Search results for: modal identification
145 Performance Evaluation of an ANC-based Hybrid Algorithm for Multi-target Wideband Active Sonar Echolocation System
Authors: Jason Chien-Hsun Tseng
Abstract:
This paper evaluates performances of an adaptive noise cancelling (ANC) based target detection algorithm on a set of real test data supported by the Defense Evaluation Research Agency (DERA UK) for multi-target wideband active sonar echolocation system. The hybrid algorithm proposed is a combination of an adaptive ANC neuro-fuzzy scheme in the first instance and followed by an iterative optimum target motion estimation (TME) scheme. The neuro-fuzzy scheme is based on the adaptive noise cancelling concept with the core processor of ANFIS (adaptive neuro-fuzzy inference system) to provide an effective fine tuned signal. The resultant output is then sent as an input to the optimum TME scheme composed of twogauge trimmed-mean (TM) levelization, discrete wavelet denoising (WDeN), and optimal continuous wavelet transform (CWT) for further denosing and targets identification. Its aim is to recover the contact signals in an effective and efficient manner and then determine the Doppler motion (radial range, velocity and acceleration) at very low signal-to-noise ratio (SNR). Quantitative results have shown that the hybrid algorithm have excellent performance in predicting targets- Doppler motion within various target strength with the maximum false detection of 1.5%.Keywords: Wideband Active Sonar Echolocation, ANC Neuro-Fuzzy, Wavelet Denoise, CWT, Hybrid Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059144 A Static Android Malware Detection Based on Actual Used Permissions Combination and API Calls
Authors: Xiaoqing Wang, Junfeng Wang, Xiaolan Zhu
Abstract:
Android operating system has been recognized by most application developers because of its good open-source and compatibility, which enriches the categories of applications greatly. However, it has become the target of malware attackers due to the lack of strict security supervision mechanisms, which leads to the rapid growth of malware, thus bringing serious safety hazards to users. Therefore, it is critical to detect Android malware effectively. Generally, the permissions declared in the AndroidManifest.xml can reflect the function and behavior of the application to a large extent. Since current Android system has not any restrictions to the number of permissions that an application can request, developers tend to apply more than actually needed permissions in order to ensure the successful running of the application, which results in the abuse of permissions. However, some traditional detection methods only consider the requested permissions and ignore whether it is actually used, which leads to incorrect identification of some malwares. Therefore, a machine learning detection method based on the actually used permissions combination and API calls was put forward in this paper. Meanwhile, several experiments are conducted to evaluate our methodology. The result shows that it can detect unknown malware effectively with higher true positive rate and accuracy while maintaining a low false positive rate. Consequently, the AdaboostM1 (J48) classification algorithm based on information gain feature selection algorithm has the best detection result, which can achieve an accuracy of 99.8%, a true positive rate of 99.6% and a lowest false positive rate of 0.Keywords: Android, permissions combination, API calls, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915143 Durian Marker Kit for Durian (Durio zibethinus Murr.) Identity
Authors: Emma K. Sales
Abstract:
Durian is the flagship fruit of Mindanao and there is an abundance of several cultivars with many confusing identities/ names. The project was conducted to develop procedure for reliable and rapid detection and sorting of durian planting materials. Moreover, it is also aimed to establish specific genetic or DNA markers for routine testing and authentication of durian cultivars in question. The project developed molecular procedures for routine testing. SSR primers were also screened and identified for their utility in discriminating durian cultivars collected. Results of the study showed the following accomplishments: 1. Twenty (29) SSR primers were selected and identified based on their ability to discriminate durian cultivars, 2. Optimized and established standard procedure for identification and authentication of Durian cultivars 3. Genetic profile of durian is now available at Biotech Unit Our results demonstrate the relevance of using molecular techniques in evaluating and identifying durian clones. The most polymorphic primers tested in this study could be useful tools for detecting variation even at the early stage of the plant especially for commercial purposes. The process developed combines the efficiency of the microsatellites development process with the optimization of non-radioactive detection process resulting in a user-friendly protocol that can be performed in two (2) weeks and easily incorporated into laboratories about to start microsatellite development projects. This can be of great importance to extend microsatellite analyses to other crop species where minimal genetic information is currently available. With this, the University can now be a service laboratory for routine testing and authentication of durian clones.Keywords: DNA, SSR Analysis, genotype, genetic diversity, cultivars.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3406142 Examining the Perceived Usefulness of ICTs for Learning about Indigenous Foods
Authors: K. M. Ngcobo, S. D. Eyono Obono
Abstract:
Science and technology has a major impact on many societal domains such as communication, medicine, food, transportation, etc. However, this dominance of modern technology can have a negative unintended impact on indigenous systems, and in particular on indigenous foods. This problem serves as a motivation to this study whose aim is to examine the perceptions of learners on the usefulness of Information and Communication Technologies (ICTs) for learning about indigenous foods. This aim will be subdivided into two types of research objectives. The design and identification of theories and models will be achieved using literature content analysis. The objective on the empirical testing of such theories and models will be achieved through the survey of Hospitality studies learners from different schools in the iLembe and Umgungundlovu Districts of the South African Kwazulu-Natal province. SPSS is used to quantitatively analyze the data collected by the questionnaire of this survey using descriptive statistics and Pearson correlations after the assessment of the validity and the reliability of the data. The main hypothesis behind this study is that there is a connection between the demographics of learners, their perceptions on the usefulness of ICTs for learning about indigenous foods, and the following personality and eLearning related theories constructs: Computer self-efficacy, Trust in ICT systems, and Conscientiousness; as suggested by existing studies on learning theories. This hypothesis was fully confirmed by the survey conducted by this study except for the demographic factors where gender and age were not found to be determinant factors of learners’ perceptions on the usefulness of ICTs for learning about indigenous foods.
