Search results for: Database index
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1726

Search results for: Database index

766 Application of Neural Network for Contingency Ranking Based on Combination of Severity Indices

Authors: S. Jadid, S. Jalilzadeh

Abstract:

In this paper, an improved technique for contingency ranking using artificial neural network (ANN) is presented. The proposed approach is based on multi-layer perceptrons trained by backpropagation to contingency analysis. Severity indices in dynamic stability assessment are presented. These indices are based on the concept of coherency and three dot products of the system variables. It is well known that some indices work better than others for a particular power system. This paper along with test results using several different systems, demonstrates that combination of indices with ANN provides better ranking than a single index. The presented results are obtained through the use of power system simulation (PSS/E) and MATLAB 6.5 software.

Keywords: composite indices, transient stability, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2227
765 Color Image Segmentation Using SVM Pixel Classification Image

Authors: K. Sakthivel, R. Nallusamy, C. Kavitha

Abstract:

The goal of image segmentation is to cluster pixels into salient image regions. Segmentation could be used for object recognition, occlusion boundary estimation within motion or stereo systems, image compression, image editing, or image database lookup. In this paper, we present a color image segmentation using support vector machine (SVM) pixel classification. Firstly, the pixel level color and texture features of the image are extracted and they are used as input to the SVM classifier. These features are extracted using the homogeneity model and Gabor Filter. With the extracted pixel level features, the SVM Classifier is trained by using FCM (Fuzzy C-Means).The image segmentation takes the advantage of both the pixel level information of the image and also the ability of the SVM Classifier. The Experiments show that the proposed method has a very good segmentation result and a better efficiency, increases the quality of the image segmentation compared with the other segmentation methods proposed in the literature.

Keywords: Image Segmentation, Support Vector Machine, Fuzzy C–Means, Pixel Feature, Texture Feature, Homogeneity model, Gabor Filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6749
764 Controlled Vocabularies and Information Retrieval: 1918 Pandemic’s Scientific Literature as an Example

Authors: M. Garcia-Alsina, J. Cobarsí

Abstract:

The role of controlled vocabularies in information retrieval is broadly recognized as a relevant feature. Besides, there is a standing demand that editors and databases should consider the effective introduction of controlled vocabularies in their procedures to index scientific literature. That is especially important because information retrieval is pointed out as a significant point to drive systematic literature review. Hence, a first question emerges: Are the controlled vocabularies at this moment considered? On the other hand, subject searching in the catalogs is complex mainly due to the dichotomy between keywords from authors versus keywords based on controlled vocabularies. Finally, there is some demand to unify the terminology related to health to make easier the medical history exploitation and research. Considering these features, this paper focuses on controlled vocabularies related to the health field and their role for storing, classifying, and retrieving relevant literature. The objective is knowing which role plays the controlled vocabularies related to the health field to index and retrieve research literature in data bases such as Web of Science (WoS) and Scopus. So, this exploratory research is grounded over two research questions: 1) Which are the terms considered in specific controlled vocabularies of the health field; and 2) How papers are indexed in relevant databases to be easily retrieved, considering keywords vs specific health’ controlled vocabularies? This research takes as fieldwork the controlled vocabularies related to health and the scientific interest for 1918 flu pandemic, also known equivocally as ‘Spanish flu’. This interest has been fostered by the emergence in the early 21st of epidemics of pneumonic diseases caused by virus. Searches about and with controlled vocabularies on WoS and Scopus databases are conducted. First results of this work in progress are surprising. There are different controlled vocabularies for the health field, into which the terms collected and preferred related to ‘1918 pandemic’ are identified. To summarize, ‘Spanish influenza epidemic’ or ‘Spanish flu’ are collected as not preferred terms. The preferred terms are: ‘influenza’ or ‘influenza pandemic, 1918-1919’. Although the controlled vocabularies are clear in their election, most of the literature about ‘1918 pandemic’ is retrievable either by ‘Spanish’ or by ‘1918’ disjunct, and the dominant word to retrieve literature is ‘Spanish’ rather than ‘1918’. This is surprising considering the existence of suitable controlled vocabularies related to health topics, and the modern guidelines of World Health Organization concerning naming of diseases that point out to other preferred terms. A first conclusion is the failure of using controlled vocabularies for a field such as health, and in consequence for WoS and Scopus. This research opens further research questions about which is the role that controlled vocabularies play in the instructions to authors that journals deliver to documents’ authors.

