Search results for: video smoke detection
941 Deep Learning Based Fall Detection Using Simplified Human Posture
Authors: Kripesh Adhikari, Hamid Bouchachia, Hammadi Nait-Charif
Abstract:
Falls are one of the major causes of injury and death among elderly people aged 65 and above. A support system to identify such kind of abnormal activities have become extremely important with the increase in ageing population. Pose estimation is a challenging task and to add more to this, it is even more challenging when pose estimations are performed on challenging poses that may occur during fall. Location of the body provides a clue where the person is at the time of fall. This paper presents a vision-based tracking strategy where available joints are grouped into three different feature points depending upon the section they are located in the body. The three feature points derived from different joints combinations represents the upper region or head region, mid-region or torso and lower region or leg region. Tracking is always challenging when a motion is involved. Hence the idea is to locate the regions in the body in every frame and consider it as the tracking strategy. Grouping these joints can be beneficial to achieve a stable region for tracking. The location of the body parts provides a crucial information to distinguish normal activities from falls.Keywords: Fall detection, machine learning, deep learning, pose estimation, tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129940 A Convolutional Neural Network-Based Vehicle Theft Detection, Location, and Reporting System
Authors: Michael Moeti, Khuliso Sigama, Thapelo Samuel Matlala
Abstract:
One of the principal challenges that the world is confronted with is insecurity. The crime rate is increasing exponentially, and protecting our physical assets, especially in the motorist sector, is becoming impossible when applying our own strength. The need to develop technological solutions that detect and report theft without any human interference is inevitable. This is critical, especially for vehicle owners, to ensure theft detection and speedy identification towards recovery efforts in cases where a vehicle is missing or attempted theft is taking place. The vehicle theft detection system uses Convolutional Neural Network (CNN) to recognize the driver's face captured using an installed mobile phone device. The location identification function uses a Global Positioning System (GPS) to determine the real-time location of the vehicle. Upon identification of the location, Global System for Mobile Communications (GSM) technology is used to report or notify the vehicle owner about the whereabouts of the vehicle. The installed mobile app was implemented by making use of Python as it is undoubtedly the best choice in machine learning. It allows easy access to machine learning algorithms through its widely developed library ecosystem. The graphical user interface was developed by making use of JAVA as it is better suited for mobile development. Google's online database (Firebase) was used as a means of storage for the application. The system integration test was performed using a simple percentage analysis. 60 vehicle owners participated in this study as a sample, and questionnaires were used in order to establish the acceptability of the system developed. The result indicates the efficiency of the proposed system, and consequently, the paper proposes that the use of the system can effectively monitor the vehicle at any given place, even if it is driven outside its normal jurisdiction. More so, the system can be used as a database to detect, locate and report missing vehicles to different security agencies.
Keywords: Convolutional Neural Network, CNN, location identification, tracking, GPS, GSM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 416939 The Role of Online Videos in Undergraduate Casual-Leisure Information Behaviors
Authors: Nei-Ching Yeh
Abstract:
This study describes undergraduate casual-leisure information behaviors relevant to online videos. Diaries and in-depth interviews were used to collect data. Twenty-four undergraduates participated in this study (9 men, 15 women; all were aged 18–22 years). This study presents a model of casual-leisure information behaviors and contributes new insights into user experience in casual-leisure settings, such as online video programs, with implications for other information domains.Keywords: Casual-leisure information behaviors, information behavior, online videos, role.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1189938 CQAR: Closed Quarter Aerial Robot Design for Reconnaissance, Surveillance and Target Acquisition Tasks in Urban Areas
Authors: Paul Y. Oh, William E. Green
Abstract:
This paper describes a prototype aircraft that can fly slowly, safely and transmit wireless video for tasks like reconnaissance, surveillance and target acquisition. The aircraft is designed to fly in closed quarters like forests, buildings, caves and tunnels which are often spacious but GPS reception is poor. Envisioned is that a small, safe and slow flying vehicle can assist in performing dull, dangerous and dirty tasks like disaster mitigation, search-and-rescue and structural damage assessment.Keywords: Unmanned aerial vehicles, autonomous collisionavoidance, optic flow, near-Earth environments
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1761937 Human Verification in a Video Surveillance System Using Statistical Features
Authors: Sanpachai Huvanandana
Abstract:
A human verification system is presented in this paper. The system consists of several steps: background subtraction, thresholding, line connection, region growing, morphlogy, star skelatonization, feature extraction, feature matching, and decision making. The proposed system combines an advantage of star skeletonization and simple statistic features. A correlation matching and probability voting have been used for verification, followed by a logical operation in a decision making stage. The proposed system uses small number of features and the system reliability is convincing.Keywords: Human verification, object recognition, videounderstanding, segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506936 Early Recognition and Grading of Cataract Using a Combined Log Gabor/Discrete Wavelet Transform with ANN and SVM
