Search results for: digital learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2917

Search results for: digital learning

2017 Design and Implementation of Quantum Cellular Automata Based Novel Adder Circuits

Authors: Santanu Santra, Utpal Roy

Abstract:

The most important mathematical operation for any computing system is addition. An efficient adder can be of greater assistance in designing of any arithmetic circuits. Quantum-dot Cellular Automata (QCA) is a promising nanotechnology to create electronic circuits for computing devices and suitable candidate for next generation of computing systems. The article presents a modest approach to implement a novel XOR gate. The gate is simple in structure and powerful in terms of implementing digital circuits. By applying the XOR gate, the hardware requirement for a QCA circuit can be decrease and circuits can be simpler in level, clock phase and cell count. In order to verify the functionality of the proposed device some implementation of Half Adder (HA) and Full Adder (FA) is checked by means of computer simulations using QCA-Designer tool. Simulation results and physical relations confirm its usefulness in implementing every digital circuit.

Keywords: Clock, Computing system, Majority gate, QCA, QCA Designer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4453
2016 Endogenous Fantasy – Based Serious Games: Intrinsic Motivation and Learning

Authors: Robert F. Kenny, Glenda A. Gunter

Abstract:

Current technological advances pale in comparison to the changes in social behaviors and 'sense of place' that is being empowered since the Internet made it on the scene. Today-s students view the Internet as both a source of entertainment and an educational tool. The development of virtual environments is a conceptual framework that needs to be addressed by educators and it is important that they become familiar with who these virtual learners are and how they are motivated to learn. Massively multiplayer online role playing games (MMORPGs), if well designed, could become the vehicle of choice to deliver learning content. We suggest that these games, in order to accomplish these goals, must begin with well-established instructional design principles that are co-aligned with established principles of video game design. And have the opportunity to provide an instructional model of significant prescriptive power. The authors believe that game designers need to take advantage of the natural motivation player-learners have for playing games by developing them in such a way so as to promote, intrinsic motivation, content learning, transfer of knowledge, and naturalization.

Keywords: serious games, endogenous fantasy, intrinsic motivation, online learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2236
2015 Power Integrity Analysis of Power Delivery System in High Speed Digital FPGA Board

Authors: Anil Kumar Pandey

Abstract:

Power plane noise is the most significant source of signal integrity (SI) issues in a high-speed digital design. In this paper, power integrity (PI) analysis of multiple power planes in a power delivery system of a 12-layer high-speed FPGA board is presented. All 10 power planes of HSD board are analyzed separately by using 3D Electromagnetic based PI solver, then the transient simulation is performed on combined PI data of all planes along with voltage regulator modules (VRMs) and 70 current drawing chips to get the board level power noise coupling on different high-speed signals. De-coupling capacitors are placed between power planes and ground to reduce power noise coupling with signals.

Keywords: Channel simulation, electromagnetic simulation, power-aware signal integrity analysis, power integrity, PIPro.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2289
2014 Zero-Knowledge Proof-of-Reserve: A Confidential Approach to Cryptocurrency Asset Verification

Authors: Sam, Ng, Lewis Leighton, Sam Atkinson, Carson Yan, Landan Hu, Leslie Cheung, Brian Yap, Kent Lung, Ketat Sarakune

Abstract:

This paper presents a method for verifying cryptocurrency reserves that balances the need for both transparency and data confidentiality. Our methodology employs cryptographic techniques, including Merkle Trees, Bulletproof, and zkSnark, to verify that total assets equal or exceed total liabilities, represented by customer funds. Notably, this verification is achieved without disclosing sensitive information such as the total asset value, customer count, or cold wallet addresses. We delve into the construction and implementation of this methodology. While the system is robust and scalable, we also identify areas for potential enhancements to improve its efficiency and versatility. As the digital asset landscape continues to evolve, our approach provides a solid foundation for ensuring continued trust and security in digital asset platforms.