Keywords: Controlled vocabularies, indexing, 1918 influenza, information retrieval, keywords, 1918 pandemic, scientific databases.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 427
763 Modeling Prices of Electricity Futures at EEX

Authors: Robest Flasza, Milan Rippel, Jan Solc

Abstract:

The main aim of this paper is to develop and calibrate an econometric model for modeling prices of long term electricity futures contracts. The calibration of our model is performed on data from EEX AG allowing us to capture the specific features of German electricity market. The data sample contains several structural breaks which have to be taken into account for modeling. We model the data with an ARIMAX model which reveals high correlation between the price of electricity futures contracts and prices of LT futures contracts of fuels (namely coal, natural gas and crude oil). Besides this, also a share price index of representative electricity companies traded on Xetra, spread between 10Y and 1Y German bonds and exchange rate between EUR and USD appeared to have significant explanatory power over these futures contracts on EEX.

Keywords: electricity futures, EEX, ARIMAX, emissionallowances

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
762 A Servo Control System Using the Loop Shaping Design Procedure

Authors: Naohiro Ban, Hiromitsu Ogawa, Manato Ono, Yoshihisa Ishida

Abstract:

This paper describes an expanded system for a servo system design by using the Loop Shaping Design Procedure (LSDP). LSDP is one of the H∞ design procedure. By conducting Loop Shaping with a compensator and robust stabilization to satisfy the index function, we get the feedback controller that makes the control system stable. In this paper, we propose an expanded system for a servo system design and apply to the DC motor. The proposed method performs well in the DC motor positioning control. It has no steady-state error in the disturbance response and it has robust stability.

Keywords: Loop Shaping Design Procedure (LSDP), servosystem, DC motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2412
761 Automatic Lip Contour Tracking and Visual Character Recognition for Computerized Lip Reading

Authors: Harshit Mehrotra, Gaurav Agrawal, M.C. Srivastava

Abstract:

Computerized lip reading has been one of the most actively researched areas of computer vision in recent past because of its crime fighting potential and invariance to acoustic environment. However, several factors like fast speech, bad pronunciation, poor illumination, movement of face, moustaches and beards make lip reading difficult. In present work, we propose a solution for automatic lip contour tracking and recognizing letters of English language spoken by speakers using the information available from lip movements. Level set method is used for tracking lip contour using a contour velocity model and a feature vector of lip movements is then obtained. Character recognition is performed using modified k nearest neighbor algorithm which assigns more weight to nearer neighbors. The proposed system has been found to have accuracy of 73.3% for character recognition with speaker lip movements as the only input and without using any speech recognition system in parallel. The approach used in this work is found to significantly solve the purpose of lip reading when size of database is small.

Keywords: Contour Velocity Model, Lip Contour Tracking, LipReading, Visual Character Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2402
760 Small Businesses' Decision to have a Website Saudi Arabia Case Study

Authors: M. Al-hawari, H. AL–Yamani, B. Izwawa

Abstract:

Recognizing the increasing importance of using the Internet to conduct business, this paper looks at some related matters associated with small businesses making a decision of whether or not to have a Website and go online. Small businesses in Saudi Arabia struggle to have this decision. For organizations, to fully go online, conduct business and provide online information services, they need to connect their database to the Web. Some issues related to doing that might be beyond the capabilities of most small businesses in Saudi Arabia, such as Website management, technical issues and security concerns. Here we focus on a small business firm in Saudi Arabia (Case Study), discussing the issues related to going online decision and the firm's options of what to do and how to do it. The paper suggested some valuable solutions of connecting databases to the Web. It also discusses some of the important issues related to online information services and e-commerce, mainly Web hosting options and security issues.

