Search results for: network estimation.
2776 Challenges for Security in Wireless Sensor Networks (WSNs)
Authors: Muazzam A. Khan, Ghalib A. Shah, Muhammad Sher
Abstract:
Wireless sensor network is formed with the combination of sensor nodes and sink nodes. Recently Wireless sensor network has attracted attention of the research community. The main application of wireless sensor network is security from different attacks both for mass public and military. However securing these networks, by itself is a critical issue due to many constraints like limited energy, computational power and lower memory. Researchers working in this area have proposed a number of security techniques for this purpose. Still, more work needs to be done.In this paper we provide a detailed discussion on security in wireless sensor networks. This paper will help to identify different obstacles and requirements for security of wireless sensor networks as well as highlight weaknesses of existing techniques.
Keywords: Wireless senor networks (WSNs), security, denial of service, black hole, cryptography, stenography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29232775 Analysis of Multilayer Neural Network Modeling and Long Short-Term Memory
Authors: Danilo López, Nelson Vera, Luis Pedraza
Abstract:
This paper analyzes fundamental ideas and concepts related to neural networks, which provide the reader a theoretical explanation of Long Short-Term Memory (LSTM) networks operation classified as Deep Learning Systems, and to explicitly present the mathematical development of Backward Pass equations of the LSTM network model. This mathematical modeling associated with software development will provide the necessary tools to develop an intelligent system capable of predicting the behavior of licensed users in wireless cognitive radio networks.Keywords: Neural networks, multilayer perceptron, long short-term memory, recurrent neuronal network, mathematical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15622774 An Integrated Logistics Model of Spare Parts Maintenance Planning within the Aviation Industry
Authors: Roy Fritzsche, Rainer Lasch
Abstract:
Avoidable unscheduled maintenance events and unnecessary spare parts deliveries are mostly caused by an incorrect choice of the underlying maintenance strategy. For a faster and more efficient supply of spare parts for aircrafts of an airline we examine options for improving the underlying logistics network integrated in an existing aviation industry network. This paper presents a dynamic prediction model as decision support for maintenance method selection considering requirements of an entire flight network. The objective is to guarantee a high supply of spare parts by an optimal interaction of various network levels and thus to reduce unscheduled maintenance events and minimize total costs. By using a prognostics-based preventive maintenance strategy unscheduled component failures are avoided for an increase in availability and reliability of the entire system. The model is intended for use in an aviation company that utilizes a structured planning process based on collected failures data of components.Keywords: Aviation industry, Prognosis, Reliability, Preventive maintenance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45372773 A Trainable Neural Network Ensemble for ECG Beat Classification
Authors: Atena Sajedin, Shokoufeh Zakernejad, Soheil Faridi, Mehrdad Javadi, Reza Ebrahimpour
Abstract:
This paper illustrates the use of a combined neural network model for classification of electrocardiogram (ECG) beats. We present a trainable neural network ensemble approach to develop customized electrocardiogram beat classifier in an effort to further improve the performance of ECG processing and to offer individualized health care. We process a three stage technique for detection of premature ventricular contraction (PVC) from normal beats and other heart diseases. This method includes a denoising, a feature extraction and a classification. At first we investigate the application of stationary wavelet transform (SWT) for noise reduction of the electrocardiogram (ECG) signals. Then feature extraction module extracts 10 ECG morphological features and one timing interval feature. Then a number of multilayer perceptrons (MLPs) neural networks with different topologies are designed. The performance of the different combination methods as well as the efficiency of the whole system is presented. Among them, Stacked Generalization as a proposed trainable combined neural network model possesses the highest recognition rate of around 95%. Therefore, this network proves to be a suitable candidate in ECG signal diagnosis systems. ECG samples attributing to the different ECG beat types were extracted from the MIT-BIH arrhythmia database for the study. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22162772 View-Point Insensitive Human Pose Recognition using Neural Network and CUDA
Authors: Sanghyeok Oh, Keechul Jung
Abstract:
