iranmanesh, M. Madadi

Abstract:

Work Breakdown Structure (WBS) is one of the most vital planning processes of the project management since it is considered to be the fundamental of other processes like scheduling, controlling, assigning responsibilities, etc. In fact WBS or activity list is the heart of a project and omission of a simple task can lead to an irrecoverable result. There are some tools in order to generate a project WBS. One of the most powerful tools is mind mapping which is the basis of this article. Mind map is a method for thinking together and helps a project manager to stimulate the mind of project team members to generate project WBS. Here we try to generate a WBS of a sample project involving with the building construction using the aid of mind map and the artificial intelligence (AI) programming language. Since mind map structure can not represent data in a computerized way, we convert it to a semantic network which can be used by the computer and then extract the final WBS from the semantic network by the prolog programming language. This method will result a comprehensive WBS and decrease the probability of omitting project tasks.

Keywords: Expert System, Mind map, Semantic network, Work breakdown structure,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2618
3572 The Effect of the Andalus Knowledge Phases and Times Model of Learning on the Development of Students’ Academic Performance and Emotional Quotient

Authors: Sobhy Fathy A. Hashesh

Abstract:

This study aimed at investigating the effect of Andalus Knowledge Phases and Times (ANPT) model of learning and the effect of 'Intel Education Contribution in ANPT' on the development of students’ academic performance and emotional quotient. The society of the study composed of Andalus Private Schools, elementary school students (N=700), while the sample of the study composed of four randomly assigned groups (N=80) with one experimental group and one control group to study "ANPT" effect and the "Intel Contribution in ANPT" effect respectively. The study followed the quantitative and qualitative approaches in collecting and analyzing data to answer the study questions. Results of the study revealed that there were significant statistical differences between students’ academic performances and emotional quotients for the favor of the experimental groups. The study recommended applying this model on different educational variables and on other age groups to generate more data leading to more educational results for the favor of students’ learning outcomes.

Keywords: ANPT, Flipped Classroom, 5Es learning Model, Kagan structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1281
3571 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification

Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh

Abstract:

Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.

Keywords: Cancer classification, feature selection, deep learning, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1279
3570 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study

Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple

Abstract:

There is a dramatic surge in the adoption of Machine Learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. Artificial Intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and two defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt ML techniques without rigorous testing, since they may be vulnerable to adversarial attacks, especially in security-critical areas such as the nuclear industry. We observed that while the adopted defence methods can effectively defend against different attacks, none of them could protect against all five adversarial attacks entirely.

Keywords: Resilient Machine Learning, attacks, defences, nuclear industry, crack detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 512
3569 A Machine Learning Approach for Anomaly Detection in Environmental IoT-Driven Wastewater Purification Systems

Authors: Giovanni Cicceri, Roberta Maisano, Nathalie Morey, Salvatore Distefano

Abstract:

The main goal of this paper is to present a solution for a water purification system based on an Environmental Internet of Things (EIoT) platform to monitor and control water quality and machine learning (ML) models to support decision making and speed up the processes of purification of water. A real case study has been implemented by deploying an EIoT platform and a network of devices, called Gramb meters and belonging to the Gramb project, on wastewater purification systems located in Calabria, south of Italy. The data thus collected are used to control the wastewater quality, detect anomalies and predict the behaviour of the purification system. To this extent, three different statistical and machine learning models have been adopted and thus compared: Autoregressive Integrated Moving Average (ARIMA), Long Short Term Memory (LSTM) autoencoder, and Facebook Prophet (FP). The results demonstrated that the ML solution (LSTM) out-perform classical statistical approaches (ARIMA, FP), in terms of both accuracy, efficiency and effectiveness in monitoring and controlling the wastewater purification processes.

