Search results for: Adaptive Resolution Analysis
8635 New Feed-Forward/Feedback Generalized Minimum Variance Self-tuning Pole-placement Controller
Authors: S. A. Mohamed, A. S. Zayed, O. A. Abolaeha
Abstract:
A new Feed-Forward/Feedback Generalized Minimum Variance Pole-placement Controller to incorporate the robustness of classical pole-placement into the flexibility of generalized minimum variance self-tuning controller for Single-Input Single-Output (SISO) has been proposed in this paper. The design, which provides the user with an adaptive mechanism, which ensures that the closed loop poles are, located at their pre-specified positions. In addition, the controller design which has a feed-forward/feedback structure overcomes the certain limitations existing in similar poleplacement control designs whilst retaining the simplicity of adaptation mechanisms used in other designs. It tracks set-point changes with the desired speed of response, penalizes excessive control action, and can be applied to non-minimum phase systems. Besides, at steady state, the controller has the ability to regulate the constant load disturbance to zero. Example simulation results using both simulated and real plant models demonstrate the effectiveness of the proposed controller.Keywords: Pole-placement, Minimum variance control, self-tuning control and feedforward control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17488634 Effect of Turbulence Models on Simulated Iced Aircraft Airfoil
Authors: Muhammad Afzal, Cao Yihua, Zhao Ming
Abstract:
The present work describes a computational study of aerodynamic characteristics of GLC305 airfoil clean and with 16.7 min ice shape (rime 212) and 22.5 min ice shape (glaze 944).The performance of turbulence models SA, Kε, Kω Std, and Kω SST model are observed against experimental flow fields at different Mach numbers 0.12, 0.21, 0.28 in a range of Reynolds numbers 3x106, 6x106, and 10.5x106 on clean and iced aircraft airfoil GLC305. Numerical predictions include lift, drag and pitching moment coefficients at different Mach numbers and at different angle of attacks were done. Accuracy of solutions with respect to the effects of turbulence models, variation of Mach number, initial conditions, grid resolution and grid spacing near the wall made the study much sensitive. Navier Stokes equation based computational technique is used. Results are very close to the experimental results. It has seen that SA and SST models are more efficient than Kε and Kω standard in under study problem.Keywords: Aerodynamics, Airfoil GLC305, Iced Airfoil, Turbulence Model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24688633 Effect of Acid Adaptation on the Survival of Three Vibrio parahaemolyticus Strains under Simulated Gastric Condition and their Protein Expression Profiles
Authors: Ming-Lun Chiang, Hsi-Chia Chen, Chieh Wu, Yu-Ting Tseng, Ming-Ju Chen
Abstract:
In this study, three strains of Vibrio parahaemolyticus (690, BCRC 13023 and BCRC 13025) were subjected to acid adaptation at pH 5.5 for 90 min. The survival of acid-adapted and non-adapted V. parahaemolyticus strains under simulated gastric condition and their protein expression profiles were investigated. Results showed that acid adaptation increased the survival of the test V. parahaemolyticus strains after exposure to simulated gastric juice (pH 3). Additionally, acid adaptation also affected the protein expression in these V. parahaemolyticus strains. Nine proteins, identified as atpA, atpB, DnaK, GroEL, OmpU, enolase, fructose-bisphosphate aldolase, phosphoglycerate kinase and triosephosphate isomerase, were induced by acid adaptation in two or three of the test strains. These acid-adaptive proteins may play important regulatory roles in the acid tolerance response (ATR) of V. parahaemolyticus.Keywords: Acid adaptation, protein expression, simulated gastric juice, Vibrio parahaemolyticus
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15888632 SNR Classification Using Multiple CNNs
Authors: Thinh Ngo, Paul Rad, Brian Kelley
Abstract:
Noise estimation is essential in today wireless systems for power control, adaptive modulation, interference suppression and quality of service. Deep learning (DL) has already been applied in the physical layer for modulation and signal classifications. Unacceptably low accuracy of less than 50% is found to undermine traditional application of DL classification for SNR prediction. In this paper, we use divide-and-conquer algorithm and classifier fusion method to simplify SNR classification and therefore enhances DL learning and prediction. Specifically, multiple CNNs are used for classification rather than a single CNN. Each CNN performs a binary classification of a single SNR with two labels: less than, greater than or equal. Together, multiple CNNs are combined to effectively classify over a range of SNR values from −20 ≤ SNR ≤ 32 dB.We use pre-trained CNNs to predict SNR over a wide range of joint channel parameters including multiple Doppler shifts (0, 60, 120 Hz), power-delay profiles, and signal-modulation types (QPSK,16QAM,64-QAM). The approach achieves individual SNR prediction accuracy of 92%, composite accuracy of 70% and prediction convergence one order of magnitude faster than that of traditional estimation.Keywords: Classification, classifier fusion, CNN, Deep Learning, prediction, SNR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7208631 An Energy-Latency-Efficient MAC Protocol for Wireless Sensor Networks