Authors: Hadeer R. M. Tawfik, Rania A. K. Birry, Amani A. Saad
Abstract:
Eyes are considered to be the most sensitive and important organ for human being. Thus, any eye disorder will affect the patient in all aspects of life. Cataract is one of those eye disorders that lead to blindness if not treated correctly and quickly. This paper demonstrates a model for automatic detection, classification, and grading of cataracts based on image processing techniques and artificial intelligence. The proposed system is developed to ease the cataract diagnosis process for both ophthalmologists and patients. The wavelet transform combined with 2D Log Gabor Wavelet transform was used as feature extraction techniques for a dataset of 120 eye images followed by a classification process that classified the image set into three classes; normal, early, and advanced stage. A comparison between the two used classifiers, the support vector machine SVM and the artificial neural network ANN were done for the same dataset of 120 eye images. It was concluded that SVM gave better results than ANN. SVM success rate result was 96.8% accuracy where ANN success rate result was 92.3% accuracy.Keywords: Cataract, classification, detection, feature extraction, grading, log-gabor, neural networks, support vector machines, wavelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 993935 Multi-agent On-line Monitor for the Safety of Critical Systems
Authors: Amer A. Dheedan
Abstract:
Operational safety of critical systems, such as nuclear power plants, industrial chemical processes and means of transportation, is a major concern for system engineers and operators. A means to assure that is on-line safety monitors that deliver three safety tasks; fault detection and diagnosis, alarm annunciation and fault controlling. While current monitors deliver these tasks, benefits and limitations in their approaches have at the same time been highlighted. Drawing from those benefits, this paper develops a distributed monitor based on semi-independent agents, i.e. a multiagent system, and monitoring knowledge derived from a safety assessment model of the monitored system. Agents are deployed hierarchically and provided with knowledge portions and collaboration protocols to reason and integrate over the operational conditions of the components of the monitored system. The monitor aims to address limitations arising from the large-scale, complicated behaviour and distributed nature of monitored systems and deliver the aforementioned three monitoring tasks effectively.
Keywords: Alarm annunciation, fault controlling, fault detection and diagnosis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604934 A Temporal Synchronization Model for Heterogeneous Data in Distributed Systems
Authors: Jorge Estudillo Ramirez, Saul E. Pomares Hernandez
Abstract:
Multimedia distributed systems deal with heterogeneous data, such as texts, images, graphics, video and audio. The specification of temporal relations among different data types and distributed sources is an open research area. This paper proposes a fully distributed synchronization model to be used in multimedia systems. One original aspect of the model is that it avoids the use of a common reference (e.g. wall clock and shared memory). To achieve this, all possible multimedia temporal relations are specified according to their causal dependencies.Keywords: Multimedia, Distributed Systems, Partial Ordering, Temporal Synchronization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1358933 Material Analysis for Temple Painting Conservation in Taiwan
Authors: Chen-Fu Wang, Lin-Ya Kung
Abstract:
For traditional painting materials, the artisan used to combine the pigments with different binders to create colors. As time goes by, the materials used for painting evolved from natural to chemical materials. The vast variety of ingredients used in chemical materials has complicated restoration work; it makes conservation work more difficult. Conservation work also becomes harder when the materials cannot be easily identified; therefore, it is essential that we take a more scientific approach to assist in conservation work. Paintings materials are high molecular weight polymer, and their analysis is very complicated as well other contamination such as smoke and dirt can also interfere with the analysis of the material. The current methods of composition analysis of painting materials include Fourier transform infrared spectroscopy (FT-IR), mass spectrometer, Raman spectroscopy, X-ray diffraction spectroscopy (XRD), each of which has its own limitation. In this study, FT-IR was used to analyze the components of the paint coating. We have taken the most commonly seen materials as samples and deteriorated it. The aged information was then used for the database to exam the temple painting materials. By observing the FT-IR changes over time, we can tell all of the painting materials will be deteriorated by the UV light, but only the speed of its degradation had some difference. From the deterioration experiment, the acrylic resin resists better than the others. After collecting the painting materials aging information on FT-IR, we performed some test on the paintings on the temples. It was found that most of the artisan used tune-oil for painting materials, and some other paintings used chemical materials. This method is now working successfully on identifying the painting materials. However, the method is destructive and high cost. In the future, we will work on the how to know the painting materials more efficiently.