Keywords: E-learning, Indigenous Foods, Information and Communication Technologies, Learning Theories, Personality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232141 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data
Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad
Abstract:
Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars, and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.Keywords: Remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055140 Linear Prediction System in Measuring Glucose Level in Blood
Authors: Intan Maisarah Abd Rahim, Herlina Abdul Rahim, Rashidah Ghazali
Abstract:
Diabetes is a medical condition that can lead to various diseases such as stroke, heart disease, blindness and obesity. In clinical practice, the concern of the diabetic patients towards the blood glucose examination is rather alarming as some of the individual describing it as something painful with pinprick and pinch. As for some patient with high level of glucose level, pricking the fingers multiple times a day with the conventional glucose meter for close monitoring can be tiresome, time consuming and painful. With these concerns, several non-invasive techniques were used by researchers in measuring the glucose level in blood, including ultrasonic sensor implementation, multisensory systems, absorbance of transmittance, bio-impedance, voltage intensity, and thermography. This paper is discussing the application of the near-infrared (NIR) spectroscopy as a non-invasive method in measuring the glucose level and the implementation of the linear system identification model in predicting the output data for the NIR measurement. In this study, the wavelengths considered are at the 1450 nm and 1950 nm. Both of these wavelengths showed the most reliable information on the glucose presence in blood. Then, the linear Autoregressive Moving Average Exogenous model (ARMAX) model with both un-regularized and regularized methods was implemented in predicting the output result for the NIR measurement in order to investigate the practicality of the linear system in this study. However, the result showed only 50.11% accuracy obtained from the system which is far from the satisfying results that should be obtained.
Keywords: Diabetes, glucose level, linear, near-infrared (NIR), non-invasive, prediction system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 875139 Assessment of Conventional Drinking Water Treatment Plants as Removal Systems of Virulent Microsporidia
Authors: M. A. Gad, A. Z. Al-Herrawy
Abstract:
Microsporidia comprises various pathogenic species can infect humans by means of water. Moreover, chlorine disinfection of drinking-water has limitations against this protozoan pathogen. A total of 48 water samples were collected from two drinking water treatment plants having two different filtration systems (slow sand filter and rapid sand filter) during one year period. Samples were collected from inlet and outlet of each plant. Samples were separately filtrated through nitrocellulose membrane (142 mm, 0.45 µm), then eluted and centrifuged. The obtained pellet from each sample was subjected to DNA extraction, then, amplification using genus-specific primer for microsporidia. Each microsporidia-PCR positive sample was performed by two species specific primers for Enterocytozoon bieneusi and Encephalitozoon intestinalis. The results of the present study showed that the percentage of removal for microsporidia through different treatment processes reached its highest rate in the station using slow sand filters (100%), while the removal by rapid sand filter system was 81.8%. Statistically, the two different drinking water treatment plants (slow and rapid) had significant effect for removal of microsporidia. Molecular identification of microsporidia-PCR positive samples using two different primers for Enterocytozoon bieneusi and Encephalitozoon intestinalis showed the presence of the two pervious species in the inlet water of the two stations, while Encephalitozoon intestinalis was detected in the outlet water only. In conclusion, the appearance of virulent microsporidia in treated drinking water may cause potential health threat.
Keywords: Removal, efficacy, microsporidia, drinking water treatment plants, PCR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1008138 Indoor Air Pollution of the Flexographic Printing Environment
Authors: Jelena S. Kiurski, Vesna S. Kecić, Snežana M. Aksentijević
Abstract:
The identification and evaluation of organic and inorganic pollutants were performed in a flexographic facility in Novi Sad, Serbia. Air samples were collected and analyzed in situ, during 4-hours working time at five sampling points by the mobile gas chromatograph and ozonometer at the printing of collagen casing. Experimental results showed that the concentrations of isopropyl alcohol, acetone, total volatile organic compounds and ozone varied during the sampling times. The highest average concentrations of 94.80 ppm and 102.57 ppm were achieved at 200 minutes from starting the production for isopropyl alcohol and total volatile organic compounds, respectively. The mutual dependences between target hazardous and microclimate parameters were confirmed using a multiple linear regression model with software package STATISTICA 10. Obtained multiple coefficients of determination in the case of ozone and acetone (0.507 and 0.589) with microclimate parameters indicated a moderate correlation between the observed variables. However, a strong positive correlation was obtained for isopropyl alcohol and total volatile organic compounds (0.760 and 0.852) with microclimate parameters. Higher values of parameter F than Fcritical for all examined dependences indicated the existence of statistically significant difference between the concentration levels of target pollutants and microclimates parameters. Given that, the microclimate parameters significantly affect the emission of investigated gases and the application of eco-friendly materials in production process present a necessity.