Authors: Tahar Ezzedine, Mohamed Miladi, Ridha Bouallegue
Abstract:
Because nodes are usually battery-powered, the energy presents a very scarce resource in wireless sensor networks. For this reason, the design of medium access control had to take energy efficiency as one of its hottest concerns. Accordingly, in order to improve the energy performance of MAC schemes in wireless sensor networks, several ways can be followed. In fact, some researchers try to limit idle listening while others focus on mitigating overhearing (i.e. a node can hear a packet which is destined to another node) or reducing the number of the used control packets. We, in this paper, propose a new hybrid MAC protocol termed ELE-MAC (i.e. Energy Latency Efficient MAC). The ELE-MAC major design goals are energy and latency efficiencies. It adopts less control packets than SMAC in order to preserve energy. We carried out ns- 2 simulations to evaluate the performance of the proposed protocol. Thus, our simulation-s results prove the ELE-MAC energy efficiency. Additionally, our solution performs statistically the same or better latency characteristic compared to adaptive SMAC.Keywords: Control packet, energy efficiency, medium access control, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16958630 Efficient Feature Fusion for Noise Iris in Unconstrained Environment
Authors: Yao-Hong Tsai
Abstract:
This paper presents an efficient fusion algorithm for iris images to generate stable feature for recognition in unconstrained environment. Recently, iris recognition systems are focused on real scenarios in our daily life without the subject’s cooperation. Under large variation in the environment, the objective of this paper is to combine information from multiple images of the same iris. The result of image fusion is a new image which is more stable for further iris recognition than each original noise iris image. A wavelet-based approach for multi-resolution image fusion is applied in the fusion process. The detection of the iris image is based on Adaboost algorithm and then local binary pattern (LBP) histogram is then applied to texture classification with the weighting scheme. Experiment showed that the generated features from the proposed fusion algorithm can improve the performance for verification system through iris recognition.
Keywords: Image fusion, iris recognition, local binary pattern, wavelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22178629 An Efficient and Secure Solution for the Problems of ARP Cache Poisoning Attacks
Authors: Md. Ataullah, Naveen Chauhan
Abstract:
The Address Resolution Protocol (ARP) is used by computers to map logical addresses (IP) to physical addresses (MAC). However ARP is an all trusting protocol and is stateless which makes it vulnerable to many ARP cache poisoning attacks such as Man-in-the-Middle (MITM) and Denial of service (DoS) attacks. These flaws result in security breaches thus weakening the appeal of the computer for exchange of sensitive data. In this paper we describe ARP, outline several possible ARP cache poisoning attacks and give the detailed of some attack scenarios in network having both wired and wireless hosts. We have analyzed each of proposed solutions, identify their strengths and limitations. Finally get that no solution offers a feasible solution. Hence, this paper presents an efficient and secure version of ARP that is able to cope up with all these types of attacks and is also a feasible solution. It is a stateful protocol, by storing the information of the Request frame in the ARP cache, to reduce the chances of various types of attacks in ARP. It is more efficient and secure by broadcasting ARP Reply frame in the network and storing related entries in the ARP cache each time when communication take place.Keywords: ARP cache poisoning, MITM, DoS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29228628 Impact of Customer Management System in Improving Customer Retention: Optimization of Negative Customer Feedback
Authors: Alireza Faed, David Forbes
Abstract:
Complaints today have the ability to retain customer loyalty using state of the art systems and strategies in customer relationship management to analyze and respond to a plethora of customer perception. The Majority of companies are not aware of the beneficiary utilization of customer complaints for the sake of quality improvements. Also, some companies have problems determining how resolution of complaints can be profitable. In this study, we will define the problems and ascertain the importance of customer management system on the companies. Furthermore, we will determine the impact of such a system on efficiency, confidence, profitability and customer complaints. Eventually, we will develop methods and address the issues. In this paper, we used an open-ended questionnaire and distributed that to 30 randomly chosen respondents which were the passengers in an airport. We also define three hypotheses for our study and we will validate each of them. Then using frequency, Chi- Square and quality control method we optimized the size of customers- negative feedback and improved the process of customer retention.Keywords: Complaint, Complaint management system, Customer relationship management, Retention.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23328627 Measuring Banks’ Antifragility via Fuzzy Logic
Authors: Danielle Sandler dos Passos, Helder Coelho, Flávia Mori Sarti
Abstract:
Analysing the world banking sector, we realize that traditional risk measurement methodologies no longer reflect the actual scenario with uncertainty and leave out events that can change the dynamics of markets. Considering this, regulators and financial institutions began to search more realistic models. The aim is to include external influences and interdependencies between agents, to describe and measure the operationalization of these complex systems and their risks in a more coherent and credible way. Within this context, X-Events are more frequent than assumed and, with uncertainties and constant changes, the concept of antifragility starts to gain great prominence in comparison to others methodologies of risk management. It is very useful to analyse whether a system succumbs (fragile), resists (robust) or gets benefits (antifragile) from disorder and stress. Thus, this work proposes the creation of the Banking Antifragility Index (BAI), which is based on the calculation of a triangular fuzzy number – to "quantify" qualitative criteria linked to antifragility.
Keywords: Complex adaptive systems, X-events, risk management, antifragility, banking antifragility index, triangular fuzzy number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9008626 Silver Nanoparticles-Enhanced Luminescence Spectra of Silicon Nanocrystals
Authors: Khamael M. Abualnaja, Lidija Šiller, Benjamin R. Horrocks
Abstract:
Metal-enhanced Luminescence of silicon nanocrystals (SiNCs) was determined using two different particle sizes of silver nanoparticles (AgNPs). SiNCs have been characterized by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). It is found that the SiNCs are crystalline with an average diameter of 65 nm and FCC lattice. AgNPs were synthesized using photochemical reduction of AgNO3 with sodium dodecyl sulphate (SDS). The enhanced luminescence of SiNCs by AgNPs was evaluated by confocal Raman microspectroscopy. Enhancement up to x9 and x3 times were observed for SiNCs that mixed with AgNPs which have an average particle size of 100 nm and 30 nm, respectively. Silver NPs-enhanced luminescence of SiNCs occurs as a result of the coupling between the excitation laser light and the plasmon bands of AgNPs; thus this intense field at AgNPs surface couples strongly to SiNCs.
Keywords: Luminescence, Silicon Nanocrystals, Silver Nanoparticles, Surface Enhanced Raman Spectroscopy (SERS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28208625 Constructivism Learning Management in Mathematical Analysis Courses
Authors: K. Paisal
Abstract:
The purposes of this research were (1) to create a learning activity for constructivism, (2) study the Mathematical Analysis courses learning achievement, and (3) study students’ attitude toward the learning activity for constructivism. The samples in this study were divided into 2 parts including 3 Mathematical Analysis courses instructors of Suan Sunandha Rajabhat University who provided basic information and attended the seminar and 17 Mathematical Analysis courses students who were studying in the academic and engaging in the learning activity for constructivism. The research instruments were lesson plans constructivism, subjective Mathematical Analysis courses achievement test with reliability index of 0.8119, and an attitude test concerning the students’ attitude toward the Mathematical Analysis courses learning activity for constructivism. The result of the research show that the efficiency of the Mathematical Analysis courses learning activity for constructivism is 73.05/72.16, which is more than expected criteria of 70/70. The research additionally find that the average score of learning achievement of students who engaged in the learning activities for constructivism are equal to 70% and the students’ attitude toward the learning activity for constructivism are at the medium level.