Keywords: Temple painting, painting material, conservation, FT-IR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1275932 Hardware Centric Machine Vision for High Precision Center of Gravity Calculation
Authors: Xin Cheng, Benny Thörnberg, Abdul Waheed Malik, Najeem Lawal
Abstract:
We present a hardware oriented method for real-time measurements of object-s position in video. The targeted application area is light spots used as references for robotic navigation. Different algorithms for dynamic thresholding are explored in combination with component labeling and Center Of Gravity (COG) for highest possible precision versus Signal-to-Noise Ratio (SNR). This method was developed with a low hardware cost in focus having only one convolution operation required for preprocessing of data.Keywords: Dynamic thresholding, segmentation, position measurement, sub-pixel precision, center of gravity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2353931 Topographic Mapping of Farmland by Integration of Multiple Sensors on Board Low-Altitude Unmanned Aerial System
Authors: Mengmeng Du, Noboru Noguchi, Hiroshi Okamoto, Noriko Kobayashi
Abstract:
This paper introduced a topographic mapping system with time-saving and simplicity advantages based on integration of Light Detection and Ranging (LiDAR) data and Post Processing Kinematic Global Positioning System (PPK GPS) data. This topographic mapping system used a low-altitude Unmanned Aerial Vehicle (UAV) as a platform to conduct land survey in a low-cost, efficient, and totally autonomous manner. An experiment in a small-scale sugarcane farmland was conducted in Queensland, Australia. Subsequently, we synchronized LiDAR distance measurements that were corrected by using attitude information from gyroscope with PPK GPS coordinates for generation of precision topographic maps, which could be further utilized for such applications like precise land leveling and drainage management. The results indicated that LiDAR distance measurements and PPK GPS altitude reached good accuracy of less than 0.015 m.
Keywords: Land survey, light detection and ranging, post processing kinematic global positioning system, precision agriculture, topographic map, unmanned aerial vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1054930 Detection of Actuator Faults for an Attitude Control System using Neural Network
Authors: S. Montenegro, W. Hu
Abstract:
The objective of this paper is to develop a neural network-based residual generator to detect the fault in the actuators for a specific communication satellite in its attitude control system (ACS). First, a dynamic multilayer perceptron network with dynamic neurons is used, those neurons correspond a second order linear Infinite Impulse Response (IIR) filter and a nonlinear activation function with adjustable parameters. Second, the parameters from the network are adjusted to minimize a performance index specified by the output estimated error, with the given input-output data collected from the specific ACS. Then, the proposed dynamic neural network is trained and applied for detecting the faults injected to the wheel, which is the main actuator in the normal mode for the communication satellite. Then the performance and capabilities of the proposed network were tested and compared with a conventional model-based observer residual, showing the differences between these two methods, and indicating the benefit of the proposed algorithm to know the real status of the momentum wheel. Finally, the application of the methods in a satellite ground station is discussed.Keywords: Satellite, Attitude Control, Momentum Wheel, Neural Network, Fault Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1992929 Real-time Target Tracking Using a Pan and Tilt Platform
Authors: Moulay A. Akhloufi
Abstract:
In recent years, we see an increase of interest for efficient tracking systems in surveillance applications. Many of the proposed techniques are designed for static cameras environments. When the camera is moving, tracking moving objects become more difficult and many techniques fail to detect and track the desired targets. The problem becomes more complex when we want to track a specific object in real-time using a moving Pan and Tilt camera system to keep the target within the image. This type of tracking is of high importance in surveillance applications. When a target is detected at a certain zone, the possibility of automatically tracking it continuously and keeping it within the image until action is taken is very important for security personnel working in very sensitive sites. This work presents a real-time tracking system permitting the detection and continuous tracking of targets using a Pan and Tilt camera platform. A novel and efficient approach for dealing with occlusions is presented. Also a new intelligent forget factor is introduced in order to take into account target shape variations and avoid learning non desired objects. Tests conducted in outdoor operational scenarios show the efficiency and robustness of the proposed approach.