Although lots of research work has been done for human pose recognition, the view-point of cameras is still critical problem of overall recognition system. In this paper, view-point insensitive human pose recognition is proposed. The aims of the proposed system are view-point insensitivity and real-time processing. Recognition system consists of feature extraction module, neural network and real-time feed forward calculation. First, histogram-based method is used to extract feature from silhouette image and it is suitable for represent the shape of human pose. To reduce the dimension of feature vector, Principle Component Analysis(PCA) is used. Second, real-time processing is implemented by using Compute Unified Device Architecture(CUDA) and this architecture improves the speed of feed-forward calculation of neural network. We demonstrate the effectiveness of our approach with experiments on real environment.Keywords: computer vision, neural network, pose recognition, view-point insensitive, PCA, CUDA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13392771 Image-Based UAV Vertical Distance and Velocity Estimation Algorithm during the Vertical Landing Phase Using Low-Resolution Images
Authors: Seyed-Yaser Nabavi-Chashmi, Davood Asadi, Karim Ahmadi, Eren Demir
Abstract:
The landing phase of a UAV is very critical as there are many uncertainties in this phase, which can easily entail a hard landing or even a crash. In this paper, the estimation of relative distance and velocity to the ground, as one of the most important processes during the landing phase, is studied. Using accurate measurement sensors as an alternative approach can be very expensive for sensors like LIDAR, or with a limited operational range, for sensors like ultrasonic sensors. Additionally, absolute positioning systems like GPS or IMU cannot provide distance to the ground independently. The focus of this paper is to determine whether we can measure the relative distance and velocity of UAV and ground in the landing phase using just low-resolution images taken by a monocular camera. The Lucas-Konda feature detection technique is employed to extract the most suitable feature in a series of images taken during the UAV landing. Two different approaches based on Extended Kalman Filters (EKF) have been proposed, and their performance in estimation of the relative distance and velocity are compared. The first approach uses the kinematics of the UAV as the process and the calculated optical flow as the measurement. On the other hand, the second approach uses the feature’s projection on the camera plane (pixel position) as the measurement while employing both the kinematics of the UAV and the dynamics of variation of projected point as the process to estimate both relative distance and relative velocity. To verify the results, a sequence of low-quality images taken by a camera that is moving on a specifically developed testbed has been used to compare the performance of the proposed algorithm. The case studies show that the quality of images results in considerable noise, which reduces the performance of the first approach. On the other hand, using the projected feature position is much less sensitive to the noise and estimates the distance and velocity with relatively high accuracy. This approach also can be used to predict the future projected feature position, which can drastically decrease the computational workload, as an important criterion for real-time applications.
Keywords: Automatic landing, multirotor, nonlinear control, parameters estimation, optical flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5272770 Optical Flow Based Moving Object Detection and Tracking for Traffic Surveillance
Authors: Sepehr Aslani, Homayoun Mahdavi-Nasab
Abstract:
Automated motion detection and tracking is a challenging task in traffic surveillance. In this paper, a system is developed to gather useful information from stationary cameras for detecting moving objects in digital videos. The moving detection and tracking system is developed based on optical flow estimation together with application and combination of various relevant computer vision and image processing techniques to enhance the process. To remove noises, median filter is used and the unwanted objects are removed by applying thresholding algorithms in morphological operations. Also the object type restrictions are set using blob analysis. The results show that the proposed system successfully detects and tracks moving objects in urban videos.
Keywords: Optical flow estimation, moving object detection, tracking, morphological operation, blob analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 101562769 Dynamic Performance Analysis of Distribution/ Sub-Transmission Networks with High Penetration of PV Generation
Authors: Cristian F.T. Montenegro, Luís F. N. Lourenço, Maurício B. C. Salles, Renato M. Monaro
Abstract:
More PV systems have been connected to the electrical network each year. As the number of PV systems increases, some issues affecting grid operations have been identified. This paper studied the impacts related to changes in solar irradiance on a distribution/sub-transmission network, considering variations due to moving clouds and daily cycles. Using MATLAB/Simulink software, a solar farm of 30 MWp was built and then implemented to a test network. From simulations, it has been determined that irradiance changes can have a significant impact on the grid by causing voltage fluctuations outside the allowable thresholds. This work discussed some local control strategies and grid reinforcements to mitigate the negative effects of the irradiance changes on the grid.
