Search results for: Forensic anthropology population data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8137

Search results for: Forensic anthropology population data

7207 Authentication and Data Hiding Using a Reversible ROI-based Watermarking Scheme for DICOM Images

Authors: Osamah M. Al-Qershi, Khoo Bee Ee

Abstract:

In recent years image watermarking has become an important research area in data security, confidentiality and image integrity. Many watermarking techniques were proposed for medical images. However, medical images, unlike most of images, require extreme care when embedding additional data within them because the additional information must not affect the image quality and readability. Also the medical records, electronic or not, are linked to the medical secrecy, for that reason, the records must be confidential. To fulfill those requirements, this paper presents a lossless watermarking scheme for DICOM images. The proposed a fragile scheme combines two reversible techniques based on difference expansion for patient's data hiding and protecting the region of interest (ROI) with tamper detection and recovery capability. Patient's data are embedded into ROI, while recovery data are embedded into region of non-interest (RONI). The experimental results show that the original image can be exactly extracted from the watermarked one in case of no tampering. In case of tampered ROI, tampered area can be localized and recovered with a high quality version of the original area.

Keywords: DICOM, reversible, ROI-based, watermarking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1719
7206 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification

Authors: Samiah Alammari, Nassim Ammour

Abstract:

When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on hyperspectral image (HSI) dataset on Indian Pines. The results confirm the capability of the proposed method.

Keywords: Continual learning, data reconstruction, remote sensing, hyperspectral image segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 232
7205 Stego Machine – Video Steganography using Modified LSB Algorithm

Authors: Mritha Ramalingam

Abstract:

Computer technology and the Internet have made a breakthrough in the existence of data communication. This has opened a whole new way of implementing steganography to ensure secure data transfer. Steganography is the fine art of hiding the information. Hiding the message in the carrier file enables the deniability of the existence of any message at all. This paper designs a stego machine to develop a steganographic application to hide data containing text in a computer video file and to retrieve the hidden information. This can be designed by embedding text file in a video file in such away that the video does not loose its functionality using Least Significant Bit (LSB) modification method. This method applies imperceptible modifications. This proposed method strives for high security to an eavesdropper-s inability to detect hidden information.

Keywords: Data hiding, LSB, Stego machine, VideoSteganography

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4268
7204 Data Projects for “Social Good”: Challenges and Opportunities

Authors: Mikel Niño, Roberto V. Zicari, Todor Ivanov, Kim Hee, Naveed Mushtaq, Marten Rosselli, Concha Sánchez-Ocaña, Karsten Tolle, José Miguel Blanco, Arantza Illarramendi, Jörg Besier, Harry Underwood

Abstract:

One of the application fields for data analysis techniques and technologies gaining momentum is the area of social good or “common good”, covering cases related to humanitarian crises, global health care, or ecology and environmental issues, among others. The promotion of data-driven projects in this field aims at increasing the efficacy and efficiency of social initiatives, improving the way these actions help humanity in general and people in need in particular. This application field, however, poses its own barriers and challenges when developing data-driven projects, lagging behind in comparison with other scenarios. These challenges derive from aspects such as the scope and scale of the social issue to solve, cultural and political barriers, the skills of main stakeholders and the technological resources available, the motivation to be engaged in such projects, or the ethical and legal issues related to sensitive data. This paper analyzes the application of data projects in the field of social good, reviewing its current state and noteworthy initiatives, and presenting a framework covering the key aspects to analyze in such projects. The goal is to provide guidelines to understand the main challenges and opportunities for this type of data project, as well as identifying the main differential issues compared to “classical” data projects in general. A case study is presented on the initial steps and stakeholder analysis of a data project for the inclusion of refugees in the city of Frankfurt, Germany, in order to empirically confront the framework with a real example.