Keywords: Constructivism, learning management, Mathematical Analysis courses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18678624 Revisiting the Concept of Risk Analysis within the Context of Geospatial Database Design: A Collaborative Framework
Authors: J. Grira, Y. Bédard, S. Roche
Abstract:
The aim of this research is to design a collaborative framework that integrates risk analysis activities into the geospatial database design (GDD) process. Risk analysis is rarely undertaken iteratively as part of the present GDD methods in conformance to requirement engineering (RE) guidelines and risk standards. Accordingly, when risk analysis is performed during the GDD, some foreseeable risks may be overlooked and not reach the output specifications especially when user intentions are not systematically collected. This may lead to ill-defined requirements and ultimately in higher risks of geospatial data misuse. The adopted approach consists of 1) reviewing risk analysis process within the scope of RE and GDD, 2) analyzing the challenges of risk analysis within the context of GDD, and 3) presenting the components of a risk-based collaborative framework that improves the collection of the intended/forbidden usages of the data and helps geo-IT experts to discover implicit requirements and risks.Keywords: Collaborative risk analysis, intention of use, Geospatial database design, Geospatial data misuse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16668623 A Trends Analysis of Dinghy Yacht Simulator
Authors: Jae-Neung Lee, Sung-Bum Pan, Keun-Chang Kwak
Abstract:
This paper describes an analysis of Yacht Simulator international trends and also explains about Yacht. The results are summarized as follows. Attached to the cockpit are sensors that feed -back information on rudder angle, boat heel angle and mainsheet tension to the computer. Energy expenditure of the sailor measure indirectly using expired gas analysis for the measurement of VO2 and VCO2. At sea course configurations and wind conditions can be preset to suit any level of sailor from complete beginner to advanced sailor.
Keywords: Trends Analysis, Yacht Simulator, Sailing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22258622 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm
Authors: Ameur Abdelkader, Abed Bouarfa Hafida
Abstract:
Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.
Keywords: Predictive analysis, big data, predictive analysis algorithms. CART algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10768621 Scatterer Density in Nonlinear Diffusion for Speckle Reduction in Ultrasound Imaging: The Isotropic Case
Authors: Ahmed Badawi
Abstract:
This paper proposes a method for speckle reduction in medical ultrasound imaging while preserving the edges with the added advantages of adaptive noise filtering and speed. A nonlinear image diffusion method that incorporates local image parameter, namely, scatterer density in addition to gradient, to weight the nonlinear diffusion process, is proposed. The method was tested for the isotropic case with a contrast detail phantom and varieties of clinical ultrasound images, and then compared to linear and some other diffusion enhancement methods. Different diffusion parameters were tested and tuned to best reduce speckle noise and preserve edges. The method showed superior performance measured both quantitatively and qualitatively when incorporating scatterer density into the diffusivity function. The proposed filter can be used as a preprocessing step for ultrasound image enhancement before applying automatic segmentation, automatic volumetric calculations, or 3D ultrasound volume rendering.Keywords: Ultrasound imaging, Nonlinear isotropic diffusion, Speckle noise, Scattering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19518620 A Numerical Model for Simulation of Blood Flow in Vascular Networks
Authors: Houman Tamaddon, Mehrdad Behnia, Masud Behnia
Abstract:
An accurate study of blood flow is associated with an accurate vascular pattern and geometrical properties of the organ of interest. Due to the complexity of vascular networks and poor accessibility in vivo, it is challenging to reconstruct the entire vasculature of any organ experimentally. The objective of this study is to introduce an innovative approach for the reconstruction of a full vascular tree from available morphometric data. Our method consists of implementing morphometric data on those parts of the vascular tree that are smaller than the resolution of medical imaging methods. This technique reconstructs the entire arterial tree down to the capillaries. Vessels greater than 2 mm are obtained from direct volume and surface analysis using contrast enhanced computed tomography (CT). Vessels smaller than 2mm are reconstructed from available morphometric and distensibility data and rearranged by applying Murray’s Laws. Implementation of morphometric data to reconstruct the branching pattern and applying Murray’s Laws to every vessel bifurcation simultaneously, lead to an accurate vascular tree reconstruction. The reconstruction algorithm generates full arterial tree topography down to the first capillary bifurcation. Geometry of each order of the vascular tree is generated separately to minimize the construction and simulation time. The node-to-node connectivity along with the diameter and length of every vessel segment is established and order numbers, according to the diameter-defined Strahler system, are assigned. During the simulation, we used the averaged flow rate for each order to predict the pressure drop and once the pressure drop is predicted, the flow rate is corrected to match the computed pressure drop for each vessel. The final results for 3 cardiac cycles is presented and compared to the clinical data.