Keywords: Utility-scale PV systems, reactive power control, solar irradiance, voltage fluctuation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12532768 Introduce Applicability of Multi-Layer Perceptron to Predict the Behaviour of Semi-Interlocking Masonry Panel
Authors: O. Zarrin, M. Ramezanshirazi
Abstract:
The Semi Interlocking Masonry (SIM) system has been developed in Masonry Research Group at the University of Newcastle, Australia. The main purpose of this system is to enhance the seismic resistance of framed structures with masonry panels. In this system, SIM panels dissipate energy through the sliding friction between rows of SIM units during earthquake excitation. This paper aimed to find the applicability of artificial neural network (ANN) to predict the displacement behaviour of the SIM panel under out-of-plane loading. The general concept of ANN needs to be trained by related force-displacement data of SIM panel. The overall data to train and test the network are 70 increments of force-displacement from three tests, which comprise of none input nodes. The input data contain height and length of panels, height, length and width of the brick and friction and geometry angle of brick along the compressive strength of the brick with the lateral load applied to the panel. The aim of designed network is prediction displacement of the SIM panel by Multi-Layer Perceptron (MLP). The mean square error (MSE) of network was 0.00042 and the coefficient of determination (R2) values showed the 0.91. The result revealed that the ANN has significant agreement to predict the SIM panel behaviour.Keywords: Semi interlocking masonry, artificial neural network, ANN, multi-layer perceptron, MLP, displacement, prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8162767 A Dynamic Decision Model for Vertical Handoffs across Heterogeneous Wireless Networks
Authors: Pramod Goyal, S. K. Saxena
Abstract:
The convergence of heterogeneous wireless access technologies characterizes the 4G wireless networks. In such converged systems, the seamless and efficient handoff between different access technologies (vertical handoff) is essential and remains a challenging problem. The heterogeneous co-existence of access technologies with largely different characteristics creates a decision problem of determining the “best" available network at “best" time to reduce the unnecessary handoffs. This paper proposes a dynamic decision model to decide the “best" network at “best" time moment to handoffs. The proposed dynamic decision model make the right vertical handoff decisions by determining the “best" network at “best" time among available networks based on, dynamic factors such as “Received Signal Strength(RSS)" of network and “velocity" of mobile station simultaneously with static factors like Usage Expense, Link capacity(offered bandwidth) and power consumption. This model not only meets the individual user needs but also improve the whole system performance by reducing the unnecessary handoffs.Keywords: Dynamic decision model, Seamless handoff, Vertical handoff, Wireless networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20512766 Restricted Pedestrian Flow Performance Measures during Egress from a Complex Facility
Authors: Luthful A. Kawsar, Noraida A. Ghani, Anton A. Kamil, Adli Mustafa
Abstract:
In this paper, we use an M/G/C/C state dependent queuing model within a complex network topology to determine the different performance measures for pedestrian traffic flow. The occupants in this network topology need to go through some source corridors, from which they can choose their suitable exiting corridors. The performance measures were calculated using arrival rates that maximize the throughputs of source corridors. In order to increase the throughput of the network, the result indicates that the flow direction of pedestrian through the corridors has to be restricted and the arrival rates to the source corridor need to be controlled.Keywords: Arrival rate, Multiple arrival sources, Probability of blocking, State dependent queuing networks, Throughput.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15752765 An Efficient Fundamental Matrix Estimation for Moving Object Detection
Authors: Yeongyu Choi, Ju H. Park, S. M. Lee, Ho-Youl Jung
Abstract:
In this paper, an improved method for estimating fundamental matrix is proposed. The method is applied effectively to monocular camera based moving object detection. The method consists of corner points detection, moving object’s motion estimation and fundamental matrix calculation. The corner points are obtained by using Harris corner detector, motions of moving objects is calculated from pyramidal Lucas-Kanade optical flow algorithm. Through epipolar geometry analysis using RANSAC, the fundamental matrix is calculated. In this method, we have improved the performances of moving object detection by using two threshold values that determine inlier or outlier. Through the simulations, we compare the performances with varying the two threshold values.