Keywords: Data-Driven projects, humanitarian operations, personal and sensitive data, social good, stakeholders analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
7203 A Multi-Feature Deep Learning Algorithm for Urban Traffic Classification with Limited Labeled Data

Authors: Rohan Putatunda, Aryya Gangopadhyay

Abstract:

Acoustic sensors, if embedded in smart street lights, can help in capturing the activities (car honking, sirens, events, traffic, etc.) in cities. Needless to say, the acoustic data from such scenarios are complex due to multiple audio streams originating from different events, and when decomposed to independent signals, the amount of retrieved data volume is small in quantity which is inadequate to train deep neural networks. So, in this paper, we address the two challenges: a) separating the mixed signals, and b) developing an efficient acoustic classifier under data paucity. So, to address these challenges, we propose an architecture with supervised deep learning, where the initial captured mixed acoustics data are analyzed with Fast Fourier Transformation (FFT), followed by filtering the noise from the signal, and then decomposed to independent signals by fast independent component analysis (Fast ICA). To address the challenge of data paucity, we propose a multi feature-based deep neural network with high performance that is reflected in our experiments when compared to the conventional convolutional neural network (CNN) and multi-layer perceptron (MLP).

Keywords: FFT, ICA, vehicle classification, multi-feature DNN, CNN, MLP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 432
7202 An Educational Data Mining System for Advising Higher Education Students

Authors: Heba Mohammed Nagy, Walid Mohamed Aly, Osama Fathy Hegazy

Abstract:

Educational  data mining  is  a  specific  data   mining field applied to data originating from educational environments, it relies on different  approaches to discover hidden knowledge  from  the  available   data. Among these approaches are   machine   learning techniques which are used to build a system that acquires learning from previous data. Machine learning can be applied to solve different regression, classification, clustering and optimization problems.

In  our  research, we propose  a “Student  Advisory  Framework” that  utilizes  classification  and  clustering  to  build  an  intelligent system. This system can be used to provide pieces of consultations to a first year  university  student to  pursue a  certain   education   track   where  he/she  will  likely  succeed  in, aiming  to  decrease   the  high  rate   of  academic  failure   among these  students.  A real case study  in Cairo  Higher  Institute  for Engineering, Computer  Science  and  Management  is  presented using  real  dataset   collected  from  2000−2012.The dataset has two main components: pre-higher education dataset and first year courses results dataset. Results have proved the efficiency of the suggested framework.

Keywords: Classification, Clustering, Educational Data Mining (EDM), Machine Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5213
7201 Auto Classification for Search Intelligence

Authors: Lilac A. E. Al-Safadi

Abstract:

This paper proposes an auto-classification algorithm of Web pages using Data mining techniques. We consider the problem of discovering association rules between terms in a set of Web pages belonging to a category in a search engine database, and present an auto-classification algorithm for solving this problem that are fundamentally based on Apriori algorithm. The proposed technique has two phases. The first phase is a training phase where human experts determines the categories of different Web pages, and the supervised Data mining algorithm will combine these categories with appropriate weighted index terms according to the highest supported rules among the most frequent words. The second phase is the categorization phase where a web crawler will crawl through the World Wide Web to build a database categorized according to the result of the data mining approach. This database contains URLs and their categories.

Keywords: Information Processing on the Web, Data Mining, Document Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
7200 Retrieval of Relevant Visual Data in Selected Machine Vision Tasks: Examples of Hardware-based and Software-based Solutions

Authors: Andrzej Śluzek

Abstract:

To illustrate diversity of methods used to extract relevant (where the concept of relevance can be differently defined for different applications) visual data, the paper discusses three groups of such methods. They have been selected from a range of alternatives to highlight how hardware and software tools can be complementarily used in order to achieve various functionalities in case of different specifications of “relevant data". First, principles of gated imaging are presented (where relevance is determined by the range). The second methodology is intended for intelligent intrusion detection, while the last one is used for content-based image matching and retrieval. All methods have been developed within projects supervised by the author.