Keywords: E-Commerce, Saudi Arabia, Small business, Webdatabase connection, Web hosting, World Wide Web (Web).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1971
759 Prediction of Rubberised Concrete Strength by Using Artificial Neural Networks

Authors: A. M. N. El-Khoja, A. F. Ashour, J. Abdalhmid, X. Dai, A. Khan

Abstract:

In recent years, waste tyre problem is considered as one of the most crucial environmental pollution problems facing the world. Thus, reusing waste rubber crumb from recycled tyres to develop highly damping concrete is technically feasible and a viable alternative to landfill or incineration. The utilization of waste rubber in concrete generally enhances the ductility, toughness, thermal insulation, and impact resistance. However, the mechanical properties decrease with the amount of rubber used in concrete. The aim of this paper is to develop artificial neural network (ANN) models to predict the compressive strength of rubberised concrete (RuC). A trained and tested ANN was developed using a comprehensive database collected from different sources in the literature. The ANN model developed used 5 input parameters that include: coarse aggregate (CA), fine aggregate (FA), w/c ratio, fine rubber (Fr), and coarse rubber (Cr), whereas the ANN outputs were the corresponding compressive strengths. A parametric study was also conducted to study the trend of various RuC constituents on the compressive strength of RuC.

Keywords: Rubberized concrete, compressive strength, artificial neural network, prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 909
758 Voice Disorders Identification Using Hybrid Approach: Wavelet Analysis and Multilayer Neural Networks

Authors: L. Salhi, M. Talbi, A. Cherif

Abstract:

This paper presents a new strategy of identification and classification of pathological voices using the hybrid method based on wavelet transform and neural networks. After speech acquisition from a patient, the speech signal is analysed in order to extract the acoustic parameters such as the pitch, the formants, Jitter, and shimmer. Obtained results will be compared to those normal and standard values thanks to a programmable database. Sounds are collected from normal people and patients, and then classified into two different categories. Speech data base is consists of several pathological and normal voices collected from the national hospital “Rabta-Tunis". Speech processing algorithm is conducted in a supervised mode for discrimination of normal and pathology voices and then for classification between neural and vocal pathologies (Parkinson, Alzheimer, laryngeal, dyslexia...). Several simulation results will be presented in function of the disease and will be compared with the clinical diagnosis in order to have an objective evaluation of the developed tool.

Keywords: Formants, Neural Networks, Pathological Voices, Pitch, Wavelet Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2842
757 RAPD Analysis of Genetic Diversity of Castor Bean

Authors: M. Vivodík, Ž. Balážová, Z. Gálová

Abstract:

The aim of this work was to detect genetic variability among the set of 40 castor genotypes using 8 RAPD markers. Amplification of genomic DNA of 40 genotypes, using RAPD analysis, yielded in 66 fragments, with an average of 8.25 polymorphic fragments per primer. Number of amplified fragments ranged from 3 to 13, with the size of amplicons ranging from 100 to 1200 bp. Values of the polymorphic information content (PIC) value ranged from 0.556 to 0.895 with an average of 0.784 and diversity index (DI) value ranged from 0.621 to 0.896 with an average of 0.798. The dendrogram based on hierarchical cluster analysis using UPGMA algorithm was prepared and analyzed genotypes were grouped into two main clusters and only two genotypes could not be distinguished. Knowledge on the genetic diversity of castor can be used for future breeding programs for increased oil production for industrial uses.