Keywords: Blood flow, Morphometric data, Vascular tree, Strahler ordering system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21018619 Towards a Load Balancing Framework for an SMS–Based Service Invocation Environment
Authors: Mandla T. Nene, Edgar.Jembere, Matthew O. Adigun, Themba Shezi, Siyabonga S. Cebekhulu
Abstract:
The drastic increase in the usage of SMS technology has led service providers to seek for a solution that enable users of mobile devices to access services through SMSs. This has resulted in the proposal of solutions towards SMS-based service invocation in service oriented environments. However, the dynamic nature of service-oriented environments coupled with sudden load peaks generated by service request, poses performance challenges to infrastructures for supporting SMS-based service invocation. To address this problem we adopt load balancing techniques. A load balancing model with adaptive load balancing and load monitoring mechanisms as its key constructs is proposed. The load balancing model then led to realization of Least Loaded Load Balancing Framework (LLLBF). Evaluation of LLLBF benchmarked with round robin (RR) scheme on the queuing approach showed LLLBF outperformed RR in terms of response time and throughput. However, LLLBF achieved better result in the cost of high processing power.Keywords: SMS (Short Message Service), LLLBF (Least Loaded Load Balancing Framework), Service Oriented Computing (SOC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16438618 Development of a Fiber based Interferometric Sensor for Non-contact Displacement Measurement
Authors: S. Pullteap
Abstract:
In this paper, a fiber based Fabry-Perot interferometer is proposed and demonstrated for a non-contact displacement measurement. A piece of micro-prism which attached to the mechanical vibrator is served as the target reflector. Interference signal is generated from the superposition between the sensing beam and the reference beam within the sensing arm of the fiber sensor. This signal is then converted to the displacement value by using a developed program written in visual Cµ programming with a resolution of λ/8. A classical function generator is operated for controlling the vibrator. By fixing an excitation frequency of 100 Hz and varying the excitation amplitude range of 0.1 – 3 Volts, the output displacements measured by the fiber sensor are obtained from 1.55 μm to 30.225 μm. A reference displacement sensor with a sensitivity of ~0.4 μm is also employed for comparing the displacement errors between both sensors. We found that over the entire displacement range, a maximum and average measurement error are obtained of 0.977% and 0.44% respectively.Keywords: Non-contact displacement measurement, extrinsicfiber based Fabry-Perot interferometer, interference signal, zerocrossingfringe counting technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20278617 Electrical Characteristics of Biomodified Electrodes using Nonfaradaic Electrochemical Impedance Spectroscopy
Authors: Yusmeeraz Yusof, Yoshiyuki Yanagimoto, Shigeyasu Uno, Kazuo Nakazato
Abstract:
We demonstrate a nonfaradaic electrochemical impedance spectroscopy measurement of biochemically modified gold plated electrodes using a two-electrode system. The absence of any redox indicator in the impedance measurements provide more precise and accurate characterization of the measured bioanalyte at molecular resolution. An equivalent electrical circuit of the electrodeelectrolyte interface was deduced from the observed impedance data of saline solution at low and high concentrations. The detection of biomolecular interactions was fundamentally correlated to electrical double-layer variation at modified interface. The investigations were done using 20mer deoxyribonucleic acid (DNA) strands without any label. Surface modification was performed by creating mixed monolayer of the thiol-modified single-stranded DNA and a spacer thiol (mercaptohexanol) by a two-step self-assembly method. The results clearly distinguish between the noncomplementary and complementary hybridization of DNA, at low frequency region below several hundreds Hertz.