Keywords: Tracking, surveillance, target detection, Pan and tilt.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788928 Pefloxacin as a Surrogate Marker for Ciprofloxacin Resistance in Salmonella: Study from North India
Authors: Varsha Gupta, Priya Datta, Gursimran Mohi, Jagdish Chander
Abstract:
Fluoroquinolones form the mainstay of therapy for the treatment of infections due to Salmonella enterica subsp. enterica. There is a complex interplay between several resistance mechanisms for quinolones and various fluoroquinolones discs, giving varying results, making detection and interpretation of fluoroquinolone resistance difficult. For detection of fluoroquinolone resistance in Salmonella ssp., we compared the use of pefloxacin and nalidixic acid discs as surrogate marker. Using MIC for ciprofloxacin as the gold standard, 43.5% of strains showed MIC as ≥1 μg/ml and were thus resistant to fluoroquinoloes. Based on the performance of nalidixic acid and pefloxacin discs as surrogate marker for ciprofloxacin resistance, both the discs could correctly detect all the resistant phenotypes; however, use of nalidixic acid disc showed false resistance in the majority of the sensitive phenotypes. We have also tested newer antimicrobial agents like cefixime, imipenem, tigecycline and azithromycin against Salmonella spp. Moreover, there was a comeback of susceptibility to older antimicrobials like ampicillin, chloramphenicol, and cotrimoxazole. We can also use cefixime, imipenem, tigecycline and azithromycin in the treatment of multidrug resistant S. typhi due to their high susceptibility.
Keywords: Pefloxacin, salmonella, surrogate marker.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526927 Study on Performance of Wigner Ville Distribution for Linear FM and Transient Signal Analysis
Authors: Azeemsha Thacham Poyil, Nasimudeen KM
Abstract:
This research paper presents some methods to assess the performance of Wigner Ville Distribution for Time-Frequency representation of non-stationary signals, in comparison with the other representations like STFT, Spectrogram etc. The simultaneous timefrequency resolution of WVD is one of the important properties which makes it preferable for analysis and detection of linear FM and transient signals. There are two algorithms proposed here to assess the resolution and to compare the performance of signal detection. First method is based on the measurement of area under timefrequency plot; in case of a linear FM signal analysis. A second method is based on the instantaneous power calculation and is used in case of transient, non-stationary signals. The implementation is explained briefly for both methods with suitable diagrams. The accuracy of the measurements is validated to show the better performance of WVD representation in comparison with STFT and Spectrograms.
Keywords: WVD: Wigner Ville Distribution, STFT: Short Time Fourier Transform, FT: Fourier Transform, TFR: Time-Frequency Representation, FM: Frequency Modulation, LFM Signal: Linear FM Signal, JTFA: Joint time frequency analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2423926 Statistics over Lyapunov Exponents for Feature Extraction: Electroencephalographic Changes Detection Case
Authors: Elif Derya UBEYLI, Inan GULER
Abstract:
A new approach based on the consideration that electroencephalogram (EEG) signals are chaotic signals was presented for automated diagnosis of electroencephalographic changes. This consideration was tested successfully using the nonlinear dynamics tools, like the computation of Lyapunov exponents. This paper presented the usage of statistics over the set of the Lyapunov exponents in order to reduce the dimensionality of the extracted feature vectors. Since classification is more accurate when the pattern is simplified through representation by important features, feature extraction and selection play an important role in classifying systems such as neural networks. Multilayer perceptron neural network (MLPNN) architectures were formulated and used as basis for detection of electroencephalographic changes. Three types of EEG signals (EEG signals recorded from healthy volunteers with eyes open, epilepsy patients in the epileptogenic zone during a seizure-free interval, and epilepsy patients during epileptic seizures) were classified. The selected Lyapunov exponents of the EEG signals were used as inputs of the MLPNN trained with Levenberg- Marquardt algorithm. The classification results confirmed that the proposed MLPNN has potential in detecting the electroencephalographic changes.