Keywords: Dendrogram, polymorphism, RAPD technique, Ricinus communis L.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2631
756 Real-Time Recognition of the Terrain Configuration to Improve Driving Stability for Unmanned Robots

Authors: Bongsoo Jeon, Jayoung Kim, Jihong Lee

Abstract:

Methods for measuring or estimating ground shape by a laser range finder and a vision sensor (Exteroceptive sensors) have critical weaknesses in terms that these methods need a prior database built to distinguish acquired data as unique surface conditions for driving. Also, ground information by Exteroceptive sensors does not reflect the deflection of ground surface caused by the movement of UGVs. Therefore, this paper proposes a method of recognizing exact and precise ground shape using an Inertial Measurement Unit (IMU) as a proprioceptive sensor. In this paper, firstly this method recognizes the attitude of a robot in real-time using IMU and compensates attitude data of a robot with angle errors through analysis of vehicle dynamics. This method is verified by outdoor driving experiments of a real mobile robot.

Keywords: Inertial Measurement Unit, Laser Range Finder, Real-time recognition of the ground shape.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696
755 Feature Extraction of Dorsal Hand Vein Pattern Using a Fast Modified PCA Algorithm Based On Cholesky Decomposition and Lanczos Technique

Authors: Maleika Heenaye- Mamode Khan , Naushad Mamode Khan, Raja K.Subramanian

Abstract:

Dorsal hand vein pattern is an emerging biometric which is attracting the attention of researchers, of late. Research is being carried out on existing techniques in the hope of improving them or finding more efficient ones. In this work, Principle Component Analysis (PCA) , which is a successful method, originally applied on face biometric is being modified using Cholesky decomposition and Lanczos algorithm to extract the dorsal hand vein features. This modified technique decreases the number of computation and hence decreases the processing time. The eigenveins were successfully computed and projected onto the vein space. The system was tested on a database of 200 images and using a threshold value of 0.9 to obtain the False Acceptance Rate (FAR) and False Rejection Rate (FRR). This modified algorithm is desirable when developing biometric security system since it significantly decreases the matching time.

Keywords: Dorsal hand vein pattern, PCA, Cholesky decomposition, Lanczos algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838
754 Geotechnical Characteristics of Miocenemarl in the Region of Medea North-South Highway, Algeria

Authors: Y. Yongli, M. H. Aissa

Abstract:

The purpose of this paper aims for a geotechnical analysis based on experimental physical and mechanical characteristics of Miocene marl situated at Medea region in Algeria. More than 150 soil samples were taken in the investigation part of the North-South Highway which extends over than 53 km from Chiffa in the North to Berrouaghia in the South of Algeria. The analysis of data in terms of Atterberg limits, plasticity index, and clay content reflects an acceptable correlation justified by a high coefficient of regression which was compared with the previous works in the region. Finally, approximated equations that serve as a guideline for geotechnical design locally have been suggested.

Keywords: Correlation, geotechnical properties, Miocene marl, north-south highway.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
753 Semi-automatic Construction of Ontology-based CBR System for Knowledge Integration

Authors: Junjie Gao, Guishi Deng

Abstract:

In order to integrate knowledge in heterogeneous case-based reasoning (CBR) systems, ontology-based CBR system has become a hot topic. To solve the facing problems of ontology-based CBR system, for example, its architecture is nonstandard, reusing knowledge in legacy CBR is deficient, ontology construction is difficult, etc, we propose a novel approach for semi-automatically construct ontology-based CBR system whose architecture is based on two-layer ontology. Domain knowledge implied in legacy case bases can be mapped from relational database schema and knowledge items to relevant OWL local ontology automatically by a mapping algorithm with low time-complexity. By concept clustering based on formal concept analysis, computing concept equation measure and concept inclusion measure, some suggestions about enriching or amending concept hierarchy of OWL local ontologies are made automatically that can aid designers to achieve semi-automatic construction of OWL domain ontology. Validation of the approach is done by an application example.