Keywords: Biosensor, electrical double-layer, impedance spectroscopy, label free DNA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30908616 A Characterized and Optimized Approach for End-to-End Delay Constrained QoS Routing
Authors: P.S.Prakash, S.Selvan
Abstract:
QoS Routing aims to find paths between senders and receivers satisfying the QoS requirements of the application which efficiently using the network resources and underlying routing algorithm to be able to find low-cost paths that satisfy given QoS constraints. The problem of finding least-cost routing is known to be NP hard or complete and some algorithms have been proposed to find a near optimal solution. But these heuristics or algorithms either impose relationships among the link metrics to reduce the complexity of the problem which may limit the general applicability of the heuristic, or are too costly in terms of execution time to be applicable to large networks. In this paper, we analyzed two algorithms namely Characterized Delay Constrained Routing (CDCR) and Optimized Delay Constrained Routing (ODCR). The CDCR algorithm dealt an approach for delay constrained routing that captures the trade-off between cost minimization and risk level regarding the delay constraint. The ODCR which uses an adaptive path weight function together with an additional constraint imposed on the path cost, to restrict search space and hence ODCR finds near optimal solution in much quicker time.Keywords: QoS, Delay, Routing, Optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12748615 Adaptive Network Intrusion Detection Learning: Attribute Selection and Classification
Authors: Dewan Md. Farid, Jerome Darmont, Nouria Harbi, Nguyen Huu Hoa, Mohammad Zahidur Rahman
Abstract:
In this paper, a new learning approach for network intrusion detection using naïve Bayesian classifier and ID3 algorithm is presented, which identifies effective attributes from the training dataset, calculates the conditional probabilities for the best attribute values, and then correctly classifies all the examples of training and testing dataset. Most of the current intrusion detection datasets are dynamic, complex and contain large number of attributes. Some of the attributes may be redundant or contribute little for detection making. It has been successfully tested that significant attribute selection is important to design a real world intrusion detection systems (IDS). The purpose of this study is to identify effective attributes from the training dataset to build a classifier for network intrusion detection using data mining algorithms. The experimental results on KDD99 benchmark intrusion detection dataset demonstrate that this new approach achieves high classification rates and reduce false positives using limited computational resources.Keywords: Attributes selection, Conditional probabilities, information gain, network intrusion detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26998614 Combining Color and Layout Features for the Identification of Low-resolution Documents
Authors: Ardhendu Behera, Denis Lalanne, Rolf Ingold
Abstract:
This paper proposes a method, combining color and layout features, for identifying documents captured from lowresolution handheld devices. On one hand, the document image color density surface is estimated and represented with an equivalent ellipse and on the other hand, the document shallow layout structure is computed and hierarchically represented. The combined color and layout features are arranged in a symbolic file, which is unique for each document and is called the document-s visual signature. Our identification method first uses the color information in the signatures in order to focus the search space on documents having a similar color distribution, and finally selects the document having the most similar layout structure in the remaining search space. Finally, our experiment considers slide documents, which are often captured using handheld devices.Keywords: Document color modeling, document visual signature, kernel density estimation, document identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13768613 Tabu Search to Draw Evacuation Plans in Emergency Situations
Authors: S. Nasri, H. Bouziri
Abstract:
Disasters are quite experienced in our days. They are caused by floods, landslides, and building fires that is the main objective of this study. To cope with these unexpected events, precautions must be taken to protect human lives. The emphasis on disposal work focuses on the resolution of the evacuation problem in case of no-notice disaster. The problem of evacuation is listed as a dynamic network flow problem. Particularly, we model the evacuation problem as an earliest arrival flow problem with load dependent transit time. This problem is classified as NP-Hard. Our challenge here is to propose a metaheuristic solution for solving the evacuation problem. We define our objective as the maximization of evacuees during earliest periods of a time horizon T. The objective provides the evacuation of persons as soon as possible. We performed an experimental study on emergency evacuation from the tunisian children’s hospital. This work prompts us to look for evacuation plans corresponding to several situations where the network dynamically changes.