Keywords: Flexographic printing, indoor air, multiple regression analysis, pollution emission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1309137 Necrotising Anterior Scleritis and Scleroderma: A Rare Association
Authors: A. Vassila, D. Kalogeropoulos, R. Rawashdeh, N. Hall, N. Rahman, M. Fabian, S. Thulasidharan, H. Parwez
Abstract:
Necrotising scleritis is a severe form of scleritis and poses a significant threat to vision. It can manifest in various systemic autoimmune disorders, systemic vasculitis, or as a consequence of microbial infections. The objective of this study is to present a case of necrotizing scleritis associated with scleroderma, which was further complicated by a secondary Staphylococcus epidermidis infection. This is a retrospective analysis, which examines the medical records of a patient who was hospitalised in the Eye Unit at University Hospital Southampton. A 78-year-old woman presented at the eye casualty department of our unit with a two-week history of progressively worsening pain in her left eye. She received a diagnosis of necrotising scleritis and was admitted to the hospital for further treatment. It was decided to commence a three-day course of intravenous methylprednisolone followed by a tapering regimen of oral steroids. Additionally, a conjunctival swab was taken, and two days later, it revealed the presence of S. epidermidis, indicating a potential secondary infection. Given this finding, she was also prescribed topical (Ofloxacin 0.3% - four times daily) and oral (Ciprofloxacin 750 mg – twice daily) antibiotics. The inflammation and symptoms gradually improved, leading to the patient being scheduled for a scleral graft and applying an amniotic membrane to cover the area of scleral thinning. Rheumatoid arthritis and granulomatosis with polyangiitis are the most commonly identifiable systemic diseases associated with necrotising scleritis. Although association with scleroderma is extremely rare, early identification and treatment are necessary to prevent scleritis-related complications.
Keywords: Scleritis, necrotizing scleritis, scleroderma, autoimmune disease.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34136 An Automatic Bayesian Classification System for File Format Selection
Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan
Abstract:
This paper presents an approach for the classification of an unstructured format description for identification of file formats. The main contribution of this work is the employment of data mining techniques to support file format selection with just the unstructured text description that comprises the most important format features for a particular organisation. Subsequently, the file format indentification method employs file format classifier and associated configurations to support digital preservation experts with an estimation of required file format. Our goal is to make use of a format specification knowledge base aggregated from a different Web sources in order to select file format for a particular institution. Using the naive Bayes method, the decision support system recommends to an expert, the file format for his institution. The proposed methods facilitate the selection of file format and the quality of a digital preservation process. The presented approach is meant to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and specifications of file formats. To facilitate decision-making, the aggregated information about the file formats is presented as a file format vocabulary that comprises most common terms that are characteristic for all researched formats. The goal is to suggest a particular file format based on this vocabulary for analysis by an expert. The sample file format calculation and the calculation results including probabilities are presented in the evaluation section.Keywords: Data mining, digital libraries, digital preservation, file format.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660135 Indian License Plate Detection and Recognition Using Morphological Operation and Template Matching
Authors: W. Devapriya, C. Nelson Kennedy Babu, T. Srihari
Abstract:
Automatic License plate recognition (ALPR) is a technology which recognizes the registration plate or number plate or License plate of a vehicle. In this paper, an Indian vehicle number plate is mined and the characters are predicted in efficient manner. ALPR involves four major technique i) Pre-processing ii) License Plate Location Identification iii) Individual Character Segmentation iv) Character Recognition. The opening phase, named pre-processing helps to remove noises and enhances the quality of the image using the conception of Morphological Operation and Image subtraction. The second phase, the most puzzling stage ascertain the location of license plate using the protocol Canny Edge detection, dilation and erosion. In the third phase, each characters characterized by Connected Component Approach (CCA) and in the ending phase, each segmented characters are conceptualized using cross correlation template matching- a scheme specifically appropriate for fixed format. Major application of ALPR is Tolling collection, Border Control, Parking, Stolen cars, Enforcement, Access Control, Traffic control. The database consists of 500 car images taken under dissimilar lighting condition is used. The efficiency of the system is 97%. Our future focus is Indian Vehicle License Plate Validation (Whether License plate of a vehicle is as per Road transport and highway standard).
Keywords: Automatic License plate recognition, Character recognition, Number plate Recognition, Template matching, morphological operation, canny edge detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2406134 sEMG Interface Design for Locomotion Identification
Authors: Rohit Gupta, Ravinder Agarwal
Abstract:
Surface electromyographic (sEMG) signal has the potential to identify the human activities and intention. This potential is further exploited to control the artificial limbs using the sEMG signal from residual limbs of amputees. The paper deals with the development of multichannel cost efficient sEMG signal interface for research application, along with evaluation of proposed class dependent statistical approach of the feature selection method. The sEMG signal acquisition interface was developed using ADS1298 of Texas Instruments, which is a front-end interface integrated circuit for ECG application. Further, the sEMG signal is recorded from two lower limb muscles for three locomotions namely: Plane Walk (PW), Stair Ascending (SA), Stair Descending (SD). A class dependent statistical approach is proposed for feature selection and also its performance is compared with 12 preexisting feature vectors. To make the study more extensive, performance of five different types of classifiers are compared. The outcome of the current piece of work proves the suitability of the proposed feature selection algorithm for locomotion recognition, as compared to other existing feature vectors. The SVM Classifier is found as the outperformed classifier among compared classifiers with an average recognition accuracy of 97.40%. Feature vector selection emerges as the most dominant factor affecting the classification performance as it holds 51.51% of the total variance in classification accuracy. The results demonstrate the potentials of the developed sEMG signal acquisition interface along with the proposed feature selection algorithm.Keywords: Classifiers, feature selection, locomotion, sEMG.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491133 Analyzing Microblogs: Exploring the Psychology of Political Leanings
Authors: Meaghan Bowman
Abstract:
Microblogging has become increasingly popular for commenting on current events, spreading gossip, and encouraging individualism--which favors its low-context communication channel. These social media (SM) platforms allow users to express opinions while interacting with a wide range of populations. Hashtags allow immediate identification of like-minded individuals worldwide on a vast array of topics. The output of the analytic tool, Linguistic Inquiry and Word Count (LIWC)--a program that associates psychological meaning with the frequency of use of specific words--may suggest the nature of individuals’ internal states and general sentiments. When applied to groupings of SM posts unified by a hashtag, such information can be helpful to community leaders during periods in which the forming of public opinion happens in parallel with the unfolding of political, economic, or social events. This is especially true when outcomes stand to impact the well-being of the group. Here, we applied the online tools, Google Translate and the University of Texas’s LIWC, to a 90-posting sample from a corpus of Colombian Spanish microblogs. On translated disjoint sets, identified by hashtag as being authored by advocates of voting “No,” advocates voting “Yes,” and entities refraining from hashtag use, we observed the value of LIWC’s Tone feature as distinguishing among the categories and the word “peace,” as carrying particular significance, due to its frequency of use in the data.