Keywords: OWL ontology, Case-based Reasoning, FormalConcept Analysis, Knowledge Integration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013
752 Robust Heart Sounds Segmentation Based on the Variation of the Phonocardiogram Curve Length

Authors: Mecheri Zeid Belmecheri, Maamar Ahfir, Izzet Kale

Abstract:

Automatic cardiac auscultation is still a subject of research in order to establish an objective diagnosis. Recorded heart sounds as Phonocardiogram (PCG) signals can be used for automatic segmentation into components that have clinical meanings. These are the first sound, S1, the second sound, S2, and the systolic and diastolic components, respectively. In this paper, an automatic method is proposed for the robust segmentation of heart sounds. This method is based on calculating an intermediate sawtooth-shaped signal from the length variation of the recorded PCG signal in the time domain and, using its positive derivative function that is a binary signal in training a Recurrent Neural Network (RNN). Results obtained in the context of a large database of recorded PCGs with their simultaneously recorded Electrocardiograms (ECGs) from different patients in clinical settings, including normal and abnormal subjects, show on average a segmentation testing performance average of 76% sensitivity and 94% specificity.

Keywords: Heart sounds, PCG segmentation, event detection, Recurrent Neural Networks, PCG curve length.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 324
751 Microstructure and Mechanical Properties of Mg-Zn Alloys

Authors: Young Sik Kim, Tae Kwon Ha

Abstract:

Effect of Zn addition on the microstructure and mechanical properties of Mg-Zn alloys with Zn contents from 6 to 10 weight percent was investigated in this study. Through calculation of phase equilibria of Mg-Zn alloys, carried out by using FactSage® and FTLite database, solution treatment temperature was decided as temperatures from 300 to 400oC, where supersaturated solid solution can be obtained. Solid solution treatment of Mg-Zn alloys was successfully conducted at 380oC and supersaturated microstructure with all beta phase resolved into matrix was obtained. After solution treatment, hot rolling was successfully conducted by reduction of 60%. Compression and tension tests were carried out at room temperature on the samples as-cast, solution treated, hot-rolled and recrystallized after rolling. After solid solution treatment, each alloy was annealed at temperatures of 180 and 200oC for time intervals from 1 min to 48 hrs and hardness of each condition was measured by micro-Vickers method. Peak aging conditions were deduced as at the temperature of 200oC for 10 hrs. By addition of Zn by 10 weight percent, hardness and strength were enhanced.

Keywords: Mg-Zn alloy, Heat treatment, Microstructure, Mechanical properties, Hardness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367
750 Static Voltage Stability Margin Enhancement Using SVC and TCSC

Authors: Mohammed Amroune, Hadi Sebaa, Tarek Bouktir

Abstract:

Reactive power limit of power system is one of the major causes of voltage instability. The only way to save the system from voltage instability is to reduce the reactive power load or add additional reactive power to reaching the point of voltage collapse. In recent times, the application of FACTS devices is a very effective solution to prevent voltage instability due to their fast and very flexible control. In this paper, voltage stability assessment with SVC and TCSC devices is investigated and compared in the modified IEEE 30-bus test system. The fast voltage stability indicator (FVSI) is used to identify weakest bus and to assess the voltage stability of power system.

Keywords: SVC, TCSC, Voltage stability, Fast Voltage Stability Index (FVSI), Reactive power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4075
749 Unlocking Tourism Value through a Tourist Experience Management Paradigm

Authors: Siphiwe P. Mandina, Tinashe Shamuyashe

Abstract:

Tourism has become a topical issue amongst academics and practitioners due to its potential to contribute significantly towards an economy’s GDP. The problem underpinning this research is the fact that the major attraction, Victoria Falls, is being marketed in neighboring countries like South Africa, Botswana and Zambia with tour operators providing just day trips to the Victoria Falls. This has deprived Zimbabwe of income from tourism with tourists making day trips and actually not spending nights in Zimbabwe. This therefore calls for cutting edge marketing strategies that are superior to or inimitable by competing nations such as South Africa and Zambia. This study proposes a shift towards an experience management paradigm in the tourism sector. A qualitative research was adopted for this study, and findings of this study were generalized across different tourism contexts, therefore making the survey based research design more appropriate. The target population for this study is tourists visiting Zimbabwe over the period 2016 and ZTA visitor database acquired from the Department of Immigration will form the sampling frame for the purposes of this study.