Keywords: EIoT, machine learning, anomaly detection, environment monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1037
3568 Nonlinear Analysis of a Building Surmounted by a RC Water Tank under Hydrodynamic Load

Authors: Hocine Hammoum, Karima Bouzelha, Lounis Ziani, Lounis Hamitouche

Abstract:

In this paper, we study a complex structure which is an apartment building surmounted by a reinforced concrete water tank. The tank located on the top floor of the building is a container with capacity of 1000 m3. The building is complex in its design, its calculation and by its behavior under earthquake effect. This structure located in Algiers and aged of 53 years has been subjected to several earthquakes, but the earthquake of May 21st, 2003 with a magnitude of 6.7 on the Richter scale that struck Boumerdes region at 40 Kms East of Algiers was fatal for it. It was downgraded after an investigation study because the central core sustained serious damage. In this paper, to estimate the degree of its damages, the seismic performance of the structure will be evaluated taking into account the hydrodynamic effect, using a static equivalent nonlinear analysis called pushover.

Keywords: Performance analysis, building, reinforced concrete tank, seismic analysis, nonlinear analysis, hydrodynamic, pushover.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1261
3567 Application of Machine Learning Methods to Online Test Error Detection in Semiconductor Test

Authors: Matthias Kirmse, Uwe Petersohn, Elief Paffrath

Abstract:

As in today's semiconductor industries test costs can make up to 50 percent of the total production costs, an efficient test error detection becomes more and more important. In this paper, we present a new machine learning approach to test error detection that should provide a faster recognition of test system faults as well as an improved test error recall. The key idea is to learn a classifier ensemble, detecting typical test error patterns in wafer test results immediately after finishing these tests. Since test error detection has not yet been discussed in the machine learning community, we define central problem-relevant terms and provide an analysis of important domain properties. Finally, we present comparative studies reflecting the failure detection performance of three individual classifiers and three ensemble methods based upon them. As base classifiers we chose a decision tree learner, a support vector machine and a Bayesian network, while the compared ensemble methods were simple and weighted majority vote as well as stacking. For the evaluation, we used cross validation and a specially designed practical simulation. By implementing our approach in a semiconductor test department for the observation of two products, we proofed its practical applicability.

Keywords: Ensemble methods, fault detection, machine learning, semiconductor test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2280
3566 Modeling Language for Machine Learning

Authors: Tsuyoshi Okita, Tatsuya Niwa

Abstract:

For a given specific problem an efficient algorithm has been the matter of study. However, an alternative approach orthogonal to this approach comes out, which is called a reduction. In general for a given specific problem this reduction approach studies how to convert an original problem into subproblems. This paper proposes a formal modeling language to support this reduction approach. We show three examples from the wide area of learning problems. The benefit is a fast prototyping of algorithms for a given new problem.

Keywords: Formal language, statistical inference problem, reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
3565 Forecasting Fraudulent Financial Statements using Data Mining

Authors: S. Kotsiantis, E. Koumanakos, D. Tzelepis, V. Tampakas

Abstract:

This paper explores the effectiveness of machine learning techniques in detecting firms that issue fraudulent financial statements (FFS) and deals with the identification of factors associated to FFS. To this end, a number of experiments have been conducted using representative learning algorithms, which were trained using a data set of 164 fraud and non-fraud Greek firms in the recent period 2001-2002. The decision of which particular method to choose is a complicated problem. A good alternative to choosing only one method is to create a hybrid forecasting system incorporating a number of possible solution methods as components (an ensemble of classifiers). For this purpose, we have implemented a hybrid decision support system that combines the representative algorithms using a stacking variant methodology and achieves better performance than any examined simple and ensemble method. To sum up, this study indicates that the investigation of financial information can be used in the identification of FFS and underline the importance of financial ratios.

Keywords: Machine learning, stacking, classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3059
3564 Energy-Level Structure of a Confined Electron-Positron Pair in Nanostructure

Authors: Tokuei Sako, Paul-Antoine Hervieux

Abstract:

The energy-level structure of a pair of electron and positron confined in a quasi-one-dimensional nano-scale potential well has been investigated focusing on its trend in the small limit of confinement strength ω, namely, the Wigner molecular regime. An anisotropic Gaussian-type basis functions supplemented by high angular momentum functions as large as l = 19 has been used to obtain reliable full configuration interaction (FCI) wave functions. The resultant energy spectrum shows a band structure characterized by ω for the large ω regime whereas for the small ω regime it shows an energy-level pattern dominated by excitation into the in-phase motion of the two particles. The observed trend has been rationalized on the basis of the nodal patterns of the FCI wave functions. 