Keywords: Corner detection, optical flow, epipolar geometry, RANSAC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11172764 Modeling and Stability Analysis of Delayed Game Network
Authors: Zixin Liu, Jian Yu, Daoyun Xu
Abstract:
This paper aims to establish a delayed dynamical relationship between payoffs of players in a zero-sum game. By introducing Markovian chain and time delay in the network model, a delayed game network model with sector bounds and slope bounds restriction nonlinear function is first proposed. As a result, a direct dynamical relationship between payoffs of players in a zero-sum game can be illustrated through a delayed singular system. Combined with Finsler-s Lemma and Lyapunov stable theory, a sufficient condition guaranteeing the unique existence and stability of zero-sum game-s Nash equilibrium is derived. One numerical example is presented to illustrate the validity of the main result.
Keywords: Game networks, zero-sum game, delayed singular system, nonlinear perturbation, time delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14382763 Application of GIS and Statistical Multivariate Techniques for Estimation of Soil Erosion and Sediment Yield
Authors: Masoud Nasri, Ali Gholami, Ali Najafi
Abstract:
In recent years, most of the regions in the world are exposed to degradation and erosion caused by increasing population and over use of land resources. The understanding of the most important factors on soil erosion and sediment yield are the main keys for decision making and planning. In this study, the sediment yield and soil erosion were estimated and the priority of different soil erosion factors used in the MPSIAC method of soil erosion estimation is evaluated in AliAbad watershed in southwest of Isfahan Province, Iran. Different information layers of the parameters were created using a GIS technique. Then, a multivariate procedure was applied to estimate sediment yield and to find the most important factors of soil erosion in the model. The results showed that land use, geology, land and soil cover are the most important factors describing the soil erosion estimated by MPSIAC model.Keywords: land degradation, Soil erosion, Sediment yield, Aliabad, GIS technique, Land use.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16912762 Clustering Based Formulation for Short Term Load Forecasting
Authors: Ajay Shekhar Pandey, D. Singh, S. K. Sinha
Abstract:
A clustering based technique has been developed and implemented for Short Term Load Forecasting, in this article. Formulation has been done using Mean Absolute Percentage Error (MAPE) as an objective function. Data Matrix and cluster size are optimization variables. Model designed, uses two temperature variables. This is compared with six input Radial Basis Function Neural Network (RBFNN) and Fuzzy Inference Neural Network (FINN) for the data of the same system, for same time period. The fuzzy inference system has the network structure and the training procedure of a neural network which initially creates a rule base from existing historical load data. It is observed that the proposed clustering based model is giving better forecasting accuracy as compared to the other two methods. Test results also indicate that the RBFNN can forecast future loads with accuracy comparable to that of proposed method, where as the training time required in the case of FINN is much less.
Keywords: Load forecasting, clustering, fuzzy inference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16272761 Affine Radial Basis Function Neural Networks for the Robust Control of Hyperbolic Distributed Parameter Systems
Authors: Eleni Aggelogiannaki, Haralambos Sarimveis
Abstract:
In this work, a radial basis function (RBF) neural network is developed for the identification of hyperbolic distributed parameter systems (DPSs). This empirical model is based only on process input-output data and used for the estimation of the controlled variables at specific locations, without the need of online solution of partial differential equations (PDEs). The nonlinear model that is obtained is suitably transformed to a nonlinear state space formulation that also takes into account the model mismatch. A stable robust control law is implemented for the attenuation of external disturbances. The proposed identification and control methodology is applied on a long duct, a common component of thermal systems, for a flow based control of temperature distribution. The closed loop performance is significantly improved in comparison to existing control methodologies.