Keywords: Relevant visual data, gated imaging, intrusion detection, image matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395
7199 SOA-Based Mobile Application for Crime Control in Thailand

Authors: Jintana Khemprasit, Vatcharaporn Esichaikul

Abstract:

Crime is a major societal problem for most of the world's nations. Consequently, the police need to develop new methods to improve their efficiency in dealing with these ever increasing crime rates. Two of the common difficulties that the police face in crime control are crime investigation and the provision of crime information to the general public to help them protect themselves. Crime control in police operations involves the use of spatial data, crime data and the related crime data from different organizations (depending on the nature of the analysis to be made). These types of data are collected from several heterogeneous sources in different formats and from different platforms, resulting in a lack of standardization. Moreover, there is no standard framework for crime data collection, integration and dissemination through mobile devices. An investigation into the current situation in crime control was carried out to identify the needs to resolve these issues. This paper proposes and investigates the use of service oriented architecture (SOA) and the mobile spatial information service in crime control. SOA plays an important role in crime control as an appropriate way to support data exchange and model sharing from heterogeneous sources. Crime control also needs to facilitate mobile spatial information services in order to exchange, receive, share and release information based on location to mobile users anytime and anywhere.

Keywords: Crime Control, Geographic Information System (GIS), Mobile GIS, Service Oriented Architecture (SOA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2533
7198 Multidimensional and Data Mining Analysis for Property Investment Risk Analysis

Authors: Nur Atiqah Rochin Demong, Jie Lu, Farookh Khadeer Hussain

Abstract:

Property investment in the real estate industry has a high risk due to the uncertainty factors that will affect the decisions made and high cost. Analytic hierarchy process has existed for some time in which referred to an expert-s opinion to measure the uncertainty of the risk factors for the risk analysis. Therefore, different level of experts- experiences will create different opinion and lead to the conflict among the experts in the field. The objective of this paper is to propose a new technique to measure the uncertainty of the risk factors based on multidimensional data model and data mining techniques as deterministic approach. The propose technique consist of a basic framework which includes four modules: user, technology, end-user access tools and applications. The property investment risk analysis defines as a micro level analysis as the features of the property will be considered in the analysis in this paper.

Keywords: Uncertainty factors, data mining, multidimensional data model, risk analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2922
7197 Computational Aspects of Regression Analysis of Interval Data

Authors: Michal Cerny

Abstract:

We consider linear regression models where both input data (the values of independent variables) and output data (the observations of the dependent variable) are interval-censored. We introduce a possibilistic generalization of the least squares estimator, so called OLS-set for the interval model. This set captures the impact of the loss of information on the OLS estimator caused by interval censoring and provides a tool for quantification of this effect. We study complexity-theoretic properties of the OLS-set. We also deal with restricted versions of the general interval linear regression model, in particular the crisp input – interval output model. We give an argument that natural descriptions of the OLS-set in the crisp input – interval output cannot be computed in polynomial time. Then we derive easily computable approximations for the OLS-set which can be used instead of the exact description. We illustrate the approach by an example.

Keywords: Linear regression, interval-censored data, computational complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
7196 Time-Derivative Estimation of Noisy Movie Data using Adaptive Control Theory

Authors: Soon-Hyun Park, Takami Matsuo

Abstract:

This paper presents an adaptive differentiator of sequential data based on the adaptive control theory. The algorithm is applied to detect moving objects by estimating a temporal gradient of sequential data at a specified pixel. We adopt two nonlinear intensity functions to reduce the influence of noises. The derivatives of the nonlinear intensity functions are estimated by an adaptive observer with σ-modification update law.

Keywords: Adaptive estimation, parameter adjustmentlaw, motion detection, temporal gradient, differential filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1873
7195 Transformation of the Business Model in an Occupational Health Care Company Embedded in an Emerging Personal Data Ecosystem: A Case Study in Finland

Authors: Tero Huhtala, Minna Pikkarainen, Saila Saraniemi

Abstract:

Information technology has long been used as an enabler of exchange for goods and services. Services are evolving from generic to personalized, and the reverse use of customer data has been discussed in both academia and industry for the past few years. This article presents the results of an empirical case study in the area of preventive health care services. The primary data were gathered in workshops, in which future personal data-based services were conceptualized by analyzing future scenarios from a business perspective. The aim of this study is to understand business model transformation in emerging personal data ecosystems. The work was done as a case study in the context of occupational healthcare. The results have implications to theory and practice, indicating that adopting personal data management principles requires transformation of the business model, which, if successfully managed, may provide access to more resources, potential to offer better value, and additional customer channels. These advantages correlate with the broadening of the business ecosystem. Expanding the scope of this study to include more actors would improve the validity of the research. The results draw from existing literature and are based on findings from a case study and the economic properties of the healthcare industry in Finland.