Keywords: Chaotic signal, Electroencephalogram (EEG) signals, Feature extraction/selection, Lyapunov exponents
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2509925 Computer Aided Diagnostic System for Detection and Classification of a Brain Tumor through MRI Using Level Set Based Segmentation Technique and ANN Classifier
Authors: Atanu K Samanta, Asim Ali Khan
Abstract:
Due to the acquisition of huge amounts of brain tumor magnetic resonance images (MRI) in clinics, it is very difficult for radiologists to manually interpret and segment these images within a reasonable span of time. Computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of radiologists and reduce the time required for accurate diagnosis. An intelligent computer-aided technique for automatic detection of a brain tumor through MRI is presented in this paper. The technique uses the following computational methods; the Level Set for segmentation of a brain tumor from other brain parts, extraction of features from this segmented tumor portion using gray level co-occurrence Matrix (GLCM), and the Artificial Neural Network (ANN) to classify brain tumor images according to their respective types. The entire work is carried out on 50 images having five types of brain tumor. The overall classification accuracy using this method is found to be 98% which is significantly good.
Keywords: Artificial neural network, ANN, brain tumor, computer-aided diagnostic, CAD system, gray-level co-occurrence matrix, GLCM, level set method, tumor segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365924 Application of Computer Aided Engineering Tools in Performance Prediction and Fault Detection of Mechanical Equipment of Mining Process Line
Abstract:
Nowadays, to decrease the number of downtimes in the industries such as metal mining, petroleum and chemical industries, predictive maintenance is crucial. In order to have efficient predictive maintenance, knowing the performance of critical equipment of production line such as pumps and hydro-cyclones under variable operating parameters, selecting best indicators of this equipment health situations, best locations for instrumentation, and also measuring of these indicators are very important. In this paper, computer aided engineering (CAE) tools are implemented to study some important elements of copper process line, namely slurry pumps and cyclone to predict the performance of these components under different working conditions. These modeling and simulations can be used in predicting, for example, the damage tolerance of the main shaft of the slurry pump or wear rate and location of cyclone wall or pump case and impeller. Also, the simulations can suggest best-measuring parameters, measuring intervals, and their locations.Keywords: Computer aided engineering, predictive maintenance, fault detection, mining process line, slurry pump, hydrocyclone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834923 Pattern Recognition Techniques Applied to Biomedical Patterns
Authors: Giovanni Luca Masala
Abstract:
Pattern recognition is the research area of Artificial Intelligence that studies the operation and design of systems that recognize patterns in the data. Important application areas are image analysis, character recognition, fingerprint classification, speech analysis, DNA sequence identification, man and machine diagnostics, person identification and industrial inspection. The interest in improving the classification systems of data analysis is independent from the context of applications. In fact, in many studies it is often the case to have to recognize and to distinguish groups of various objects, which requires the need for valid instruments capable to perform this task. The objective of this article is to show several methodologies of Artificial Intelligence for data classification applied to biomedical patterns. In particular, this work deals with the realization of a Computer-Aided Detection system (CADe) that is able to assist the radiologist in identifying types of mammary tumor lesions. As an additional biomedical application of the classification systems, we present a study conducted on blood samples which shows how these methods may help to distinguish between carriers of Thalassemia (or Mediterranean Anaemia) and healthy subjects.