Keywords: Colombia peace referendum, FARC, hashtags, linguistics, microblogging, social media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 916132 Identification of Critical Success Factors in Non-Formal Service Sector Using Delphi Technique
Authors: Amol A. Talankar, Prakash Verma, Nitin Seth
Abstract:
The purpose of this study is to identify the critical success factors (CSFs) for the effective implementation of Six Sigma in non-formal service Sectors.
Based on the survey of literature, the critical success factors (CSFs) for Six Sigma have been identified and are assessed for their importance in Non-formal service sector using Delphi Technique. These selected CSFs were put forth to the panel of expert to cluster them and prepare cognitive map to establish their relationship.
All the critical success factors examined and obtained from the review of literature have been assessed for their importance with respect to their contribution to Six Sigma effectiveness in non formal service sector.
The study is limited to the non-formal service sectors involved in the organization of religious festival only. However, the similar exercise can be conducted for broader sample of other non-formal service sectors like temple/ashram management, religious tours management etc.
The research suggests an approach to identify CSFs of Six Sigma for Non-formal service sector. All the CSFs of the formal service sector will not be applicable to Non-formal services, hence opinion of experts was sought to add or delete the CSFs. In the first round of Delphi, the panel of experts has suggested, two new CSFs-“competitive benchmarking (F19) and resident’s involvement (F28)”, which were added for assessment in the next round of Delphi. One of the CSFs-“fulltime six sigma personnel (F15)” has been omitted in proposed clusters of CSFs for non-formal organization, as it is practically impossible to deploy full time trained Six Sigma recruits.
Keywords: Critical success factors (CSFs), Quality assurance, non-formal service sectors, Six Sigma.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2453131 Automated Video Surveillance System for Detection of Suspicious Activities during Academic Offline Examination
Authors: G. Sandhya Devi, G. Suvarna Kumar, S. Chandini
Abstract:
This research work aims to develop a system that will analyze and identify students who indulge in malpractices/suspicious activities during the course of an academic offline examination. Automated Video Surveillance provides an optimal solution which helps in monitoring the students and identifying the malpractice event immediately. This work is organized into three modules. The first module deals with performing an impersonation check using a PCA-based face recognition method which is done by cross checking his profile with the database. The presence or absence of the student is even determined in this module by implementing an image registration technique wherein a grid is formed by considering all the images registered using the frontal camera at the determined positions. Second, detecting such facial malpractices in which a student gets involved in conversation with another, trying to obtain unauthorized information etc., based on the threshold range evaluated by considering his/her mouth state whether open or closed. The third module deals with identification of unauthorized material or gadgets used in the examination hall by training the positive samples of the object through various stages. Here, a top view camera feed is analyzed to detect the suspicious activities. The system automatically alerts the administration when any suspicious activities are identified, thereby reducing the error rate caused due to manual monitoring. This work is an improvement over our previous work published in identifying suspicious activities done by examinees in an offline examination.
Keywords: Impersonation, image registration, incrimination, object detection, threshold evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575130 Method of Estimating Absolute Entropy of Municipal Solid Waste
Authors: Francis Chinweuba Eboh, Peter Ahlström, Tobias Richards
Abstract:
Entropy, as an outcome of the second law of thermodynamics, measures the level of irreversibility associated with any process. The identification and reduction of irreversibility in the energy conversion process helps to improve the efficiency of the system. The entropy of pure substances known as absolute entropy is determined at an absolute reference point and is useful in the thermodynamic analysis of chemical reactions; however, municipal solid waste (MSW) is a structurally complicated material with unknown absolute entropy. In this work, an empirical model to calculate the absolute entropy of MSW based on the content of carbon, hydrogen, oxygen, nitrogen, sulphur, and chlorine on a dry ash free basis (daf) is presented. The proposed model was derived from 117 relevant organic substances which represent the main constituents in MSW with known standard entropies using statistical analysis. The substances were divided into different waste fractions; namely, food, wood/paper, textiles/rubber and plastics waste and the standard entropies of each waste fraction and for the complete mixture were calculated. The correlation of the standard entropy of the complete waste mixture derived was found to be somsw= 0.0101C + 0.0630H + 0.0106O + 0.0108N + 0.0155S + 0.0084Cl (kJ.K-1.kg) and the present correlation can be used for estimating the absolute entropy of MSW by using the elemental compositions of the fuel within the range of 10.3% ≤ C ≤ 95.1%, 0.0% ≤ H ≤ 14.3%, 0.0% ≤ O ≤ 71.1%, 0.0 ≤ N ≤ 66.7%, 0.0% ≤ S ≤ 42.1%, 0.0% ≤ Cl ≤ 89.7%. The model is also applicable for the efficient modelling of a combustion system in a waste-to-energy plant.