Keywords: Ecosystem, business model, personal data, preventive healthcare.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1140
7194 An Efficient Biometric Cryptosystem using Autocorrelators

Authors: R. Bremananth, A. Chitra

Abstract:

Cryptography provides the secure manner of information transmission over the insecure channel. It authenticates messages based on the key but not on the user. It requires a lengthy key to encrypt and decrypt the sending and receiving the messages, respectively. But these keys can be guessed or cracked. Moreover, Maintaining and sharing lengthy, random keys in enciphering and deciphering process is the critical problem in the cryptography system. A new approach is described for generating a crypto key, which is acquired from a person-s iris pattern. In the biometric field, template created by the biometric algorithm can only be authenticated with the same person. Among the biometric templates, iris features can efficiently be distinguished with individuals and produces less false positives in the larger population. This type of iris code distribution provides merely less intra-class variability that aids the cryptosystem to confidently decrypt messages with an exact matching of iris pattern. In this proposed approach, the iris features are extracted using multi resolution wavelets. It produces 135-bit iris codes from each subject and is used for encrypting/decrypting the messages. The autocorrelators are used to recall original messages from the partially corrupted data produced by the decryption process. It intends to resolve the repudiation and key management problems. Results were analyzed in both conventional iris cryptography system (CIC) and non-repudiation iris cryptography system (NRIC). It shows that this new approach provides considerably high authentication in enciphering and deciphering processes.

Keywords: Autocorrelators, biometrics cryptography, irispatterns, wavelets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
7193 Beam and Diffuse Solar Energy in Zarqa City

Authors: Ali M. Jawarneh

Abstract:

Beam and diffuse radiation data are extracted analytically from previous measured data on a horizontal surface in Zarqa city. Moreover, radiation data on a tilted surfaces with different slopes have been derived and analyzed. These data are consisting of of beam contribution, diffuse contribution, and ground reflected contribution radiation. Hourly radiation data for horizontal surface possess the highest radiation values on June, and then the values decay as the slope increases and the sharp decreasing happened for vertical surface. The beam radiation on a horizontal surface owns the highest values comparing to diffuse radiation for all days of June. The total daily radiation on the tilted surface decreases with slopes. The beam radiation data also decays with slopes especially for vertical surface. Diffuse radiation slightly decreases with slopes with sharp decreases for vertical surface. The groundreflected radiation grows with slopes especially for vertical surface. It-s clear that in June the highest harvesting of solar energy occurred for horizontal surface, then the harvesting decreases as the slope increases.

Keywords: Beam and Diffuse Radiation, Zarqa City

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
7192 An Application of the Data Mining Methods with Decision Rule

Authors: Xun Ge, Jianhua Gong

Abstract:

 

ankings for output of Chinese main agricultural commodity in the world for 1978, 1980, 1990, 2000, 2006, 2007 and 2008 have been released in United Nations FAO Database. Unfortunately, where the ranking of output of Chinese cotton lint in the world for 2008 was missed. This paper uses sequential data mining methods with decision rules filling this gap. This new data mining method will be help to give a further improvement for United Nations FAO Database.

Keywords: Ranking, output of the main agricultural commodity, gross domestic product, decision table, information system, data mining, decision rule

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710
7191 LiDAR Based Real Time Multiple Vehicle Detection and Tracking

Authors: Zhongzhen Luo, Saeid Habibi, Martin v. Mohrenschildt

Abstract:

Self-driving vehicle require a high level of situational awareness in order to maneuver safely when driving in real world condition. This paper presents a LiDAR based real time perception system that is able to process sensor raw data for multiple target detection and tracking in dynamic environment. The proposed algorithm is nonparametric and deterministic that is no assumptions and priori knowledge are needed from the input data and no initializations are required. Additionally, the proposed method is working on the three-dimensional data directly generated by LiDAR while not scarifying the rich information contained in the domain of 3D. Moreover, a fast and efficient for real time clustering algorithm is applied based on a radially bounded nearest neighbor (RBNN). Hungarian algorithm procedure and adaptive Kalman filtering are used for data association and tracking algorithm. The proposed algorithm is able to run in real time with average run time of 70ms per frame.