Keywords: Confined systems, positron, wave function, Wigner molecule, quantum dots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856
3563 Multivariable Control of Smart Timoshenko Beam Structures Using POF Technique

Authors: T.C. Manjunath, B. Bandyopadhyay

Abstract:

Active Vibration Control (AVC) is an important problem in structures. One of the ways to tackle this problem is to make the structure smart, adaptive and self-controlling. The objective of active vibration control is to reduce the vibration of a system by automatic modification of the system-s structural response. This paper features the modeling and design of a Periodic Output Feedback (POF) control technique for the active vibration control of a flexible Timoshenko cantilever beam for a multivariable case with 2 inputs and 2 outputs by retaining the first 2 dominant vibratory modes using the smart structure concept. The entire structure is modeled in state space form using the concept of piezoelectric theory, Timoshenko beam theory, Finite Element Method (FEM) and the state space techniques. Simulations are performed in MATLAB. The effect of placing the sensor / actuator at 2 finite element locations along the length of the beam is observed. The open loop responses, closed loop responses and the tip displacements with and without the controller are obtained and the performance of the smart system is evaluated for active vibration control.

Keywords: Smart structure, Timoshenko theory, Euler-Bernoulli theory, Periodic output feedback control, Finite Element Method, State space model, Vibration control, Multivariable system, Linear Matrix Inequality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2323
3562 Gene Expression Data Classification Using Discriminatively Regularized Sparse Subspace Learning

Authors: Chunming Xu

Abstract:

Sparse representation which can represent high dimensional data effectively has been successfully used in computer vision and pattern recognition problems. However, it doesn-t consider the label information of data samples. To overcome this limitation, we develop a novel dimensionality reduction algorithm namely dscriminatively regularized sparse subspace learning(DR-SSL) in this paper. The proposed DR-SSL algorithm can not only make use of the sparse representation to model the data, but also can effective employ the label information to guide the procedure of dimensionality reduction. In addition,the presented algorithm can effectively deal with the out-of-sample problem.The experiments on gene-expression data sets show that the proposed algorithm is an effective tool for dimensionality reduction and gene-expression data classification.

Keywords: sparse representation, dimensionality reduction, labelinformation, sparse subspace learning, gene-expression data classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452
3561 Implementing Education 4.0 Trends in Language Learning

Authors: Luz Janeth Ospina M.

Abstract:

The fourth industrial revolution is changing the role of education substantially and, therefore, the role of instructors and learners at all levels. Education 4.0 is an imminent response to the needs of a globalized world where humans and technology are being aligned to enable endless possibilities, among them the need for students, as digital natives, to communicate effectively in at least one language besides their mother tongue, and also the requirement of developing theirs. This is an exploratory study in which a control group (N = 21), all of the students of Spanish as a foreign language at the university level, after taking a Spanish class, responded to an online questionnaire about the engagement, atmosphere, and environment in which their course was delivered. These aspects considered in the survey were relative to the instructor’s teaching style, including: (a) active, hands-on learning; (b) flexibility for in-class activities, easily switching between small group work, individual work, and whole-class discussion; and (c) integrating technology into the classroom. Strongly believing in these principles, the instructor deliberately taught the course in a SCALE-UP room, as it could facilitate such a positive and encouraging learning environment. These aspects are trends related to Education 4.0 and have become integral to the instructor’s pedagogical stance that calls for a constructive-affective role, instead of a transmissive one. As expected, with a learning environment that (a) fosters student engagement and (b) improves student outcomes, the subjects were highly engaged, which was partially due to the learning environment. An overwhelming majority (all but one) of students agreed or strongly agreed that the atmosphere and the environment were ideal. Outcomes of this study are relevant and indicate that it is about time for teachers to build up a meaningful correlation between humans and technology. We should see the trends of Education 4.0 not as a threat but as practices that should be in the hands of critical and creative instructors whose pedagogical stance responds to the needs of the learners in the 21st century.