Keywords: Cryptocurrency, crypto-currency, proof-of-reserve, por, zero-knowledge, zkpor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60
2013 An E-Government Implementation Model for Peruvian State Companies Based on COBIT 5.0: Definition and Goals of the Model

Authors: M. Bruzza, M. Tupia, F. Rodríguez

Abstract:

As part of the regulatory compliance process and the streamlining of public administration, the Peruvian government has implemented the National E-Government Plan in all state institutions with the aim of providing citizens with solid services based on the use of Information and Communications Technologies (ICT). As part of the regulations, the requisites to be met by public institutions have been submitted. However, the lack of an implementation model was detected, one that can serve as a guide to such institutions in order to materialize the organizational and technological structures needed, which allow them to provide the required digital services. This paper develops an implementation model of electronic government (e-government) for Peru’s state institutions, in compliance with current regulations based on a COBIT 5.0 framework. Furthermore, the paper introduces phase 1 of this model: business and IT goals, the goals cascade and the future model of processes.

Keywords: E-government, implementation, model, COBIT 5.0, digital services, u-government, m-government.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395
2012 Learning Human-Like Color Categorization through Interaction

Authors: Rinaldo Christian Tanumara, Ming Xie, Chi Kit Au

Abstract:

Human perceives color in categories, which may be identified using color name such as red, blue, etc. The categorization is unique for each human being. However despite the individual differences, the categorization is shared among members in society. This allows communication among them, especially when using color name. Sociable robot, to live coexist with human and become part of human society, must also have the shared color categorization, which can be achieved through learning. Many works have been done to enable computer, as brain of robot, to learn color categorization. Most of them rely on modeling of human color perception and mathematical complexities. Differently, in this work, the computer learns color categorization through interaction with humans. This work aims at developing the innate ability of the computer to learn the human-like color categorization. It focuses on the representation of color categorization and how it is built and developed without much mathematical complexity.

Keywords: Color categorization, color learning, machinelearning, color naming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
2011 Conceptual Model for Massive Open Online Blended Courses Based on Disciplines’ Concepts Capitalization and Obstacles’ Detection

Authors: N. Hammid, F. Bouarab-Dahmani, T. Berkane

Abstract:

Since its appearance, the MOOC (massive open online course) is gaining more and more intention of the educational communities over the world. Apart from the current MOOCs design and purposes, the creators of MOOC focused on the importance of the connection and knowledge exchange between individuals in learning. In this paper, we present a conceptual model for massive open online blended courses where teachers over the world can collaborate and exchange their experience to get a common efficient content designed as a MOOC opened to their students to live a better learning experience. This model is based on disciplines’ concepts capitalization and the detection of the obstacles met by their students when faced with problem situations (exercises, projects, case studies, etc.). This detection is possible by analyzing the frequently of semantic errors committed by the students. The participation of teachers in the design of the course and the attendance by their students can guarantee an efficient and extensive participation (an important number of participants) in the course, the learners’ motivation and the evaluation issues, in the way that the teachers designing the course assess their students. Thus, the teachers review, together with their knowledge, offer a better assessment and efficient connections to their students.

Keywords: MOOC, Massive Open Online Courses, Online learning, E-learning, Blended learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 941
2010 Learning and Practicing Assessment in a Pre-service Teacher Education Program: Comparative Perspective of UK and Pakistani Universities

Authors: Malik Ghulam Behlol, Alison Fox, Faiza Masood, Sabiha Arshad

Abstract:

This paper explores the barriers to the application of learning-supportive assessment at teaching practicum while investigating the role of university teachers (UT), cooperative teachers (CT), prospective teachers (PT) and heads of the practicum schools (HPS) in the selected universities of Pakistan and the UK. It is a qualitative case study and data were collected through the lesson observation of UT in the pre-service teacher education setting and PT in practicum schools. Interviews with UT, HPS, and Focus Group Discussions with PT were conducted too. The study has concluded that as compared to the UK counterpart, PTs in Pakistan face significant barriers in applying learning-supportive assessment in the school practicum settings because of large class sizes, lack of institutionalised collaboration between universities and schools, poor modelling of the lesson, ineffective feedback practices, lower order thinking assignments, and limited opportunities to use technology in school settings.