Keywords: LiDAR, real-time system, clustering, tracking, data association.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4670
7190 Problems and Needs of Frozen Shrimp Industry Small and Medium Enterprises in the Central Region of the Lower Three Provinces

Authors: P. Thepnarintra

Abstract:

Frozen shrimp industry plays an important role in the development of production industry of the country. There has been a continuing development to response the increasing demand; however, there have been some problems in running the enterprises. The purposes of this study are to: 1) investigate problems related to basic factors in operating frozen shrimp industry based on the entrepreneurs’ points of view. The enterprises involved in this study were small and medium industry receiving Thai Frozen Foods Association. 2) Compare the problems of the frozen shrimp industry according to their sizes of operation in 3 provinces of the central region Thailand. Population in this study consisted of 148 managers from 148 frozen shrimp enterprises Thai Frozen Foods Association which 77 were small size and 71 were medium size. The data were analyzed to find percentage, arithmetic mean, standard deviation, and independent sample T-test with the significant hypothesis at .05. The results revealed that the problems of the frozen shrimp industries of both size were in high level. The needs for government supporting were in high level. The comparison of the problems and the basic factors between the small and medium size enterprises showed no statistically significant level. The problems that they mentioned included raw materials, labors, production, marketing, and the need for academic supporting from the government sector.

Keywords: Frozen shrimp industry, problems, related to the enterprise, operation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1102
7189 Surrogate based Evolutionary Algorithm for Design Optimization

Authors: Maumita Bhattacharya

Abstract:

Optimization is often a critical issue for most system design problems. Evolutionary Algorithms are population-based, stochastic search techniques, widely used as efficient global optimizers. However, finding optimal solution to complex high dimensional, multimodal problems often require highly computationally expensive function evaluations and hence are practically prohibitive. The Dynamic Approximate Fitness based Hybrid EA (DAFHEA) model presented in our earlier work [14] reduced computation time by controlled use of meta-models to partially replace the actual function evaluation by approximate function evaluation. However, the underlying assumption in DAFHEA is that the training samples for the meta-model are generated from a single uniform model. Situations like model formation involving variable input dimensions and noisy data certainly can not be covered by this assumption. In this paper we present an enhanced version of DAFHEA that incorporates a multiple-model based learning approach for the SVM approximator. DAFHEA-II (the enhanced version of the DAFHEA framework) also overcomes the high computational expense involved with additional clustering requirements of the original DAFHEA framework. The proposed framework has been tested on several benchmark functions and the empirical results illustrate the advantages of the proposed technique.

Keywords: Evolutionary algorithm, Fitness function, Optimization, Meta-model, Stochastic method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576
7188 Water End-Use Classification with Contemporaneous Water-Energy Data and Deep Learning Network

Authors: Khoi A. Nguyen, Rodney A. Stewart, Hong Zhang

Abstract:

‘Water-related energy’ is energy use which is directly or indirectly influenced by changes to water use. Informatics applying a range of mathematical, statistical and rule-based approaches can be used to reveal important information on demand from the available data provided at second, minute or hourly intervals. This study aims to combine these two concepts to improve the current water end use disaggregation problem through applying a wide range of most advanced pattern recognition techniques to analyse the concurrent high-resolution water-energy consumption data. The obtained results have shown that recognition accuracies of all end-uses have significantly increased, especially for mechanised categories, including clothes washer, dishwasher and evaporative air cooler where over 95% of events were correctly classified.

Keywords: Deep learning network, smart metering, water end use, water-energy data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1363
7187 Watermark Bit Rate in Diverse Signal Domains

Authors: Nedeljko Cvejic, Tapio Sepp

Abstract:

A study of the obtainable watermark data rate for information hiding algorithms is presented in this paper. As the perceptual entropy for wideband monophonic audio signals is in the range of four to five bits per sample, a significant amount of additional information can be inserted into signal without causing any perceptual distortion. Experimental results showed that transform domain watermark embedding outperforms considerably watermark embedding in time domain and that signal decompositions with a high gain of transform coding, like the wavelet transform, are the most suitable for high data rate information hiding. Keywords?Digital watermarking, information hiding, audio watermarking, watermark data rate.