Keywords: Active learning, education 4.0, higher education, pedagogical stance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 707
3560 Towards an E-Learning Platform Multi-Agent Based On the E-Tutoring for Collaborative Work

Authors: Badr Hssina, Belaid Bouikhalene, Abdelkrim Merbouha

Abstract:

This article presents our prototype MASET (Multi Agents System for E-Tutoring Learners engaged in online collaborative work). MASET that we propose is a system which basically aims to help tutors in monitoring the collaborative work of students and their various interactions. The evaluation of such interactions by the tutor is based on the results provided by the automatic analysis of the interaction indicators. This system is predicated upon the middleware JADE (Java Agent Development Framework) and e-learning Moodle platform. The MASET environment is modeled by AUML which allows structuring the different interactions between agents for the fulfillment and performance of online collaborative work. This multi-agent system has been the subject of a practical experimentation based on the interactions data between Master Computer Engineering and System students.

Keywords: AUML, Collaborative work, E-learning, E-tutoring, JADE, Moodle, SMA, Web Agent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836
3559 Evaluating the Effectiveness of Electronic Response Systems in Technology-Oriented Classes

Authors: Ahmad Salman

Abstract:

Electronic Response Systems such as Kahoot, Poll Everywhere, and Google Classroom are gaining a lot of popularity when surveying audiences in events, meetings, and classroom. The reason is mainly because of the ease of use and the convenience these tools bring since they provide mobile applications with a simple user interface. In this paper, we present a case study on the effectiveness of using Electronic Response Systems on student participation and learning experience in a classroom. We use a polling application for class exercises in two different technology-oriented classes. We evaluate the effectiveness of the usage of the polling applications through statistical analysis of the students performance in these two classes and compare them to the performances of students who took the same classes without using the polling application for class participation. Our results show an increase in the performances of the students who used the Electronic Response System when compared to those who did not by an average of 11%.

Keywords: Interactive learning, classroom technology, electronic response systems, polling applications, learning evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 648
3558 Improvement of Durability of Wood by Maleic Anhydride

Authors: Yong F. Li, Yi X. Liu, Xiang M. Wang, Feng H. Wang

Abstract:

Wood as a natural renewable material is vulnerable to degradation by microorganisms and susceptible to change in dimension by water. In order to effectively improve the durability of wood, an active reagent, maleic anhydride (Man) was selected for wood modification. Man was first dissolved into a solvent, and then penetrated into wood porous structure under a vacuum/pressure condition. After a final catalyst-thermal treatment, wood modification was finished. The test results indicate that acetone is a good solvent for transporting Man into wood matrix. SEM observation proved that wood samples treated by Man kept a good cellular structure, indicating a well penetration of Man into wood cell walls. FTIR analysis suggested that Man reacted with hydroxyl groups on wood cell walls by its ring-ether group, resulting in reduction of amount of hydroxyl groups and resultant good dimensional stability as well as fine decay resistance. Consequently, Man modifying wood to improve its durability is an effective method.

Keywords: Wood, porous structure, durability improvement, maleic anhydride

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2106
3557 Influence and Dissemination of Solecism among Moroccan High School and University Students

Authors: Rachid Ed-Dali, Khalid Elasri

Abstract:

Mass media seem to provide a rich content for language acquisition. Exposure to television, the Internet, the mobile phone and other technological gadgets and devices helps enrich the student’s lexicon positively as well as negatively. The difficulties encountered by students while learning and acquiring second languages in addition to their eagerness to comprehend the content of a particular program prompt them to diversify their methods so as to achieve their targets. The present study highlights the significance of certain media channels and their involvement in language acquisition with the employment of the Natural Approach to further grasp whether students, especially secondary and high school students, learn and acquire errors through watching subtitled television programs. The chief objective is investigating the deductive and inductive relevance of certain programs beside the involvement of peripheral learning while acquiring mistakes.