Keywords: Computer Aided Detection, mammary tumor, pattern recognition, dissimilarity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2360922 Health Monitoring and Failure Detection of Electronic and Structural Components in Small Unmanned Aerial Vehicles
Authors: Gopi Kandaswamy, P. Balamuralidhar
Abstract:
Fully autonomous small Unmanned Aerial Vehicles (UAVs) are increasingly being used in many commercial applications. Although a lot of research has been done to develop safe, reliable and durable UAVs, accidents due to electronic and structural failures are not uncommon and pose a huge safety risk to the UAV operators and the public. Hence there is a strong need for an automated health monitoring system for UAVs with a view to minimizing mission failures thereby increasing safety. This paper describes our approach to monitoring the electronic and structural components in a small UAV without the need for additional sensors to do the monitoring. Our system monitors data from four sources; sensors, navigation algorithms, control inputs from the operator and flight controller outputs. It then does statistical analysis on the data and applies a rule based engine to detect failures. This information can then be fed back into the UAV and a decision to continue or abort the mission can be taken automatically by the UAV and independent of the operator. Our system has been verified using data obtained from real flights over the past year from UAVs of various sizes that have been designed and deployed by us for various applications.Keywords: Fault detection, health monitoring, unmanned aerial vehicles, vibration analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495921 CoSP2P: A Component-Based Service Model for Peer-to-Peer Systems
Authors: Candido Alcaide, Manuel Dıaz, Luis Llopis, Antonio Marquez, Bartolome Rubio, Enrique Soler
Abstract:
The increasing complexity of software development based on peer to peer networks makes necessary the creation of new frameworks in order to simplify the developer-s task. Additionally, some applications, e.g. fire detection or security alarms may require real-time constraints and the high level definition of these features eases the application development. In this paper, a service model based on a component model with real-time features is proposed. The high-level model will abstract developers from implementation tasks, such as discovery, communication, security or real-time requirements. The model is oriented to deploy services on small mobile devices, such as sensors, mobile phones and PDAs, where the computation is light-weight. Services can be composed among them by means of the port concept to form complex ad-hoc systems and their implementation is carried out using a component language called UM-RTCOM. In order to apply our proposals a fire detection application is described.
Keywords: Peer-to-peer, mobile systems, real-time, service-oriented architecture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684920 Design of Parity-Preserving Reversible Logic Signed Array Multipliers
Authors: Mojtaba Valinataj
Abstract:
Reversible logic as a new favorable design domain can be used for various fields especially creating quantum computers because of its speed and intangible power consumption. However, its susceptibility to a variety of environmental effects may lead to yield the incorrect results. In this paper, because of the importance of multiplication operation in various computing systems, some novel reversible logic array multipliers are proposed with error detection capability by incorporating the parity-preserving gates. The new designs are presented for two main parts of array multipliers, partial product generation and multi-operand addition, by exploiting the new arrangements of existing gates, which results in two signed parity-preserving array multipliers. The experimental results reveal that the best proposed 4×4 multiplier in this paper reaches 12%, 24%, and 26% enhancements in the number of constant inputs, number of required gates, and quantum cost, respectively, compared to previous design. Moreover, the best proposed design is generalized for n×n multipliers with general formulations to estimate the main reversible logic criteria as the functions of the multiplier size.Keywords: Array multipliers, Baugh-Wooley method, error detection, parity-preserving gates, quantum computers, reversible logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1026919 Relative Radiometric Correction of Cloudy Multitemporal Satellite Imagery
Authors: Seema Biday, Udhav Bhosle
Abstract:
Repeated observation of a given area over time yields potential for many forms of change detection analysis. These repeated observations are confounded in terms of radiometric consistency due to changes in sensor calibration over time, differences in illumination, observation angles and variation in atmospheric effects. This paper demonstrates applicability of an empirical relative radiometric normalization method to a set of multitemporal cloudy images acquired by Resourcesat1 LISS III sensor. Objective of this study is to detect and remove cloud cover and normalize an image radiometrically. Cloud detection is achieved by using Average Brightness Threshold (ABT) algorithm. The detected cloud is removed and replaced with data from another images of the same area. After cloud removal, the proposed normalization method is applied to reduce the radiometric influence caused by non surface factors. This process identifies landscape elements whose reflectance values are nearly constant over time, i.e. the subset of non-changing pixels are identified using frequency based correlation technique. The quality of radiometric normalization is statistically assessed by R2 value and mean square error (MSE) between each pair of analogous band.Keywords: Correlation, Frequency domain, Multitemporal, Relative Radiometric Correction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1981918 Mathematical Approach towards Fault Detection and Isolation of Linear Dynamical Systems
Authors: V.Manikandan, N.Devarajan
Abstract:
The main objective of this work is to provide a fault detection and isolation based on Markov parameters for residual generation and a neural network for fault classification. The diagnostic approach is accomplished in two steps: In step 1, the system is identified using a series of input / output variables through an identification algorithm. In step 2, the fault is diagnosed comparing the Markov parameters of faulty and non faulty systems. The Artificial Neural Network is trained using predetermined faulty conditions serves to classify the unknown fault. In step 1, the identification is done by first formulating a Hankel matrix out of Input/ output variables and then decomposing the matrix via singular value decomposition technique. For identifying the system online sliding window approach is adopted wherein an open slit slides over a subset of 'n' input/output variables. The faults are introduced at arbitrary instances and the identification is carried out in online. Fault residues are extracted making a comparison of the first five Markov parameters of faulty and non faulty systems. The proposed diagnostic approach is illustrated on benchmark problems with encouraging results.
Keywords: Artificial neural network, Fault Diagnosis, Identification, Markov parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633917 Artificial Intelligence Techniques applied to Biomedical Patterns
Authors: Giovanni Luca Masala
Abstract:
Pattern recognition is the research area of Artificial Intelligence that studies the operation and design of systems that recognize patterns in the data. Important application areas are image analysis, character recognition, fingerprint classification, speech analysis, DNA sequence identification, man and machine diagnostics, person identification and industrial inspection. The interest in improving the classification systems of data analysis is independent from the context of applications. In fact, in many studies it is often the case to have to recognize and to distinguish groups of various objects, which requires the need for valid instruments capable to perform this task. The objective of this article is to show several methodologies of Artificial Intelligence for data classification applied to biomedical patterns. In particular, this work deals with the realization of a Computer-Aided Detection system (CADe) that is able to assist the radiologist in identifying types of mammary tumor lesions. As an additional biomedical application of the classification systems, we present a study conducted on blood samples which shows how these methods may help to distinguish between carriers of Thalassemia (or Mediterranean Anaemia) and healthy subjects.Keywords: Computer Aided Detection, mammary tumor, pattern recognition, thalassemia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425916 Validating Condition-Based Maintenance Algorithms Through Simulation
Authors: Marcel Chevalier, Léo Dupont, Sylvain Marié, Frédérique Roffet, Elena Stolyarova, William Templier, Costin Vasile
Abstract:
Industrial end users are currently facing an increasing need to reduce the risk of unexpected failures and optimize their maintenance. This calls for both short-term analysis and long-term ageing anticipation. At Schneider Electric, we tackle those two issues using both Machine Learning and First Principles models. Machine learning models are incrementally trained from normal data to predict expected values and detect statistically significant short-term deviations. Ageing models are constructed from breaking down physical systems into sub-assemblies, then determining relevant degradation modes and associating each one to the right kinetic law. Validating such anomaly detection and maintenance models is challenging, both because actual incident and ageing data are rare and distorted by human interventions, and incremental learning depends on human feedback. To overcome these difficulties, we propose to simulate physics, systems and humans – including asset maintenance operations – in order to validate the overall approaches in accelerated time and possibly choose between algorithmic alternatives.