Keywords: Absolute entropy, irreversibility, municipal solid waste, waste-to-energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840129 ICT for Smart Appliances: Current Technology and Identification of Future ICT Trend
Authors: Abubakar Uba Ibrahim, Ibrahim Haruna Shanono
Abstract:
Smart metering and demand response are gaining ground in industrial and residential applications. Smart Appliances have been given concern towards achieving Smart home. The success of Smart grid development relies on the successful implementation of Information and Communication Technology (ICT) in power sector. Smart Appliances have been the technology under development and many new contributions to its realization have been reported in the last few years. The role of ICT here is to capture data in real time, thereby allowing bi-directional flow of information/data between producing and utilization point; that lead a way for the attainment of Smart appliances where home appliances can communicate between themselves and provide a self-control (switch on and off) using the signal (information) obtained from the grid. This paper depicts the background on ICT for smart appliances paying a particular attention to the current technology and identifying the future ICT trends for load monitoring through which smart appliances can be achieved to facilitate an efficient smart home system which promote demand response program. This paper grouped and reviewed the recent contributions, in order to establish the current state of the art and trends of the technology, so that the reader can be provided with a comprehensive and insightful review of where ICT for smart appliances stands and is heading to. The paper also presents a brief overview of communication types, and then narrowed the discussion to the load monitoring (Non-intrusive Appliances Load Monitoring ‘NALM’). Finally, some future trends and challenges in the further development of the ICT framework are discussed to motivate future contributions that address open problems and explore new possibilities.Keywords: Communication technology between appliances, demand response, load monitoring, smart appliances and smart grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2552128 Unsupervised Segmentation Technique for Acute Leukemia Cells Using Clustering Algorithms
Authors: N. H. Harun, A. S. Abdul Nasir, M. Y. Mashor, R. Hassan
Abstract:
Leukaemia is a blood cancer disease that contributes to the increment of mortality rate in Malaysia each year. There are two main categories for leukaemia, which are acute and chronic leukaemia. The production and development of acute leukaemia cells occurs rapidly and uncontrollable. Therefore, if the identification of acute leukaemia cells could be done fast and effectively, proper treatment and medicine could be delivered. Due to the requirement of prompt and accurate diagnosis of leukaemia, the current study has proposed unsupervised pixel segmentation based on clustering algorithm in order to obtain a fully segmented abnormal white blood cell (blast) in acute leukaemia image. In order to obtain the segmented blast, the current study proposed three clustering algorithms which are k-means, fuzzy c-means and moving k-means algorithms have been applied on the saturation component image. Then, median filter and seeded region growing area extraction algorithms have been applied, to smooth the region of segmented blast and to remove the large unwanted regions from the image, respectively. Comparisons among the three clustering algorithms are made in order to measure the performance of each clustering algorithm on segmenting the blast area. Based on the good sensitivity value that has been obtained, the results indicate that moving kmeans clustering algorithm has successfully produced the fully segmented blast region in acute leukaemia image. Hence, indicating that the resultant images could be helpful to haematologists for further analysis of acute leukaemia.
Keywords: Acute Leukaemia Images, Clustering Algorithms, Image Segmentation, Moving k-Means.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2789127 Household Indebtedness Risks in the Czech Republic
Authors: Jindřiška Šedová
Abstract:
In the past 20 years the economy of the Czech Republic has experienced substantial changes. In the 1990s the development was affected by the transformation which sought to establish the right conditions for privatization and creation of elementary market relations. In the last decade the characteristic elements such as private ownership and corresponding institutional framework have been strengthened. This development was marked by the accession of the Czech Republic to the EU. The Czech Republic is striving to reduce the difference between its level of economic development and the quality of institutional framework in comparison with other developed countries. The process of finding the adequate solutions has been hampered by the negative impact of the world financial crisis on the Czech Republic and the standard of living of its inhabitants. This contribution seeks to address the question of whether and to which extent the economic development of the transitive Czech economy is affected by the change in behaviour of households and their tendency to consumption, i.e. in the sense of reduction or increase in demand for goods and services. It aims to verify whether the increasing trend of household indebtedness and decreasing trend of saving pose a significant risk in the Czech Republic. At a general level the analysis aims to contribute to finding an answer to the question of whether the debt increase of Czech households is connected to the risk of "eating through" the borrowed money and whether Czech households risk falling into a debt trap. In addition to household indebtedness risks in the Czech Republic the analysis will focus on identification of specifics of the transformation phase of the Czech economy in comparison with the EU countries, or selected OECD countries.Keywords: household indebtedness, household consumption, credits, financial literacy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800126 Combining ASTER Thermal Data and Spatial-Based Insolation Model for Identification of Geothermal Active Areas
Authors: Khalid Hussein, Waleed Abdalati, Pakorn Petchprayoon, Khaula Alkaabi
Abstract:
In this study, we integrated ASTER thermal data with an area-based spatial insolation model to identify and delineate geothermally active areas in Yellowstone National Park (YNP). Two pairs of L1B ASTER day- and nighttime scenes were used to calculate land surface temperature. We employed the Emissivity Normalization Algorithm which separates temperature from emissivity to calculate surface temperature. We calculated the incoming solar radiation for the area covered by each of the four ASTER scenes using an insolation model and used this information to compute temperature due to solar radiation. We then identified the statistical thermal anomalies using land surface temperature and the residuals calculated from modeled temperatures and ASTER-derived surface temperatures. Areas that had temperatures or temperature residuals greater than 2σ and between 1σ and 2σ were considered ASTER-modeled thermal anomalies. The areas identified as thermal anomalies were in strong agreement with the thermal areas obtained from the YNP GIS database. Also the YNP hot springs and geysers were located within areas identified as anomalous thermal areas. The consistency between our results and known geothermally active areas indicate that thermal remote sensing data, integrated with a spatial-based insolation model, provides an effective means for identifying and locating areas of geothermal activities over large areas and rough terrain.