Keywords: Competitiveness, tourist arrivals, tourist experience, Zimbabwe.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1096
748 Performance Evaluation of Iris Region Detection and Localization for Biometric Identification System

Authors: Chit Su Htwe, Win Htay

Abstract:

The iris recognition technology is the most accurate, fast and less invasive one compared to other biometric techniques using for example fingerprints, face, retina, hand geometry, voice or signature patterns. The system developed in this study has the potential to play a key role in areas of high-risk security and can enable organizations with means allowing only to the authorized personnel a fast and secure way to gain access to such areas. The paper aim is to perform the iris region detection and iris inner and outer boundaries localization. The system was implemented on windows platform using Visual C# programming language. It is easy and efficient tool for image processing to get great performance accuracy. In particular, the system includes two main parts. The first is to preprocess the iris images by using Canny edge detection methods, segments the iris region from the rest of the image and determine the location of the iris boundaries by applying Hough transform. The proposed system tested on 756 iris images from 60 eyes of CASIA iris database images.

Keywords: Canny, C#, hough transform, image preprocessing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2088
747 Knowledge Discovery Techniques for Talent Forecasting in Human Resource Application

Authors: Hamidah Jantan, Abdul Razak Hamdan, Zulaiha Ali Othman

Abstract:

Human Resource (HR) applications can be used to provide fair and consistent decisions, and to improve the effectiveness of decision making processes. Besides that, among the challenge for HR professionals is to manage organization talents, especially to ensure the right person for the right job at the right time. For that reason, in this article, we attempt to describe the potential to implement one of the talent management tasks i.e. identifying existing talent by predicting their performance as one of HR application for talent management. This study suggests the potential HR system architecture for talent forecasting by using past experience knowledge known as Knowledge Discovery in Database (KDD) or Data Mining. This article consists of three main parts; the first part deals with the overview of HR applications, the prediction techniques and application, the general view of Data mining and the basic concept of talent management in HRM. The second part is to understand the use of Data Mining technique in order to solve one of the talent management tasks, and the third part is to propose the potential HR system architecture for talent forecasting.

Keywords: HR Application, Knowledge Discovery inDatabase (KDD), Talent Forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4483
746 Sol-gel Synthesis and Optical Characterisation of TiO2 Thin Films for Photovoltaic Application

Authors: N. H. Arabi, Aicha Iratni, Talaighil Razika, Bruno Capoen, Mohamed Bouazaoui

Abstract:

TiO2 thin films have been prepared by the sol-gel dipcoating technique in order to elaborate antireflective thin films for monocrystalline silicon (mono-Si). The titanium isopropoxyde was chosen as a precursor with hydrochloric acid as a catalyser for preparing a stable solution. The optical properties have been tailored with varying the solution concentration, the withdrawn speed, and the heat-treatment. We showed that using a TiO2 single layer with 64.5 nm in thickness, heat-treated at 450°C or 300°C reduces the mono-Si reflection at a level lower than 3% over the broadband spectral domains [669-834] nm and [786-1006] nm respectively. Those latter performances are similar to the ones obtained with double layers of low and high refractive index glasses respectively.

Keywords: Dip coating, mono-Si, titanium oxide, thin film.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2326
745 GMDH Modeling Based on Polynomial Spline Estimation and Its Applications

Authors: LI qiu-min, TIAN yi-xiang, ZHANG gao-xun

Abstract:

GMDH algorithm can well describe the internal structure of objects. In the process of modeling, automatic screening of model structure and variables ensure the convergence rate.This paper studied a new GMDH model based on polynomial spline  stimation. The polynomial spline function was used to instead of the transfer function of GMDH to characterize the relationship between the input variables and output variables. It has proved that the algorithm has the optimal convergence rate under some conditions. The empirical results show that the algorithm can well forecast Consumer Price Index (CPI).