Keywords: Learning supportive assessment, pre-service teacher education, theory-practice gap, teacher education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 192
2009 Promoting Social Advocacy through Digital Storytelling: The Case of Ocean Acidification

Authors: Chun Chen Yea, Wen Huei Chou

Abstract:

Many chemical changes in the atmosphere and the ocean are invisible to the naked eye, but they have profound impacts. These changes not only confirm the phenomenon of global carbon pollution, but also forewarn that more changes are coming. The carbon dioxide gases emitted from the burning of fossil fuels dissolve into the ocean and chemically react with seawater to form carbonic acid, which increases the acidity of the originally alkaline seawater. This gradual acidification is occurring at an unprecedented rate and will affect the effective formation of carapace of some marine organisms such as corals and crustaceans, which are almost entirely composed of calcium carbonate. The carapace of these organisms will become more dissoluble. Acidified seawater not only threatens the survival of marine life, but also negatively impacts the global ecosystem via the food chain. Faced with the threat of ocean acidification, all humans are duty-bound. The industrial sector outputs the highest level of carbon dioxide emissions in Taiwan, and the petrochemical industry is the major contributor. Ever since the construction of Formosa Plastics Group's No. 6 Naphtha Cracker Plant in Yunlin County, there have been many environmental concerns such as air pollution and carbon dioxide emission. The marine life along the coast of Yunlin is directly affected by ocean acidification arising from the carbon emissions. Societal change demands our willingness to act, which is what social advocacy promotes. This study uses digital storytelling for social advocacy and ocean acidification as the subject of a visual narrative in visualization to demonstrate the subsequent promotion of social advocacy. Storytelling can transform dull knowledge into an engaging narrative of the crisis faced by marine life. Digital dissemination is an effective social-work practice. The visualization promoting awareness on ocean acidification disseminated via social media platforms, such as Facebook and Instagram. Social media enables users to compose their own messages and share information across different platforms, which helps disseminate the core message of social advocacy.

Keywords: Digital storytelling, visualization, ocean acidification, social advocacy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 949
2008 Closing the Achievement Gap Within Reading and Mathematics Classrooms by Fostering Hispanic Students- Educational Resilience

Authors: Hersh C. Waxman, Yolanda N. Padrón, Jee-Young Shin, Héctor H. Rivera

Abstract:

While many studies have conducted the achievement gap between groups of students in school districts, few studies have utilized resilience research to investigate achievement gaps within classrooms. This paper aims to summarize and discuss some recent studies Waxman, Padr├│n, and their colleagues conducted, in which they examined learning environment differences between resilient and nonresilient students in reading and mathematics classrooms. The classes consist of predominantly Hispanic elementary school students from low-income families. These studies all incorporated learning environment questionnaires and systematic observation methods. Significant differences were found between resilient and nonresilient students on their classroom learning environments and classroom behaviors. The observation results indicate that the amount and quality of teacher and student academic interaction are two of the most influential variables that promote student outcomes. This paper concludes by suggesting the following teacher practices to promote resiliency in schools: (a) using feedback from classroom observation and learning environment measures, (b) employing explicit teaching practices; and (c) understanding students on a social and personal level.

Keywords: achievement gap, classroom learning environments, educational resilience, systematic classroom observation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984
2007 Evolving Digital Circuits for Early Stage Breast Cancer Detection Using Cartesian Genetic Programming

Authors: Zahra Khalid, Gul Muhammad Khan, Arbab Masood Ahmad

Abstract:

Cartesian Genetic Programming (CGP) is explored to design an optimal circuit capable of early stage breast cancer detection. CGP is used to evolve simple multiplexer circuits for detection of malignancy in the Fine Needle Aspiration (FNA) samples of breast. The data set used is extracted from Wisconsins Breast Cancer Database (WBCD). A range of experiments were performed, each with different set of network parameters. The best evolved network detected malignancy with an accuracy of 99.14%, which is higher than that produced with most of the contemporary non-linear techniques that are computational expensive than the proposed system. The evolved network comprises of simple multiplexers and can be implemented easily in hardware without any further complications or inaccuracy, being the digital circuit.

Keywords: Breast cancer detection, cartesian genetic programming, evolvable hardware, fine needle aspiration (FNA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 817
2006 NANCY: Combining Adversarial Networks with Cycle-Consistency for Robust Multi-Modal Image Registration

Authors: Mirjana Ruppel, Rajendra Persad, Amit Bahl, Sanja Dogramadzi, Chris Melhuish, Lyndon Smith

Abstract:

Multimodal image registration is a profoundly complex task which is why deep learning has been used widely to address it in recent years. However, two main challenges remain: Firstly, the lack of ground truth data calls for an unsupervised learning approach, which leads to the second challenge of defining a feasible loss function that can compare two images of different modalities to judge their level of alignment. To avoid this issue altogether we implement a generative adversarial network consisting of two registration networks GAB, GBA and two discrimination networks DA, DB connected by spatial transformation layers. GAB learns to generate a deformation field which registers an image of the modality B to an image of the modality A. To do that, it uses the feedback of the discriminator DB which is learning to judge the quality of alignment of the registered image B. GBA and DA learn a mapping from modality A to modality B. Additionally, a cycle-consistency loss is implemented. For this, both registration networks are employed twice, therefore resulting in images ˆA, ˆB which were registered to ˜B, ˜A which were registered to the initial image pair A, B. Thus the resulting and initial images of the same modality can be easily compared. A dataset of liver CT and MRI was used to evaluate the quality of our approach and to compare it against learning and non-learning based registration algorithms. Our approach leads to dice scores of up to 0.80 ± 0.01 and is therefore comparable to and slightly more successful than algorithms like SimpleElastix and VoxelMorph.

Keywords: Multimodal image registration, GAN, cycle consistency, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 811
2005 A Metametadata Architecture forPedagogic Data Description

Authors: A. Ismail, M. S. Joy, J. E. Sinclair, M. I. Hamzah

Abstract:

This paper focuses on a novel method for semantic searching and retrieval of information about learning materials. Metametadata encapsulate metadata instances by using the properties and attributes provided by ontologies rather than describing learning objects. A novel metametadata taxonomy has been developed which provides the basis for a semantic search engine to extract, match and map queries to retrieve relevant results. The use of ontological views is a foundation for viewing the pedagogical content of metadata extracted from learning objects by using the pedagogical attributes from the metametadata taxonomy. Using the ontological approach and metametadata (based on the metametadata taxonomy) we present a novel semantic searching mechanism.These three strands – the taxonomy, the ontological views, and the search algorithm – are incorporated into a novel architecture (OMESCOD) which has been implemented.

Keywords: Metadata, metametadata, semantic, ontologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1514
2004 Process Optimization and Automation of Information Technology Services in a Heterogenic Digital Environment

Authors: Tasneem Halawani, Yamen Khateeb

Abstract:

With customers’ ever-increasing expectations for fast services provisioning for all their business needs, information technology (IT) organizations, as business partners, have to cope with this demanding environment and deliver their services in the most effective and efficient way. The purpose of this paper is to identify optimization and automation opportunities for the top requested IT services in a heterogenic digital environment and widely spread customer base. In collaboration with systems, processes, and subject matter experts (SMEs), the processes in scope were approached by analyzing four-year related historical data, identifying and surveying stakeholders, modeling the as-is processes, and studying systems integration/automation capabilities. This effort resulted in identifying several pain areas, including standardization, unnecessary customer and IT involvement, manual steps, systems integration, and performance measurement. These pain areas were addressed by standardizing the top five requested IT services, eliminating/automating 43 steps, and utilizing a single platform for end-to-end process execution. In conclusion, the optimization of IT service request processes in a heterogenic digital environment and widely spread customer base is challenging, yet achievable without compromising the service quality and customers’ added value. Further studies can focus on measuring the value of the eliminated/automated process steps to quantify the enhancement impact. Moreover, a similar approach can be utilized to optimize other IT service requests, with a focus on business criticality.

Keywords: Automation, customer value, heterogenic, integration, IT services, optimization, processes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 665
2003 Optimal Linear Quadratic Digital Tracker for the Discrete-Time Proper System with an Unknown Disturbance

Authors: Jason Sheng-Hong Tsai, Faezeh Ebrahimzadeh, Min-Ching Chung, Shu-Mei Guo, Leang-San Shieh, Tzong-Jiy Tsai, Li Wang

Abstract:

In this paper, we first construct a new state and disturbance estimator using discrete-time proportional plus integral observer to estimate the system state and the unknown external disturbance for the discrete-time system with an input-to-output direct-feedthrough term. Then, the generalized optimal linear quadratic digital tracker design is applied to construct a proportional plus integral observer-based tracker for the system with an unknown external disturbance to have a desired tracking performance. Finally, a numerical simulation is given to demonstrate the effectiveness of the new application of our proposed approach.