Keywords: Digital watermarking, information hiding, audio watermarking, watermark data rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
7186 Concurrent Access to Complex Entities

Authors: Cosmin Rablou

Abstract:

In this paper we present a way of controlling the concurrent access to data in a distributed application using the Pessimistic Offline Lock design pattern. In our case, the application processes a complex entity, which contains in a hierarchical structure different other entities (objects). It will be shown how the complex entity and the contained entities must be locked in order to control the concurrent access to data.

Keywords: Object-oriented programming, Pessimistic Lock, Design pattern, Concurrent access to data, Processing complex entities

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1311
7185 Sparse Coding Based Classification of Electrocardiography Signals Using Data-Driven Complete Dictionary Learning

Authors: Fuad Noman, Sh-Hussain Salleh, Chee-Ming Ting, Hadri Hussain, Syed Rasul

Abstract:

In this paper, a data-driven dictionary approach is proposed for the automatic detection and classification of cardiovascular abnormalities. Electrocardiography (ECG) signal is represented by the trained complete dictionaries that contain prototypes or atoms to avoid the limitations of pre-defined dictionaries. The data-driven trained dictionaries simply take the ECG signal as input rather than extracting features to study the set of parameters that yield the most descriptive dictionary. The approach inherently learns the complicated morphological changes in ECG waveform, which is then used to improve the classification. The classification performance was evaluated with ECG data under two different preprocessing environments. In the first category, QT-database is baseline drift corrected with notch filter and it filters the 60 Hz power line noise. In the second category, the data are further filtered using fast moving average smoother. The experimental results on QT database confirm that our proposed algorithm shows a classification accuracy of 92%.

Keywords: Electrocardiogram, dictionary learning, sparse coding, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093
7184 Risk-Management by Numerical Pattern Analysis in Data-Mining

Authors: M. Kargar, R. Mirmiran, F. Fartash, T. Saderi

Abstract:

In this paper a new method is suggested for risk management by the numerical patterns in data-mining. These patterns are designed using probability rules in decision trees and are cared to be valid, novel, useful and understandable. Considering a set of functions, the system reaches to a good pattern or better objectives. The patterns are analyzed through the produced matrices and some results are pointed out. By using the suggested method the direction of the functionality route in the systems can be controlled and best planning for special objectives be done.

Keywords: Analysis, Data-mining, Pattern, Risk Management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1270
7183 Wind Speed Data Analysis using Wavelet Transform

Authors: S. Avdakovic, A. Lukac, A. Nuhanovic, M. Music

Abstract:

Renewable energy systems are becoming a topic of great interest and investment in the world. In recent years wind power generation has experienced a very fast development in the whole world. For planning and successful implementations of good wind power plant projects, wind potential measurements are required. In these projects, of great importance is the effective choice of the micro location for wind potential measurements, installation of the measurement station with the appropriate measuring equipment, its maintenance and analysis of the gained data on wind potential characteristics. In this paper, a wavelet transform has been applied to analyze the wind speed data in the context of insight in the characteristics of the wind and the selection of suitable locations that could be the subject of a wind farm construction. This approach shows that it can be a useful tool in investigation of wind potential.

Keywords: Wind potential, Wind speed data, Wavelettransform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2632
7182 A Biometric Template Security Approach to Fingerprints Based on Polynomial Transformations

Authors: Ramon Santana

Abstract:

The use of biometric identifiers in the field of information security, access control to resources, authentication in ATMs and banking among others, are of great concern because of the safety of biometric data. In the general architecture of a biometric system have been detected eight vulnerabilities, six of them allow obtaining minutiae template in plain text. The main consequence of obtaining minutia templates is the loss of biometric identifier for life. To mitigate these vulnerabilities several models to protect minutiae templates have been proposed. Several vulnerabilities in the cryptographic security of these models allow to obtain biometric data in plain text. In order to increase the cryptographic security and ease of reversibility, a minutiae templates protection model is proposed. The model aims to make the cryptographic protection and facilitate the reversibility of data using two levels of security. The first level of security is the data transformation level. In this level generates invariant data to rotation and translation, further transformation is irreversible. The second level of security is the evaluation level, where the encryption key is generated and data is evaluated using a defined evaluation function. The model is aimed at mitigating known vulnerabilities of the proposed models, basing its security on the impossibility of the polynomial reconstruction.