Keywords: spline, GMDH, nonparametric, bias, forecast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2136
744 Web Application to Profiling Scientific Institutions through Citation Mining

Authors: Hector D. Cortes, Jesus A. del Rio, Esther O. Garcia, Miguel Robles

Abstract:

Recently the use of data mining to scientific bibliographic data bases has been implemented to analyze the pathways of the knowledge or the core scientific relevances of a laureated novel or a country. This specific case of data mining has been named citation mining, and it is the integration of citation bibliometrics and text mining. In this paper we present an improved WEB implementation of statistical physics algorithms to perform the text mining component of citation mining. In particular we use an entropic like distance between the compression of text as an indicator of the similarity between them. Finally, we have included the recently proposed index h to characterize the scientific production. We have used this web implementation to identify users, applications and impact of the Mexican scientific institutions located in the State of Morelos.

Keywords: Citation Mining, Text Mining, Science Impact

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
743 Subjective Versus Objective Assessment for Magnetic Resonance Images

Authors: Heshalini Rajagopal, Li Sze Chow, Raveendran Paramesran

Abstract:

Magnetic Resonance Imaging (MRI) is one of the most important medical imaging modality. Subjective assessment of the image quality is regarded as the gold standard to evaluate MR images. In this study, a database of 210 MR images which contains ten reference images and 200 distorted images is presented. The reference images were distorted with four types of distortions: Rician Noise, Gaussian White Noise, Gaussian Blur and DCT compression. The 210 images were assessed by ten subjects. The subjective scores were presented in Difference Mean Opinion Score (DMOS). The DMOS values were compared with four FR-IQA metrics. We have used Pearson Linear Coefficient (PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) to validate the DMOS values. The high correlation values of PLCC and SROCC shows that the DMOS values are close to the objective FR-IQA metrics.

Keywords: Medical Resonance (MR) images, Difference Mean Opinion Score (DMOS), Full Reference Image Quality Assessment (FR-IQA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2219
742 Sensitive Analysis of the ZF Model for ABC Multi Criteria Inventory Classification

Authors: Makram Ben Jeddou

Abstract:

ABC classification is widely used by managers for inventory control. The classical ABC classification is based on Pareto principle and according to the criterion of the annual use value only. Single criterion classification is often insufficient for a closely inventory control. Multi-criteria inventory classification models have been proposed by researchers in order to consider other important criteria. From these models, we will consider a specific model in order to make a sensitive analysis on the composite score calculated for each item. In fact, this score, based on a normalized average between a good and a bad optimized index, can affect the ABC-item classification. We will focus on items differently assigned to classes and then propose a classification compromise.

Keywords: ABC classification, Multi criteria inventory classification models, ZF-model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2519
741 Integration GIS–SCADA Power Systems to Enclosure Air Dispersion Model

Authors: Ibrahim Shaker, Amr El Hossany, Moustafa Osman, Mohamed El Raey

Abstract:

This paper will explore integration model between GIS–SCADA system and enclosure quantification model to approach the impact of failure-safe event. There are real demands to identify spatial objects and improve control system performance. Nevertheless, the employed methodology is predicting electro-mechanic operations and corresponding time to environmental incident variations. Open processing, as object systems technology, is presented for integration enclosure database with minimal memory size and computation time via connectivity drivers such as ODBC:JDBC during main stages of GIS–SCADA connection. The function of Geographic Information System is manipulating power distribution in contrast to developing issues. In other ward, GIS-SCADA systems integration will require numerical objects of process to enable system model calibration and estimation demands, determine of past events for analysis and prediction of emergency situations for response training.

Keywords: Air dispersion model, integration power system, SCADA systems, GIS system, environmental management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549
740 Lexical Database for Multiple Languages: Multilingual Word Semantic Network

Authors: K. K. Yong, R. Mahmud, C. S. Woo

Abstract:

Data mining and knowledge engineering have become a tough task due to the availability of large amount of data in the web nowadays. Validity and reliability of data also become a main debate in knowledge acquisition. Besides, acquiring knowledge from different languages has become another concern. There are many language translators and corpora developed but the function of these translators and corpora are usually limited to certain languages and domains. Furthermore, search results from engines with traditional 'keyword' approach are no longer satisfying. More intelligent knowledge engineering agents are needed. To address to these problems, a system known as Multilingual Word Semantic Network is proposed. This system adapted semantic network to organize words according to concepts and relations. The system also uses open source as the development philosophy to enable the native language speakers and experts to contribute their knowledge to the system. The contributed words are then defined and linked using lexical and semantic relations. Thus, related words and derivatives can be identified and linked. From the outcome of the system implementation, it contributes to the development of semantic web and knowledge engineering.