Keywords: Optimal linear quadratic tracker, proportional plus integral observer, state estimator, disturbance estimator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293
2002 Multi-Context Recurrent Neural Network for Time Series Applications

Authors: B. Q. Huang, Tarik Rashid, M-T. Kechadi

Abstract:

this paper presents a multi-context recurrent network for time series analysis. While simple recurrent network (SRN) are very popular among recurrent neural networks, they still have some shortcomings in terms of learning speed and accuracy that need to be addressed. To solve these problems, we proposed a multi-context recurrent network (MCRN) with three different learning algorithms. The performance of this network is evaluated on some real-world application such as handwriting recognition and energy load forecasting. We study the performance of this network and we compared it to a very well established SRN. The experimental results showed that MCRN is very efficient and very well suited to time series analysis and its applications.

Keywords: Gradient descent method, recurrent neural network, learning algorithms, time series, BP

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3044
2001 Over-Height Vehicle Detection in Low Headroom Roads Using Digital Video Processing

Authors: Vahid Khorramshahi, Alireza Behrad, Neeraj K. Kanhere

Abstract:

In this paper we present a new method for over-height vehicle detection in low headroom streets and highways using digital video possessing. The accuracy and the lower price comparing to present detectors like laser radars and the capability of providing extra information like speed and height measurement make this method more reliable and efficient. In this algorithm the features are selected and tracked using KLT algorithm. A blob extraction algorithm is also applied using background estimation and subtraction. Then the world coordinates of features that are inside the blobs are estimated using a noble calibration method. As, the heights of the features are calculated, we apply a threshold to select overheight features and eliminate others. The over-height features are segmented using some association criteria and grouped using an undirected graph. Then they are tracked through sequential frames. The obtained groups refer to over-height vehicles in a scene.

Keywords: Feature extraction, over-height vehicle detection, traffic monitoring, vehicle tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2828
2000 Hybrid Approach for Memory Analysis in Windows System

Authors: Khairul Akram Zainol Ariffin, Ahmad Kamil Mahmood, Jafreezal Jaafar, Solahuddin Shamsuddin

Abstract:

Random Access Memory (RAM) is an important device in computer system. It can represent the snapshot on how the computer has been used by the user. With the growth of its importance, the computer memory has been an issue that has been discussed in digital forensics. A number of tools have been developed to retrieve the information from the memory. However, most of the tools have their limitation in the ability of retrieving the important information from the computer memory. Hence, this paper is aimed to discuss the limitation and the setback for two main techniques such as process signature search and process enumeration. Then, a new hybrid approach will be presented to minimize the setback in both individual techniques. This new approach combines both techniques with the purpose to retrieve the information from the process block and other objects in the computer memory. Nevertheless, the basic theory in address translation for x86 platforms will be demonstrated in this paper.

Keywords: Algorithms, Digital Forensics, Memory Analysis, Signature Search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
1999 Ontologies for Social Media Digital Evidence

Authors: Edlira Kalemi, Sule Yildirim-Yayilgan

Abstract:

Online Social Networks (OSNs) are nowadays being used widely and intensively for crime investigation and prevention activities. As they provide a lot of information they are used by the law enforcement and intelligence. An extensive review on existing solutions and models for collecting intelligence from this source of information and making use of it for solving crimes has been presented in this article. The main focus is on smart solutions and models where ontologies have been used as the main approach for representing criminal domain knowledge. A framework for a prototype ontology named SC-Ont will be described. This defines terms of the criminal domain ontology and the relations between them. The terms and the relations are extracted during both this review and the discussions carried out with domain experts. The development of SC-Ont is still ongoing work, where in this paper, we report mainly on the motivation for using smart ontology models and the possible benefits of using them for solving crimes.

Keywords: Criminal digital evidence, social media, ontologies, reasoning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2378
1998 A Learner-Centred or Artefact-Centred Classroom? Impact of Technology, Artefacts, and Environment on Task Processes in an English as a Foreign Language Classroom

Authors: Nobue T. Ellis

Abstract:

This preliminary study attempts to see if a learning environment influences instructor’s teaching strategies and learners’ in-class activities in a foreign language class at a university in Japan. The class under study was conducted in a computer room, while the majority of classes of the same course were offered in traditional classrooms without computers. The study also sees if the unplanned blended learning environment, enhanced, or worked against, in achieving course goals, by paying close attention to in-class artefacts, such as computers. In the macro-level analysis, the course syllabus and weekly itinerary of the course were looked at; and in the microlevel analysis, nonhuman actors in their environments were named and analyzed to see how they influenced the learners’ task processes. The result indicated that students were heavily influenced by the presence of computers, which lead them to disregard some aspects of intended learning objectives.