Keywords: Fingerprint, template protection, bio-cryptography, minutiae protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 842
7181 Ecosystem Model for Environmental Applications

Authors: Cristina Schreiner, Romeo Ciobanu, Marius Pislaru

Abstract:

This paper aims to build a system based on fuzzy models that can be implemented in the assessment of ecological systems, to determine appropriate methods of action for reducing adverse effects on environmental and implicit the population. The model proposed provides new perspective for environmental assessment, and it can be used as a practical instrument for decision –making.

Keywords: Ecosystem model, Environmental security, Fuzzy logic, Sustainability of habitable regions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1982
7180 SIMGraph: Simplifying Contig Graph to Improve de Novo Genome Assembly Using Next-generation Sequencing Data

Authors: Chien-Ju Li, Chun-Hui Yu, Chi-Chuan Hwang, Tsunglin Liu , Darby Tien-Hao Chang

Abstract:

De novo genome assembly is always fragmented. Assembly fragmentation is more serious using the popular next generation sequencing (NGS) data because NGS sequences are shorter than the traditional Sanger sequences. As the data throughput of NGS is high, the fragmentations in assemblies are usually not the result of missing data. On the contrary, the assembled sequences, called contigs, are often connected to more than one other contigs in a complicated manner, leading to the fragmentations. False connections in such complicated connections between contigs, named a contig graph, are inevitable because of repeats and sequencing/assembly errors. Simplifying a contig graph by removing false connections directly improves genome assembly. In this work, we have developed a tool, SIMGraph, to resolve ambiguous connections between contigs using NGS data. Applying SIMGraph to the assembly of a fungus and a fish genome, we resolved 27.6% and 60.3% ambiguous contig connections, respectively. These results can reduce the experimental efforts in resolving contig connections.

Keywords: Contig graph, NGS, de novo assembly, scaffold.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734
7179 Acute Coronary Syndrome Prediction Using Data Mining Techniques- An Application

Authors: Tahseen A. Jilani, Huda Yasin, Madiha Yasin, C. Ardil

Abstract:

In this paper we use data mining techniques to investigate factors that contribute significantly to enhancing the risk of acute coronary syndrome. We assume that the dependent variable is diagnosis – with dichotomous values showing presence or  absence of disease. We have applied binary regression to the factors affecting the dependent variable. The data set has been taken from two different cardiac hospitals of Karachi, Pakistan. We have total sixteen variables out of which one is assumed dependent and other 15 are independent variables. For better performance of the regression model in predicting acute coronary syndrome, data reduction techniques like principle component analysis is applied. Based on results of data reduction, we have considered only 14 out of sixteen factors.

Keywords: Acute coronary syndrome (ACS), binary logistic regression analyses, myocardial ischemia (MI), principle component analysis, unstable angina (U.A.).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2114
7178 Improving the Analytical Power of Dynamic DEA Models, by the Consideration of the Shape of the Distribution of Inputs/Outputs Data: A Linear Piecewise Decomposition Approach

Authors: Elias K. Maragos, Petros E. Maravelakis

Abstract:

In Dynamic Data Envelopment Analysis (DDEA), which is a subfield of Data Envelopment Analysis (DEA), the productivity of Decision Making Units (DMUs) is considered in relation to time. In this case, as it is accepted by the most of the researchers, there are outputs, which are produced by a DMU to be used as inputs in a future time. Those outputs are known as intermediates. The common models, in DDEA, do not take into account the shape of the distribution of those inputs, outputs or intermediates data, assuming that the distribution of the virtual value of them does not deviate from linearity. This weakness causes the limitation of the accuracy of the analytical power of the traditional DDEA models. In this paper, the authors, using the concept of piecewise linear inputs and outputs, propose an extended DDEA model. The proposed model increases the flexibility of the traditional DDEA models and improves the measurement of the dynamic performance of DMUs.

Keywords: Data envelopment analysis, Dynamic DEA, Piecewise linear inputs, Piecewise linear outputs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 655