Keywords: Hyperbolic Distributed Parameter Systems, Radial Basis Function Neural Networks, H∞ control, Thermal systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14212760 Energy Efficient In-Network Data Processing in Sensor Networks
Authors: Prakash G L, Thejaswini M, S H Manjula, K R Venugopal, L M Patnaik
Abstract:
The Sensor Network consists of densely deployed sensor nodes. Energy optimization is one of the most important aspects of sensor application design. Data acquisition and aggregation techniques for processing data in-network should be energy efficient. Due to the cross-layer design, resource-limited and noisy nature of Wireless Sensor Networks(WSNs), it is challenging to study the performance of these systems in a realistic setting. In this paper, we propose optimizing queries by aggregation of data and data redundancy to reduce energy consumption without requiring all sensed data and directed diffusion communication paradigm to achieve power savings, robust communication and processing data in-network. To estimate the per-node power consumption POWERTossim mica2 energy model is used, which provides scalable and accurate results. The performance analysis shows that the proposed methods overcomes the existing methods in the aspects of energy consumption in wireless sensor networks.Keywords: Data Aggregation, Directed Diffusion, Partial Aggregation, Packet Merging, Query Plan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18332759 Robust Coherent Noise Suppression by Point Estimation of the Cauchy Location Parameter
Authors: Ephraim Gower, Thato Tsalaile, Monageng Kgwadi, Malcolm Hawksford.
Abstract:
This paper introduces a new point estimation algorithm, with particular focus on coherent noise suppression, given several measurements of the device under test where it is assumed that 1) the noise is first-order stationery and 2) the device under test is linear and time-invariant. The algorithm exploits the robustness of the Pitman estimator of the Cauchy location parameter through the initial scaling of the test signal by a centred Gaussian variable of predetermined variance. It is illustrated through mathematical derivations and simulation results that the proposed algorithm is more accurate and consistently robust to outliers for different tailed density functions than the conventional methods of sample mean (coherent averaging technique) and sample median search.
Keywords: Central limit theorem, Fisher-Cramer Rao, gamma function, Pitman estimator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19222758 UAV Position Estimation Using Remote Radio Head With Adaptive Power Control
Authors: Hyeon-Cheol Lee
Abstract:
The adaptive power control of Code Division Multiple Access (CDMA) communications using Remote Radio Head (RRH) between multiple Unmanned Aerial Vehicles (UAVs) with a link-budget based Signal-to-Interference Ratio (SIR) estimate is applied to four inner loop power control algorithms. It is concluded that Base Station (BS) can calculate not only UAV distance using linearity between speed and Consecutive Transmit-Power-Control Ratio (CTR) of Adaptive Step-size Closed Loop Power Control (ASCLPC), Consecutive TPC Ratio Step-size Closed Loop Power Control (CS-CLPC), Fixed Step-size Power Control (FSPC), but also UAV position with Received Signal Strength Indicator (RSSI) ratio of RRHs.Keywords: speed estimation, adaptive power control, link-budget, SIR, multi-bit quantizer, RRH
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21412757 Particle Filter Supported with the Neural Network for Aircraft Tracking Based on Kernel and Active Contour
Authors: Mohammad Izadkhah, Mojtaba Hoseini, Alireza Khalili Tehrani
Abstract:
In this paper we presented a new method for tracking flying targets in color video sequences based on contour and kernel. The aim of this work is to overcome the problem of losing target in changing light, large displacement, changing speed, and occlusion. The proposed method is made in three steps, estimate the target location by particle filter, segmentation target region using neural network and find the exact contours by greedy snake algorithm. In the proposed method we have used both region and contour information to create target candidate model and this model is dynamically updated during tracking. To avoid the accumulation of errors when updating, target region given to a perceptron neural network to separate the target from background. Then its output used for exact calculation of size and center of the target. Also it is used as the initial contour for the greedy snake algorithm to find the exact target's edge. The proposed algorithm has been tested on a database which contains a lot of challenges such as high speed and agility of aircrafts, background clutter, occlusions, camera movement, and so on. The experimental results show that the use of neural network increases the accuracy of tracking and segmentation.Keywords: Video tracking, particle filter, greedy snake, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11932756 QoS Routing in Wired Sensor Networks with Partial Updates
Authors: Arijit Ghos, Tony Gigargis
Abstract:
QoS routing is an important component of Traffic Engineering in networks that provide QoS guarantees. QoS routing is dependent on the link state information which is typically flooded across the network. This affects both the quality of the routing and the utilization of the network resources. In this paper, we examine establishing QoS routes with partial state updates in wired sensor networks. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12062755 Speed Sensorless Direct Torque Control of a PMSM Drive using Space Vector Modulation Based MRAS and Stator Resistance Estimator