Keywords: Thermal remote sensing, insolation model, land surface temperature, geothermal anomalies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1025125 Modeling, Simulation and Monitoring of Nuclear Reactor Using Directed Graph and Bond Graph
Authors: A. Badoud, M. Khemliche, S. Latreche
Abstract:
The main objective developed in this paper is to find a graphic technique for modeling, simulation and diagnosis of the industrial systems. This importance is much apparent when it is about a complex system such as the nuclear reactor with pressurized water of several form with various several non-linearity and time scales. In this case the analytical approach is heavy and does not give a fast idea on the evolution of the system. The tool Bond Graph enabled us to transform the analytical model into graphic model and the software of simulation SYMBOLS 2000 specific to the Bond Graphs made it possible to validate and have the results given by the technical specifications. We introduce the analysis of the problem involved in the faults localization and identification in the complex industrial processes. We propose a method of fault detection applied to the diagnosis and to determine the gravity of a detected fault. We show the possibilities of application of the new diagnosis approaches to the complex system control. The industrial systems became increasingly complex with the faults diagnosis procedures in the physical systems prove to become very complex as soon as the systems considered are not elementary any more. Indeed, in front of this complexity, we chose to make recourse to Fault Detection and Isolation method (FDI) by the analysis of the problem of its control and to conceive a reliable system of diagnosis making it possible to apprehend the complex dynamic systems spatially distributed applied to the standard pressurized water nuclear reactor.Keywords: Bond Graph, Modeling, Simulation, Monitoring, Analytical Redundancy Relations, Pressurized Water Reactor, Directed Graph.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1978124 Hybrid Adaptive Modeling to Enhance Robustness of Real-Time Optimization
Authors: Hussain Syed Asad, Richard Kwok Kit Yuen, Gongsheng Huang
Abstract:
Real-time optimization has been considered an effective approach for improving energy efficient operation of heating, ventilation, and air-conditioning (HVAC) systems. In model-based real-time optimization, model mismatches cannot be avoided. When model mismatches are significant, the performance of the real-time optimization will be impaired and hence the expected energy saving will be reduced. In this paper, the model mismatches for chiller plant on real-time optimization are considered. In the real-time optimization of the chiller plant, simplified semi-physical or grey box model of chiller is always used, which should be identified using available operation data. To overcome the model mismatches associated with the chiller model, hybrid Genetic Algorithms (HGAs) method is used for online real-time training of the chiller model. HGAs combines Genetic Algorithms (GAs) method (for global search) and traditional optimization method (i.e. faster and more efficient for local search) to avoid conventional hit and trial process of GAs. The identification of model parameters is synthesized as an optimization problem; and the objective function is the Least Square Error between the output from the model and the actual output from the chiller plant. A case study is used to illustrate the implementation of the proposed method. It has been shown that the proposed approach is able to provide reliability in decision making, enhance the robustness of the real-time optimization strategy and improve on energy performance.
Keywords: Energy performance, hybrid adaptive modeling, hybrid genetic algorithms, real-time optimization, heating, ventilation, and air-conditioning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1140123 Educators’ Adherence to Learning Theories and Their Perceptions on the Advantages and Disadvantages of e-Learning
Authors: Samson T. Obafemi, Seraphin D. Eyono Obono
Abstract:
Information and Communication Technologies (ICTs) are pervasive nowadays, including in education where they are expected to improve the performance of learners. However, the hope placed in ICTs to find viable solutions to the problem of poor academic performance in schools in the developing world has not yet yielded the expected benefits. This problem serves as a motivation to this study whose aim is to examine the perceptions of educators on the advantages and disadvantages of e-learning. This aim will be subdivided into two types of research objectives. Objectives on the identification and design of theories and models will be achieved using content analysis and literature review. However, the objective on the empirical testing of such theories and models will be achieved through the survey of educators from different schools in the Pinetown District of the South African Kwazulu-Natal province. SPSS is used to quantitatively analyse the data collected by the questionnaire of this survey using descriptive statistics and Pearson correlations after assessing the validity and the reliability of the data. The main hypothesis driving this study is that there is a relationship between the demographics of educators’ and their adherence to learning theories on one side, and their perceptions on the advantages and disadvantages of e-learning on the other side, as argued by existing research; but this research views these learning theories under three perspectives: educators’ adherence to self-regulated learning, to constructivism, and to progressivism. This hypothesis was fully confirmed by the empirical study except for the demographic factor where teachers’ level of education was found to be the only demographic factor affecting the perceptions of educators on the advantages and disadvantages of e-learning.