Keywords: Degradation models, ageing, anomaly detection, soft sensor, incremental learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 328915 Evaluation of Newly Developed Dot-ELISA Test for Identification of Naja-naja sumantrana and Calloselasma rhodostoma Venom Antigens
Authors: A.S. Sikarwar, S. Ambu, T .H. Wong
Abstract:
Snake bite cases in Malaysia most often involve the species Naja-naja and Calloselasma rhodostoma. In keeping with the need for a rapid snake venom detection kit in a clinical setting, plate and dot-ELISA test for the venoms of Naja-naja sumatrana, Calloselasma rhodostoma and the cobra venom fraction V antigen was developed. Polyclonal antibodies were raised and further used to prepare the reagents for the dot-ELISA test kit which was tested in mice, rabbit and virtual human models. The newly developed dot- ELISA kit was able to detect a minimum venom concentration of 244ng/ml with cross reactivity of one antibody type. The dot-ELISA system was sensitive and specific for all three snake venom types in all tested animal models. The lowest minimum venom concentration detectable was in the rabbit model, 244ng/ml of the cobra venom fraction V antigen. The highest minimum venom concentration was in mice, 1953ng/ml against a multitude of venoms. The developed dot-ELISA system for the detection of three snake venom types was successful with a sensitivity of 95.8% and specificity of 97.9%.Keywords: ELISA, Venom, SVDK, Naja-naja sumatrana , Calloselasma rhodostoma.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089914 Design of Auto Exposure Unit Based On 2-Way Histogram Equalization
Authors: Junghwan Choi, Seongsoo Lee
Abstract:
Histogram equalization is often used in image enhancement, but it can be also used in auto exposure. However, conventional histogram equalization does not work well when many pixels are concentrated in a narrow luminance range.This paper proposes an auto exposure method based on 2-way histogram equalization. Two cumulative distribution functions are used, where one is from dark to bright and the other is from bright to dark. In this paper, the proposed auto exposure method is also designed and implemented for image signal processors with full-HD images.
Keywords: Histogram equalization, Auto exposure, Image signal processor, Low-cost, Full HD Video.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3397913 Design of an Innovative Accelerant Detector
Authors: Esther T. Akinlabi, Milan Isvarial, Stephen A. Akinlabi
Abstract:
Today, canines are still used effectively in acceleration detection situation. However, this method is becoming impractical in modern age and a new automated replacement to the canine is required. This paper reports the design of an innovative accelerant detector. Designing an accelerant detector is a long process as is any design process; therefore, a solution to the need for a mobile, effective accelerant detector is hereby presented. The device is simple and efficient to ensure that any accelerant detection can be conducted quickly and easily. The design utilizes Ultra Violet (UV) light to detect the accelerant. When the UV light shines on an accelerant, the hydrocarbons in the accelerant emit florescence. The advantages of using the UV light to detect accelerant are also outlined in this paper. The mobility of the device is achieved by using a Direct Current (DC) motor to run tank tracks. Tank tracks were chosen as to ensure that the device will be mobile in the rough terrain of a fire site. The materials selected for the various parts are also presented. A Solid Works Simulation was also conducted on the stresses in the shafts and the results are presented. This design is an innovative solution which offers a user friendly interface. The design is also environmentally friendly, ecologically sound and safe to use.
Keywords: Accelerant detector, Canines, Gas Chromatography- Mass Spectrometry (GC-MS), Ultra Violet light.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2362912 Effective Defect Prevention Approach in Software Process for Achieving Better Quality Levels
Authors: Suma. V., T. R. Gopalakrishnan Nair
Abstract:
Defect prevention is the most vital but habitually neglected facet of software quality assurance in any project. If functional at all stages of software development, it can condense the time, overheads and wherewithal entailed to engineer a high quality product. The key challenge of an IT industry is to engineer a software product with minimum post deployment defects. This effort is an analysis based on data obtained for five selected projects from leading software companies of varying software production competence. The main aim of this paper is to provide information on various methods and practices supporting defect detection and prevention leading to thriving software generation. The defect prevention technique unearths 99% of defects. Inspection is found to be an essential technique in generating ideal software generation in factories through enhanced methodologies of abetted and unaided inspection schedules. On an average 13 % to 15% of inspection and 25% - 30% of testing out of whole project effort time is required for 99% - 99.75% of defect elimination. A comparison of the end results for the five selected projects between the companies is also brought about throwing light on the possibility of a particular company to position itself with an appropriate complementary ratio of inspection testing.Keywords: Defect Detection and Prevention, Inspections, Software Engineering, Software Process, Testing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537