Authors: A. Ameur, B. Mokhtari, N. Essounbouli, L. Mokrani
Abstract:
This paper presents a speed sensorless direct torque control scheme using space vector modulation (DTC-SVM) for permanent magnet synchronous motor (PMSM) drive based a Model Reference Adaptive System (MRAS) algorithm and stator resistance estimator. The MRAS is utilized to estimate speed and stator resistance and compensate the effects of parameter variation on stator resistance, which makes flux and torque estimation more accurate and insensitive to parameter variation. In other hand the use of SVM method reduces the torque ripple while achieving a good dynamic response. Simulation results are presented and show the effectiveness of the proposed method.Keywords: MRAS, PMSM, SVM, DTC, Speed and Resistance estimation, Sensorless drive
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38692754 Anomaly Detection with ANN and SVM for Telemedicine Networks
Authors: Edward Guillén, Jeisson Sánchez, Carlos Omar Ramos
Abstract:
In recent years, a wide variety of applications are developed with Support Vector Machines -SVM- methods and Artificial Neural Networks -ANN-. In general, these methods depend on intrusion knowledge databases such as KDD99, ISCX, and CAIDA among others. New classes of detectors are generated by machine learning techniques, trained and tested over network databases. Thereafter, detectors are employed to detect anomalies in network communication scenarios according to user’s connections behavior. The first detector based on training dataset is deployed in different real-world networks with mobile and non-mobile devices to analyze the performance and accuracy over static detection. The vulnerabilities are based on previous work in telemedicine apps that were developed on the research group. This paper presents the differences on detections results between some network scenarios by applying traditional detectors deployed with artificial neural networks and support vector machines.Keywords: Anomaly detection, back-propagation neural networks, network intrusion detection systems, support vector machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20092753 Stealthy Network Transfer of Data
Authors: N. Veerasamy, C. J. Cheyne
Abstract:
Users of computer systems may often require the private transfer of messages/communications between parties across a network. Information warfare and the protection and dominance of information in the military context is a prime example of an application area in which the confidentiality of data needs to be maintained. The safe transportation of critical data is therefore often a vital requirement for many private communications. However, unwanted interception/sniffing of communications is also a possibility. An elementary stealthy transfer scheme is therefore proposed by the authors. This scheme makes use of encoding, splitting of a message and the use of a hashing algorithm to verify the correctness of the reconstructed message. For this proof-of-concept purpose, the authors have experimented with the random sending of encoded parts of a message and the construction thereof to demonstrate how data can stealthily be transferred across a network so as to prevent the obvious retrieval of data.Keywords: Construction, encode, interception, stealthy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11962752 HIV Modelling - Parallel Implementation Strategies
Authors: Dimitri Perrin, Heather J. Ruskin, Martin Crane
Abstract:
We report on the development of a model to understand why the range of experience with respect to HIV infection is so diverse, especially with respect to the latency period. To investigate this, an agent-based approach is used to extract highlevel behaviour which cannot be described analytically from the set of interaction rules at the cellular level. A network of independent matrices mimics the chain of lymph nodes. Dealing with massively multi-agent systems requires major computational effort. However, parallelisation methods are a natural consequence and advantage of the multi-agent approach and, using the MPI library, are here implemented, tested and optimized. Our current focus is on the various implementations of the data transfer across the network. Three communications strategies are proposed and tested, showing that the most efficient approach is communication based on the natural lymph-network connectivity.Keywords: HIV, Immune modelling, MPI, Parallelisation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15502751 Low Resolution Single Neural Network Based Face Recognition
Authors: Jahan Zeb, Muhammad Younus Javed, Usman Qayyum
Abstract:
This research paper deals with the implementation of face recognition using neural network (recognition classifier) on low-resolution images. The proposed system contains two parts, preprocessing and face classification. The preprocessing part converts original images into blurry image using average filter and equalizes the histogram of those image (lighting normalization). The bi-cubic interpolation function is applied onto equalized image to get resized image. The resized image is actually low-resolution image providing faster processing for training and testing. The preprocessed image becomes the input to neural network classifier, which uses back-propagation algorithm to recognize the familiar faces. The crux of proposed algorithm is its beauty to use single neural network as classifier, which produces straightforward approach towards face recognition. The single neural network consists of three layers with Log sigmoid, Hyperbolic tangent sigmoid and Linear transfer function respectively. The training function, which is incorporated in our work, is Gradient descent with momentum (adaptive learning rate) back propagation. The proposed algorithm was trained on ORL (Olivetti Research Laboratory) database with 5 training images. The empirical results provide the accuracy of 94.50%, 93.00% and 90.25% for 20, 30 and 40 subjects respectively, with time delay of 0.0934 sec per image.Keywords: Average filtering, Bicubic Interpolation, Neurons, vectorization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17502750 Low Energy Method for Data Delivery in Ubiquitous Network
Authors: Tae Kyung Kim, Hee Suk Seo
Abstract:
Recent advances in wireless sensor networks have led to many routing methods designed for energy-efficiency in wireless sensor networks. Despite that many routing methods have been proposed in USN, a single routing method cannot be energy-efficient if the environment of the ubiquitous sensor network varies. We present the controlling network access to various hosts and the services they offer, rather than on securing them one by one with a network security model. When ubiquitous sensor networks are deployed in hostile environments, an adversary may compromise some sensor nodes and use them to inject false sensing reports. False reports can lead to not only false alarms but also the depletion of limited energy resource in battery powered networks. The interleaved hop-by-hop authentication scheme detects such false reports through interleaved authentication. This paper presents a LMDD (Low energy method for data delivery) algorithm that provides energy-efficiency by dynamically changing protocols installed at the sensor nodes. The algorithm changes protocols based on the output of the fuzzy logic which is the fitness level of the protocols for the environment.Keywords: Data delivery, routing, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13452749 Identification of LTI Autonomous All Pole System Using Eigenvector Algorithm
Authors: Sudipta Majumdar
Abstract:
This paper presents a method for identification of a linear time invariant (LTI) autonomous all pole system using singular value decomposition. The novelty of this paper is two fold: First, MUSIC algorithm for estimating complex frequencies from real measurements is proposed. Secondly, using the proposed algorithm, we can identify the coefficients of differential equation that determines the LTI system by switching off our input signal. For this purpose, we need only to switch off the input, apply our complex MUSIC algorithm and determine the coefficients as symmetric polynomials in the complex frequencies. This method can be applied to unstable system and has higher resolution as compared to time series solution when, noisy data are used. The classical performance bound, Cramer Rao bound (CRB), has been used as a basis for performance comparison of the proposed method for multiple poles estimation in noisy exponential signal.Keywords: MUSIC algorithm, Cramer Rao bound, frequency estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9342748 Mobile Ad Hoc Networks and It’s Routing Protocols
Authors: Rakesh Kumar, Piush Verma, Yaduvir Singh
Abstract:
A mobile ad hoc network (MANET) is a self configuring network, without any centralized control. The topology of this network is not always defined. The main objective of this paper is to introduce the fundamental concepts of MANETs to the researchers and practitioners, who are involved in the work in the area of modeling and simulation of MANETs. This paper begins with an overview of mobile ad hoc networks. Then it proceeds with the overview of routing protocols used in the MANETS, their properties and simulation methods. A brief tabular comparison between the routing protocols is also given in this paper considering different routing protocol parameters. This paper introduces a new routing scheme developed by the use of evolutionary algorithms (EA) and analytical hierarchy process (AHP) which will be used for getting the optimized output of MANET. In this paper cryptographic technique, ceaser cipher is also employed for making the optimized route secure.
Keywords: AHP, AODV, Cryptography, EA, MANET, Optimized output.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40202747 Integration of Support Vector Machine and Bayesian Neural Network for Data Mining and Classification
Authors: Essam Al-Daoud
Abstract:
Several combinations of the preprocessing algorithms, feature selection techniques and classifiers can be applied to the data classification tasks. This study introduces a new accurate classifier, the proposed classifier consist from four components: Signal-to- Noise as a feature selection technique, support vector machine, Bayesian neural network and AdaBoost as an ensemble algorithm. To verify the effectiveness of the proposed classifier, seven well known classifiers are applied to four datasets. The experiments show that using the suggested classifier enhances the classification rates for all datasets.Keywords: AdaBoost, Bayesian neural network, Signal-to-Noise, support vector machine, MCMC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020