Keywords: Academic performance, e-learning, Learning theories, Teaching and Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2634122 Thresholding Approach for Automatic Detection of Pseudomonas aeruginosa Biofilms from Fluorescence in situ Hybridization Images
Authors: Zonglin Yang, Tatsuya Akiyama, Kerry S. Williamson, Michael J. Franklin, Thiruvarangan Ramaraj
Abstract:
Pseudomonas aeruginosa is an opportunistic pathogen that forms surface-associated microbial communities (biofilms) on artificial implant devices and on human tissue. Biofilm infections are difficult to treat with antibiotics, in part, because the bacteria in biofilms are physiologically heterogeneous. One measure of biological heterogeneity in a population of cells is to quantify the cellular concentrations of ribosomes, which can be probed with fluorescently labeled nucleic acids. The fluorescent signal intensity following fluorescence in situ hybridization (FISH) analysis correlates to the cellular level of ribosomes. The goals here are to provide computationally and statistically robust approaches to automatically quantify cellular heterogeneity in biofilms from a large library of epifluorescent microscopy FISH images. In this work, the initial steps were developed toward these goals by developing an automated biofilm detection approach for use with FISH images. The approach allows rapid identification of biofilm regions from FISH images that are counterstained with fluorescent dyes. This methodology provides advances over other computational methods, allowing subtraction of spurious signals and non-biological fluorescent substrata. This method will be a robust and user-friendly approach which will enable users to semi-automatically detect biofilm boundaries and extract intensity values from fluorescent images for quantitative analysis of biofilm heterogeneity.
Keywords: Image informatics, Pseudomonas aeruginosa, biofilm, FISH, computer vision, data visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1181121 An Approach towards Designing an Energy Efficient Building through Embodied Energy Assessment: A Case of Apartment Building in Composite Climate
Authors: Ambalika Ekka
Abstract:
In today’s world, the growing demand for urban built forms has resulted in the production and consumption of building materials i.e. embodied energy in building construction, leading to pollution and greenhouse gas (GHG) emissions. Therefore, new buildings will offer a unique opportunity to implement more energy efficient building without compromising on building performance of the building. Embodied energy of building materials forms major contribution to embodied energy in buildings. The paper results in an approach towards designing an energy efficient apartment building through embodied energy assessment. This paper discusses the trend of residential development in Rourkela, which includes three case studies of the contemporary houses, followed by architectural elements, number of storeys, predominant material use and plot sizes using primary data. It results in identification of predominant material used and other characteristics in urban area. Further, the embodied energy coefficients of various dominant building materials and alternative materials manufactured in Indian Industry is taken in consideration from secondary source i.e. literature study. The paper analyses the embodied energy by estimating materials and operational energy of proposed building followed by altering the specifications of the materials based on the building components i.e. walls, flooring, windows, insulation and roof through res build India software and comparison of different options is assessed with consideration of sustainable parameters. This paper results that autoclaved aerated concrete block only reaches the energy performance Index benchmark i.e. 69.35 kWh/m2 yr i.e. by saving 4% of operational energy and as embodied energy has no particular index, out of all materials it has the highest EE 23206202.43 MJ.
Keywords: Energy efficient, embodied energy, energy performance index, building materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 999120 Automation of Heat Exchanger using Neural Network
Authors: Sudhir Agashe, Ashok Ghatol, Sujata Agashe
Abstract:
In this paper the development of a heat exchanger as a pilot plant for educational purpose is discussed and the use of neural network for controlling the process is being presented. The aim of the study is to highlight the need of a specific Pseudo Random Binary Sequence (PRBS) to excite a process under control. As the neural network is a data driven technique, the method for data generation plays an important role. In light of this a careful experimentation procedure for data generation was crucial task. Heat exchange is a complex process, which has a capacity and a time lag as process elements. The proposed system is a typical pipe-in- pipe type heat exchanger. The complexity of the system demands careful selection, proper installation and commissioning. The temperature, flow, and pressure sensors play a vital role in the control performance. The final control element used is a pneumatically operated control valve. While carrying out the experimentation on heat exchanger a welldrafted procedure is followed giving utmost attention towards safety of the system. The results obtained are encouraging and revealing the fact that if the process details are known completely as far as process parameters are concerned and utilities are well stabilized then feedback systems are suitable, whereas neural network control paradigm is useful for the processes with nonlinearity and less knowledge about process. The implementation of NN control reinforces the concepts of process control and NN control paradigm. The result also underlined the importance of excitation signal typically for that process. Data acquisition, processing, and presentation in a typical format are the most important parameters while validating the results.Keywords: Process identification, neural network, heat exchanger.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573119 Quantification of E-Waste: A Case Study in Federal University of Espírito Santo, Brazil
Authors: Andressa S. T. Gomes, Luiza A. Souza, Luciana H. Yamane, Renato R. Siman
Abstract:
The segregation of waste of electrical and electronic equipment (WEEE) in the generating source, its characterization (quali-quantitative) and identification of origin, besides being integral parts of classification reports, are crucial steps to the success of its integrated management. The aim of this paper was to count WEEE generation at the Federal University of Espírito Santo (UFES), Brazil, as well as to define sources, temporary storage sites, main transportations routes and destinations, the most generated WEEE and its recycling potential. Quantification of WEEE generated at the University in the years between 2010 and 2015 was performed using data analysis provided by UFES’s sector of assets management. EEE and WEEE flow in the campuses information were obtained through questionnaires applied to the University workers. It was recorded 6028 WEEEs units of data processing equipment disposed by the university between 2010 and 2015. Among these waste, the most generated were CRT screens, desktops, keyboards and printers. Furthermore, it was observed that these WEEEs are temporarily stored in inappropriate places at the University campuses. In general, these WEEE units are donated to NGOs of the city, or sold through auctions (2010 and 2013). As for recycling potential, from the primary processing and further sale of printed circuit boards (PCB) from the computers, the amount collected could reach U$ 27,839.23. The results highlight the importance of a WEEE management policy at the University.