Keywords: Errors, mistakes, natural Approach, peripheral learning, solecism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 580
3556 Natural Emergence of a Core Structure in Networks via Clique Percolation

Authors: A. Melka, N. Slater, A. Mualem, Y. Louzoun

Abstract:

Networks are often presented as containing a “core” and a “periphery.” The existence of a core suggests that some vertices are central and form the skeleton of the network, to which all other vertices are connected. An alternative view of graphs is through communities. Multiple measures have been proposed for dense communities in graphs, the most classical being k-cliques, k-cores, and k-plexes, all presenting groups of tightly connected vertices. We here show that the edge number thresholds for such communities to emerge and for their percolation into a single dense connectivity component are very close, in all networks studied. These percolating cliques produce a natural core and periphery structure. This result is generic and is tested in configuration models and in real-world networks. This is also true for k-cores and k-plexes. Thus, the emergence of this connectedness among communities leading to a core is not dependent on some specific mechanism but a direct result of the natural percolation of dense communities.

Keywords: Networks, cliques, percolation, core structure, phase transition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 767
3555 Train the Trainer: The Bricks in the Learning Community Scaffold of Professional Development

Authors: S. Pancucci

Abstract:

Professional development is the focus of this study. It reports on questionnaire data that examined the perceived effectiveness of the Train the Trainer model of technology professional development for elementary teachers. Eighty-three selected teachers called Information Technology Coaches received four half-day and one after-school in-service sessions. Subsequently, coaches shared the information and skills acquired during training with colleagues. Results indicated that participants felt comfortable as Information Technology Coaches and felt well prepared because of their technological professional development. Overall, participants perceived the Train the Trainer model to be effective. The outcomes of this study suggest that the use of the Train the Trainer model, a known professional development model, can be an integral and interdependent component of the newer more comprehensive learning community professional development model.

Keywords: change, education, learning community, professional development, school improvement, technology coach, Train the Trainer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2653
3554 Time Series Forecasting Using Various Deep Learning Models

Authors: Jimeng Shi, Mahek Jain, Giri Narasimhan

Abstract:

Time Series Forecasting (TSF) is used to predict the target variables at a future time point based on the learning from previous time points. To keep the problem tractable, learning methods use data from a fixed length window in the past as an explicit input. In this paper, we study how the performance of predictive models change as a function of different look-back window sizes and different amounts of time to predict into the future. We also consider the performance of the recent attention-based transformer models, which had good success in the image processing and natural language processing domains. In all, we compare four different deep learning methods (Recurrent Neural Network (RNN), Long Short-term Memory (LSTM), Gated Recurrent Units (GRU), and Transformer) along with a baseline method. The dataset (hourly) we used is the Beijing Air Quality Dataset from the website of University of California, Irvine (UCI), which includes a multivariate time series of many factors measured on an hourly basis for a period of 5 years (2010-14). For each model, we also report on the relationship between the performance and the look-back window sizes and the number of predicted time points into the future. Our experiments suggest that Transformer models have the best performance with the lowest Mean   Absolute Errors (MAE = 14.599, 23.273) and Root Mean Square Errors (RSME = 23.573, 38.131) for most of our single-step and multi-steps predictions. The best size for the look-back window to predict 1 hour into the future appears to be one day, while 2 or 4 days perform the best to predict 3 hours into the future.

Keywords: Air quality prediction, deep learning algorithms, time series forecasting, look-back window.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1183
3553 Single-Camera Basketball Tracker through Pose and Semantic Feature Fusion

Authors: Adrià Arbués-Sangüesa, Coloma Ballester, Gloria Haro

Abstract:

Tracking sports players is a widely challenging scenario, specially in single-feed videos recorded in tight courts, where cluttering and occlusions cannot be avoided. This paper presents an analysis of several geometric and semantic visual features to detect and track basketball players. An ablation study is carried out and then used to remark that a robust tracker can be built with Deep Learning features, without the need of extracting contextual ones, such as proximity or color similarity, nor applying camera stabilization techniques. The presented tracker consists of: (1) a detection step, which uses a pretrained deep learning model to estimate the players pose, followed by (2) a tracking step, which leverages pose and semantic information from the output of a convolutional layer in a VGG network. Its performance is analyzed in terms of MOTA over a basketball dataset with more than 10k instances.