Keywords: Computer-assisted language learning, actor-network theory, English as a foreign language, task-based teaching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
1997 Promoting Complex Systems Learning through the use of Computer Modeling

Authors: Kamel Hashem, David Mioduser

Abstract:

This paper describes part of a project about Learningby- Modeling (LbM). Studying complex systems is increasingly important in teaching and learning many science domains. Many features of complex systems make it difficult for students to develop deep understanding. Previous research indicates that involvement with modeling scientific phenomena and complex systems can play a powerful role in science learning. Some researchers argue with this view indicating that models and modeling do not contribute to understanding complexity concepts, since these increases the cognitive load on students. This study will investigate the effect of different modes of involvement in exploring scientific phenomena using computer simulation tools, on students- mental model from the perspective of structure, behavior and function. Quantitative and qualitative methods are used to report about 121 freshmen students that engaged in participatory simulations about complex phenomena, showing emergent, self-organized and decentralized patterns. Results show that LbM plays a major role in students' concept formation about complexity concepts.

Keywords: Complexity, Educational technology, Learning by modeling, Mental models

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
1996 Improved Back Propagation Algorithm to Avoid Local Minima in Multiplicative Neuron Model

Authors: Kavita Burse, Manish Manoria, Vishnu P. S. Kirar

Abstract:

The back propagation algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a training algorithm consisting of a learning rate and a momentum factor. The major drawbacks of above learning algorithm are the problems of local minima and slow convergence speeds. The addition of an extra term, called a proportional factor reduces the convergence of the back propagation algorithm. We have applied the three term back propagation to multiplicative neural network learning. The algorithm is tested on XOR and parity problem and compared with the standard back propagation training algorithm.

Keywords: Three term back propagation, multiplicative neuralnetwork, proportional factor, local minima.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2815
1995 Meta Random Forests

Authors: Praveen Boinee, Alessandro De Angelis, Gian Luca Foresti

Abstract:

Leo Breimans Random Forests (RF) is a recent development in tree based classifiers and quickly proven to be one of the most important algorithms in the machine learning literature. It has shown robust and improved results of classifications on standard data sets. Ensemble learning algorithms such as AdaBoost and Bagging have been in active research and shown improvements in classification results for several benchmarking data sets with mainly decision trees as their base classifiers. In this paper we experiment to apply these Meta learning techniques to the random forests. We experiment the working of the ensembles of random forests on the standard data sets available in UCI data sets. We compare the original random forest algorithm with their ensemble counterparts and discuss the results.

Keywords: Random Forests [RF], ensembles, UCI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2711
1994 Bayesian Deep Learning Algorithms for Classifying COVID-19 Images

Authors: I. Oloyede

Abstract:

The study investigates the accuracy and loss of deep learning algorithms with the set of coronavirus (COVID-19) images dataset by comparing Bayesian convolutional neural network and traditional convolutional neural network in low dimensional dataset. 50 sets of X-ray images out of which 25 were COVID-19 and the remaining 20 were normal, twenty images were set as training while five were set as validation that were used to ascertained the accuracy of the model. The study found out that Bayesian convolution neural network outperformed conventional neural network at low dimensional dataset that could have exhibited under fitting. The study therefore recommended Bayesian Convolutional neural network (BCNN) for android apps in computer vision for image detection.

Keywords: BCNN, CNN, Images, COVID-19, Deep Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 872
1993 Augmenting History: Case Study Measuring Motivation of Students Using Augmented Reality Apps in History Classes

Authors: Kevin. S. Badni

Abstract:

Due to the rapid advances in the use of information technology and students’ familiarity with technology, learning styles in higher education are being reshaped. One of the technology developments that has gained considerable attention in recent years is Augmented Reality (AR), where technology is used to combine overlays of digital data on physical real-world settings. While AR is being heavily promoted for entertainment by mobile phone manufacturers, it has had little adoption in higher education due to the required upfront investment that an instructor needs to undertake in creating relevant AR applications. This paper discusses a case study that uses a low upfront development approach and examines the impact on generation-Z students’ motivation whilst studying design history over a four-semester period. Even though the upfront investment in creating the AR support was minimal, the results showed a noticeable increase in student motivation. The approach used in this paper can be easily transferred to other disciplines and other areas of design education.