Keywords: Solid waste, waste of electric and electronic equipment, waste management, institutional generation of solid waste.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568118 Estimation and Removal of Chlorophenolic Compounds from Paper Mill Waste Water by Electrochemical Treatment
Authors: R. Sharma, S. Kumar, C. Sharma
Abstract:
A number of toxic chlorophenolic compounds are formed during pulp bleaching. The nature and concentration of these chlorophenolic compounds largely depends upon the amount and nature of bleaching chemicals used. These compounds are highly recalcitrant and difficult to remove but are partially removed by the biochemical treatment processes adopted by the paper industry. Identification and estimation of these chlorophenolic compounds has been carried out in the primary and secondary clarified effluents from the paper mill by GCMS. Twenty-six chorophenolic compounds have been identified and estimated in paper mill waste waters. Electrochemical treatment is an efficient method for oxidation of pollutants and has successfully been used to treat textile and oil waste water. Electrochemical treatment using less expensive anode material, stainless steel electrodes has been tried to study their removal. The electrochemical assembly comprised a DC power supply, a magnetic stirrer and stainless steel (316 L) electrode. The optimization of operating conditions has been carried out and treatment has been performed under optimized treatment conditions. Results indicate that 68.7% and 83.8% of cholorphenolic compounds are removed during 2 h of electrochemical treatment from primary and secondary clarified effluent respectively. Further, there is a reduction of 65.1, 60 and 92.6% of COD, AOX and color, respectively for primary clarified and 83.8%, 75.9% and 96.8% of COD, AOX and color, respectively for secondary clarified effluent. EC treatment has also been found to increase significantly the biodegradability index of wastewater because of conversion of non- biodegradable fraction into biodegradable fraction. Thus, electrochemical treatment is an efficient method for the degradation of cholorophenolic compounds, removal of color, AOX and other recalcitrant organic matter present in paper mill waste water.
Keywords: Chlorophenolics, effluent, electrochemical treatment, wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898117 Effect of Soaking Period of Clay on Its California Bearing Ratio Value
Authors: Robert G. Nini
Abstract:
The quality of road pavement is affected mostly by the type of sub-grade which is acting as road foundation. The roads degradation is related to many factors especially the climatic conditions, the quality, and the thickness of the base materials. The thickness of this layer depends on its California Bearing Ratio (CBR) test value which by its turn is highly affected by the quantity of water infiltrated under the road after heavy rain. The capacity of the base material to drain out its water is predominant factor because any change in moisture content causes change in sub-grade strength. This paper studies the effect of the soaking period of soil especially clay on its CBR value. For this reason, we collected many clayey samples in order to study the effect of the soaking period on its CBR value. On each soil, two groups of experiments were performed: main tests consisting of Proctor and CBR test from one side and from other side identification tests consisting of other tests such as Atterberg limits tests. Each soil sample was first subjected to Proctor test in order to find its optimum moisture content which will be used to perform the CBR test. Four CBR tests were performed on each soil with different soaking period. The first CBR was done without soaking the soil sample; the second one with two days soaking, the third one with four days soaking period and the last one was done under eight days soaking. By comparing the results of CBR tests performed with different soaking time, a more detailed understanding was given to the role of the water in reducing the CBR of soil. In fact, by extending the soaking period, the CBR was found to be reduced quickly the first two days and slower after. A precise reduction factor of the CBR in relation with soaking period was found at the end of this paper.
Keywords: California bearing ratio, clay, proctor test, soaking period, sub-grade.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 872116 Occurrence of Foreign Matter in Food: Applied Identification Method - Association of Official Agricultural Chemists (AOAC) and Food and Drug Administration (FDA)
Authors: E. C. Mattos, V. S. M. G. Daros, R. Dal Col, A. L. Nascimento
Abstract:
The aim of this study is to present the results of a retrospective survey on the foreign matter found in foods analyzed at the Adolfo Lutz Institute, from July 2001 to July 2015. All the analyses were conducted according to the official methods described on Association of Official Agricultural Chemists (AOAC) for the micro analytical procedures and Food and Drug Administration (FDA) for the macro analytical procedures. The results showed flours, cereals and derivatives such as baking and pasta products were the types of food where foreign matters were found more frequently followed by condiments and teas. Fragments of stored grains insects, its larvae, nets, excrement, dead mites and rodent excrement were the most foreign matter found in food. Besides, foreign matters that can cause a physical risk to the consumer’s health such as metal, stones, glass, wood were found but rarely. Miscellaneous (shell, sand, dirt and seeds) were also reported. There are a lot of extraneous materials that are considered unavoidable since are something inherent to the product itself, such as insect fragments in grains. In contrast, there are avoidable extraneous materials that are less tolerated because it is preventable with the Good Manufacturing Practice. The conclusion of this work is that although most extraneous materials found in food are considered unavoidable it is necessary to keep the Good Manufacturing Practice throughout the food processing as well as maintaining a constant surveillance of the production process in order to avoid accidents that may lead to occurrence of these extraneous materials in food.Keywords: Food contamination, extraneous materials, foreign matter, surveillance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3702