Keywords: Dynamic network flow, Load dependent transit time, Evacuation strategy, Earliest arrival flow problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17968612 Attacks Classification in Adaptive Intrusion Detection using Decision Tree
Authors: Dewan Md. Farid, Nouria Harbi, Emna Bahri, Mohammad Zahidur Rahman, Chowdhury Mofizur Rahman
Abstract:
Recently, information security has become a key issue in information technology as the number of computer security breaches are exposed to an increasing number of security threats. A variety of intrusion detection systems (IDS) have been employed for protecting computers and networks from malicious network-based or host-based attacks by using traditional statistical methods to new data mining approaches in last decades. However, today's commercially available intrusion detection systems are signature-based that are not capable of detecting unknown attacks. In this paper, we present a new learning algorithm for anomaly based network intrusion detection system using decision tree algorithm that distinguishes attacks from normal behaviors and identifies different types of intrusions. Experimental results on the KDD99 benchmark network intrusion detection dataset demonstrate that the proposed learning algorithm achieved 98% detection rate (DR) in comparison with other existing methods.Keywords: Detection rate, decision tree, intrusion detectionsystem, network security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36318611 Contention Window Adjustment in IEEE 802.11-Based Industrial Wireless Networks
Authors: Mohsen Maadani, Seyed Ahmad Motamedi
Abstract:
The use of wireless technology in industrial networks has gained vast attraction in recent years. In this paper, we have thoroughly analyzed the effect of contention window (CW) size on the performance of IEEE 802.11-based industrial wireless networks (IWN), from delay and reliability perspective. Results show that the default values of CWmin, CWmax, and retry limit (RL) are far from the optimum performance due to the industrial application characteristics, including short packet and noisy environment. In this paper, an adaptive CW algorithm (payload-dependent) has been proposed to minimize the average delay. Finally a simple, but effective CW and RL setting has been proposed for industrial applications which outperforms the minimum-average-delay solution from maximum delay and jitter perspective, at the cost of a little higher average delay. Simulation results show an improvement of up to 20%, 25%, and 30% in average delay, maximum delay and jitter respectively.Keywords: Average Delay, Contention Window, Distributed Coordination Function (DCF), Jitter, Industrial Wireless Network (IWN), Maximum Delay, Reliability, Retry Limit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20358610 A Forward Automatic Censored Cell-Averaging Detector for Multiple Target Situations in Log-Normal Clutter
Authors: Musa'ed N. Almarshad, Saleh A. Alshebeili, Mourad Barkat
Abstract:
A challenging problem in radar signal processing is to achieve reliable target detection in the presence of interferences. In this paper, we propose a novel algorithm for automatic censoring of radar interfering targets in log-normal clutter. The proposed algorithm, termed the forward automatic censored cell averaging detector (F-ACCAD), consists of two steps: removing the corrupted reference cells (censoring) and the actual detection. Both steps are performed dynamically by using a suitable set of ranked cells to estimate the unknown background level and set the adaptive thresholds accordingly. The F-ACCAD algorithm does not require any prior information about the clutter parameters nor does it require the number of interfering targets. The effectiveness of the F-ACCAD algorithm is assessed by computing, using Monte Carlo simulations, the probability of censoring and the probability of detection in different background environments.Keywords: CFAR, Log-normal clutter, Censoring, Probabilityof detection, Probability of false alarm, Probability of falsecensoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19168609 Development of a Complex Meteorological Support System for UAVs
Authors: Z. Bottyán, F. Wantuch, A. Z. Gyöngyösi, Z. Tuba, K. Hadobács, P. Kardos, R. Kurunczi
Abstract:
The sensitivity of UAVs to the atmospheric effects are apparent. All the same the meteorological support for the UAVs missions is often non-adequate or partly missing. In our paper we show a new complex meteorological support system for different types of UAVs pilots, specialists and decision makers, too. The mentioned system has two important parts with different forecasts approach such as the statistical and dynamical ones. The statistical prediction approach is based on a large climatological data base and the special analog method which is able to select similar weather situations from the mentioned data base to apply them during the forecasting procedure. The applied dynamic approach uses the specific WRF model runs twice a day and produces 96 hours, high resolution weather forecast for the UAV users over the Hungary. An easy to use web-based system can give important weather information over the Carpathian basin in Central-Europe. The mentioned products can be reached via internet connection.Keywords: Aviation meteorology, statistical weather prediction, unmanned aerial systems, WRF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27648608 An Energy-Efficient Protocol with Static Clustering for Wireless Sensor Networks
Authors: Amir Sepasi Zahmati, Bahman Abolhassani, Ali Asghar Beheshti Shirazi, Ali Shojaee Bakhtiari
Abstract:
A wireless sensor network with a large number of tiny sensor nodes can be used as an effective tool for gathering data in various situations. One of the major issues in wireless sensor networks is developing an energy-efficient routing protocol which has a significant impact on the overall lifetime of the sensor network. In this paper, we propose a novel hierarchical with static clustering routing protocol called Energy-Efficient Protocol with Static Clustering (EEPSC). EEPSC, partitions the network into static clusters, eliminates the overhead of dynamic clustering and utilizes temporary-cluster-heads to distribute the energy load among high-power sensor nodes; thus extends network lifetime. We have conducted simulation-based evaluations to compare the performance of EEPSC against Low-Energy Adaptive Clustering Hierarchy (LEACH). Our experiment results show that EEPSC outperforms LEACH in terms of network lifetime and power consumption minimization.Keywords: Clustering methods, energy efficiency, routingprotocol, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27218607 Change Management in Business Process Modeling Based on Object Oriented Petri Net
Authors: Bassam Atieh Rajabi, Sai Peck Lee
Abstract:
Business Process Modeling (BPM) is the first and most important step in business process management lifecycle. Graph based formalism and rule based formalism are the two most predominant formalisms on which process modeling languages are developed. BPM technology continues to face challenges in coping with dynamic business environments where requirements and goals are constantly changing at the execution time. Graph based formalisms incur problems to react to dynamic changes in Business Process (BP) at the runtime instances. In this research, an adaptive and flexible framework based on the integration between Object Oriented diagramming technique and Petri Net modeling language is proposed in order to support change management techniques for BPM and increase the representation capability for Object Oriented modeling for the dynamic changes in the runtime instances. The proposed framework is applied in a higher education environment to achieve flexible, updatable and dynamic BP.Keywords: Business Process Modeling, Change Management, Graph Based Modeling, Rule Based Modeling, Object Oriented PetriNet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20388606 Dynamic Background Updating for Lightweight Moving Object Detection
Authors: Kelemewerk Destalem, Jungjae Cho, Jaeseong Lee, Ju H. Park, Joonhyuk Yoo
Abstract:
Background subtraction and temporal difference are often used for moving object detection in video. Both approaches are computationally simple and easy to be deployed in real-time image processing. However, while the background subtraction is highly sensitive to dynamic background and illumination changes, the temporal difference approach is poor at extracting relevant pixels of the moving object and at detecting the stopped or slowly moving objects in the scene. In this paper, we propose a simple moving object detection scheme based on adaptive background subtraction and temporal difference exploiting dynamic background updates. The proposed technique consists of histogram equalization, a linear combination of background and temporal difference, followed by the novel frame-based and pixel-based background updating techniques. Finally, morphological operations are applied to the output images. Experimental results show that the proposed algorithm can solve the drawbacks of both background subtraction and temporal difference methods and can provide better performance than that of each method.Keywords: Background subtraction, background updating, real time and lightweight algorithm, temporal difference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2565