Keywords: Augmented reality, history, motivation, technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 937
1992 A Survey on Lossless Compression of Bayer Color Filter Array Images

Authors: Alina Trifan, António J. R. Neves

Abstract:

Although most digital cameras acquire images in a raw format, based on a Color Filter Array that arranges RGB color filters on a square grid of photosensors, most image compression techniques do not use the raw data; instead, they use the rgb result of an interpolation algorithm of the raw data. This approach is inefficient and by performing a lossless compression of the raw data, followed by pixel interpolation, digital cameras could be more power efficient and provide images with increased resolution given that the interpolation step could be shifted to an external processing unit. In this paper, we conduct a survey on the use of lossless compression algorithms with raw Bayer images. Moreover, in order to reduce the effect of the transition between colors that increase the entropy of the raw Bayer image, we split the image into three new images corresponding to each channel (red, green and blue) and we study the same compression algorithms applied to each one individually. This simple pre-processing stage allows an improvement of more than 15% in predictive based methods.

Keywords: Bayer images, CFA, losseless compression, image coding standards.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2545
1991 Prediction on Housing Price Based on Deep Learning

Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang

Abstract:

In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.

Keywords: Deep learning, convolutional neural network, LSTM, housing prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4990
1990 Edge Detection in Digital Images Using Fuzzy Logic Technique

Authors: Abdallah A. Alshennawy, Ayman A. Aly

Abstract:

The fuzzy technique is an operator introduced in order to simulate at a mathematical level the compensatory behavior in process of decision making or subjective evaluation. The following paper introduces such operators on hand of computer vision application. In this paper a novel method based on fuzzy logic reasoning strategy is proposed for edge detection in digital images without determining the threshold value. The proposed approach begins by segmenting the images into regions using floating 3x3 binary matrix. The edge pixels are mapped to a range of values distinct from each other. The robustness of the proposed method results for different captured images are compared to those obtained with the linear Sobel operator. It is gave a permanent effect in the lines smoothness and straightness for the straight lines and good roundness for the curved lines. In the same time the corners get sharper and can be defined easily.

Keywords: Fuzzy logic, Edge detection, Image processing, computer vision, Mechanical parts, Measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4768
1989 Evaluation of Curriculum Quality of Postgraduate Studies of Actuarial Science Field at Public Universities of Iran

Authors: F. Havas Beigi, M. Vafaee Yeganeh, E. Mohammadi

Abstract:

Evaluation and survey of curriculum quality as one of the most important components of universities system is necessary for different levels in higher education. The main purpose of this study was to survey of the curriculum quality of Actuarial science field. Case: University of SHahid Beheshti and Higher education institute of Eco insurance (according to viewpoint of students, alumni, employers and faculty members). Descriptive statistics (mean, tables, percentage, and frequency distribution) and inferential statistics (CHI SQUARE) were used to analyze the data. Six criteria considered for the Quality of curriculum: objectives, content, teaching and learning methods, space and facilities, Time, assessment of learning. Content, teaching and learning methods, space and facilities, assessment of learning criteria were relatively desirable level, objectives and time criterions were desirable level. The quality of curriculum of Actuarial Science field was relatively desirable level.

Keywords: Quality, curriculum, Actuarial science, higher education

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865
1988 E-Learning Network Support Services: A Comparative Case Study of Australian and United States Universities

Authors: Sayed Hadi Sadeghi

Abstract:

This research study examines the current state of support services for e-network practice in an Australian and an American university. It identifies information that will be of assistance to Australian and American universities to improve their existing online programs. The study investigated the two universities using a quantitative methodological approach. Participants were students, lecturers and admins of universities engaged with online courses and learning management systems. The support services for e-network practice variables, namely academic support services, administrative support and technical support, were investigated for e-practice. Evaluations of e-network support service and its sub factors were above average and excellent in both countries, although the American admins and lecturers tended to evaluate this factor higher than others did. Support practice was evaluated higher by all participants of an American university than by Australians. One explanation for the results may be that most suppliers of the Australian university e-learning system were from eastern Asian cultural backgrounds with a western networking support perspective about e-learning.

Keywords: Support services, e-network practice, Australian universities, United States universities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 987