Keywords: Multilingual, semantic network, intelligent knowledge engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
739 Experimental Verification of the Relationship between Physiological Indexes and the Presence or Absence of an Operation during E-learning

Authors: Masaki Omata, Shumma Hosokawa

Abstract:

An experiment to verify the relationships between physiological indexes of an e-learner and the presence or absence of an operation during e-learning is described. Electroencephalogram (EEG), hemoencephalography (HEG), skin conductance (SC), and blood volume pulse (BVP) values were measured while participants performed experimental learning tasks. The results show that there are significant differences between the SC values when reading with clicking on learning materials and the SC values when reading without clicking, and between the HEG ratio when reading (with and without clicking) and the HEG ratio when resting for four of five participants. We conclude that the SC signals can be used to estimate whether or not a learner is performing an active task and that the HEG ratios can be used to estimate whether a learner is learning.

Keywords: E-learning, physiological index, physiological signal, state of learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515
738 Spexin and Fetuin A in Morbid Obese Children

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Spexin, expressed in the central nervous system, has attracted much interest in feeding behavior, obesity, diabetes, energy metabolism and cardiovascular functions. Fetuin A is known as the negative acute phase reactant synthesized in the liver. Eosinophils are early indicators of cardiometabolic complications. Patients with elevated platelet count, associated with hypercoagulable state in the body, are also more liable to cardiovascular diseases (CVDs). In this study, the aim is to examine the profiles of spexin and fetuin A concomitant with the course of variations detected in eosinophil as well as platelet counts in morbid obese children. 34 children with normal-body mass index (N-BMI) and 51 morbid obese (MO) children participated in the study. Written-informed consent forms were obtained prior to the study. Institutional ethics committee approved the study protocol. Age- and sex-adjusted BMI percentile tables prepared by World Health Organization were used to classify healthy and obese children. Mean age ± SEM of the children were 9.3 ± 0.6 years and 10.7 ± 0.5 years in N-BMI and MO groups, respectively. Anthropometric measurements of the children were taken. BMI values were calculated from weight and height values. Blood samples were obtained after an overnight fasting. Routine hematologic and biochemical tests were performed. Within this context, fasting blood glucose (FBG), insulin (INS), triglycerides (TRG), high density lipoprotein-cholesterol (HDL-C) concentrations were measured. Homeostatic model assessment for insulin resistance (HOMA-IR) values were calculated. Spexin and fetuin A levels were determined by enzyme-linked immunosorbent assay. Data were evaluated from the statistical point of view. Statistically significant differences were found between groups in terms of BMI, fat mass index, INS, HOMA-IR and HDL-C. In MO group, all parameters increased as HDL-C decreased. Elevated concentrations in MO group were detected in eosinophils (p < 0.05) and platelets (p > 0.05). Fetuin A levels decreased in MO group (p > 0.05). However, decrease was statistically significant in spexin levels for this group (p < 0.05). In conclusion, these results have suggested that increases in eosinophils and platelets exhibit behavior as cardiovascular risk factors. Decreased fetuin A behaved as a risk factor suitable to increased risk for cardiovascular problems associated with the severity of obesity. Along with increased eosinophils, increased platelets and decreased fetuin A, decreased spexin was the parameter, which reflects best its possible participation in the early development of CVD risk in MO children.

Keywords: Cardiovascular diseases, eosinophils, fetuin A, pediatric morbid obesity, platelets, spexin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 685
737 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network

Authors: Jia Xin Low, Keng Wah Choo

Abstract:

This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.

Keywords: Convolutional neural network, discrete wavelet transform, deep learning, heart sound classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1149