Keywords: Basketball, deep learning, feature extraction, single-camera, tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 702
3552 Design of Reconfigurable Supernumerary Robotic Limb Based on Differential Actuated Joints

Authors: Qinghua Zhang, Yanhe Zhu, Xiang Zhao, Yeqin Yang, Hongwei Jing, Guoan Zhang, Jie Zhao

Abstract:

This paper presents a wearable reconfigurable supernumerary robotic limb with differential actuated joints, which is lightweight, compact and comfortable for the wearers. Compared to the existing supernumerary robotic limbs which mostly adopted series structure with large movement space but poor carrying capacity, a prototype with the series-parallel configuration to better adapt to different task requirements has been developed in this design. To achieve a compact structure, two kinds of cable-driven mechanical structures based on guide pulleys and differential actuated joints were designed. Moreover, two different tension devices were also designed to ensure the reliability and accuracy of the cable-driven transmission. The proposed device also employed self-designed bearings which greatly simplified the structure and reduced the cost.

Keywords: Cable-driven, differential actuated joints, reconfigurable, supernumerary robotic limb.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1018
3551 Toward Understanding and Testing Deep Learning Information Flow in Deep Learning-Based Android Apps

Authors: Jie Zhang, Qianyu Guo, Tieyi Zhang, Zhiyong Feng, Xiaohong Li

Abstract:

The widespread popularity of mobile devices and the development of artificial intelligence (AI) have led to the widespread adoption of deep learning (DL) in Android apps. Compared with traditional Android apps (traditional apps), deep learning based Android apps (DL-based apps) need to use more third-party application programming interfaces (APIs) to complete complex DL inference tasks. However, existing methods (e.g., FlowDroid) for detecting sensitive information leakage in Android apps cannot be directly used to detect DL-based apps as they are difficult to detect third-party APIs. To solve this problem, we design DLtrace, a new static information flow analysis tool that can effectively recognize third-party APIs. With our proposed trace and detection algorithms, DLtrace can also efficiently detect privacy leaks caused by sensitive APIs in DL-based apps. Additionally, we propose two formal definitions to deal with the common polymorphism and anonymous inner-class problems in the Android static analyzer. Using DLtrace, we summarize the non-sequential characteristics of DL inference tasks in DL-based apps and the specific functionalities provided by DL models for such apps. We conduct an empirical assessment with DLtrace on 208 popular DL-based apps in the wild and found that 26.0% of the apps suffered from sensitive information leakage. Furthermore, DLtrace outperformed FlowDroid in detecting and identifying third-party APIs. The experimental results demonstrate that DLtrace expands FlowDroid in understanding DL-based apps and detecting security issues therein.

Keywords: Mobile computing, deep learning apps, sensitive information, static analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 617
3550 Development of Gas Chromatography Model: Propylene Concentration Using Neural Network

Authors: Areej Babiker Idris Babiker, Rosdiazli Ibrahim

Abstract:

Gas chromatography (GC) is the most widely used technique in analytical chemistry. However, GC has high initial cost and requires frequent maintenance. This paper examines the feasibility and potential of using a neural network model as an alternative whenever GC is unvailable. It can also be part of system verification on the performance of GC for preventive maintenance activities. It shows the performance of MultiLayer Perceptron (MLP) with Backpropagation structure. Results demonstrate that neural network model when trained using this structure provides an adequate result and is suitable for this purpose. cm.

Keywords: Analyzer, Levenberg-Marquardt, Gas chromatography, Neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
3549 Critical Thinking Perspectives on Work Integrated Learning in Information Systems Education

Authors: A. Harmse, R. Goede

Abstract:

Students with high level skills are in demand, especially in scare skill environments. If universities wish to be successful and competitive, its students need to be adequately equipped with the necessary tools. Work Integrated Learning (WIL) is an essential component of the education of a student. The relevance of higher education should be assessed in terms of how it meets the needs of society and the world of work in a global economy. This paper demonstrates how to use Habermas's theory of communicative action to reflect on students- perceptions on their integration in the work environment to achieve social integration and financial justification. Interpretive questionnaires are used to determine the students- view of how they are integrated into society, and contributing to the economy. This paper explores the use of Habermas-s theory of communicative action to give theoretical and methodological guidance for the practice of social findings obtained in this inquiry.

Keywords: Discourse, Habermas, Information Systems Education, Theory of Communicative Action, Work Integrated Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628