Search results for: credit card fraud detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1685

Search results for: credit card fraud detection

785 Probabilistic Wavelet Neural Network Based Vibration Analysis of Induction Motor Drive

Authors: K. Jayakumar, S. Thangavel

Abstract:

In this paper proposed the effective fault detection of industrial drives by using Biorthogonal Posterior Vibration Signal-Data Probabilistic Wavelet Neural Network (BPPVS-WNN) system. This system was focused to reducing the current flow and to identify faults with lesser execution time with harmonic values obtained through fifth derivative. Initially, the construction of Biorthogonal vibration signal-data based wavelet transform in BPPVS-WNN system localizes the time and frequency domain. The Biorthogonal wavelet approximates the broken bearing using double scaling and factor, identifies the transient disturbance due to fault on induction motor through approximate coefficients and detailed coefficient. Posterior Probabilistic Neural Network detects the final level of faults using the detailed coefficient till fifth derivative and the results obtained through it at a faster rate at constant frequency signal on the industrial drive. Experiment through the Simulink tool detects the healthy and unhealthy motor on measuring parametric factors such as fault detection rate based on time, current flow rate, and execution time.

Keywords: Biorthogonal Wavelet Transform, Posterior Probabilistic Neural Network, Induction Motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1019
784 Pre-Operative Tool for Facial-Post-Surgical Estimation and Detection

Authors: Ayat E. Ali, Christeen R. Aziz, Merna A. Helmy, Mohammed M. Malek, Sherif H. El-Gohary

Abstract:

Goal: Purpose of the project was to make a plastic surgery prediction by using pre-operative images for the plastic surgeries’ patients and to show this prediction on a screen to compare between the current case and the appearance after the surgery. Methods: To this aim, we implemented a software which used data from the internet for facial skin diseases, skin burns, pre-and post-images for plastic surgeries then the post- surgical prediction is done by using K-nearest neighbor (KNN). So we designed and fabricated a smart mirror divided into two parts a screen and a reflective mirror so patient's pre- and post-appearance will be showed at the same time. Results: We worked on some skin diseases like vitiligo, skin burns and wrinkles. We classified the three degrees of burns using KNN classifier with accuracy 60%. We also succeeded in segmenting the area of vitiligo. Our future work will include working on more skin diseases, classify them and give a prediction for the look after the surgery. Also we will go deeper into facial deformities and plastic surgeries like nose reshaping and face slim down. Conclusion: Our project will give a prediction relates strongly to the real look after surgery and decrease different diagnoses among doctors. Significance: The mirror may have broad societal appeal as it will make the distance between patient's satisfaction and the medical standards smaller.

Keywords: K-nearest neighbor, face detection, vitiligo, bone deformity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 701
783 X-Ray Intensity Measurement Using Frequency Output Sensor for Computed Tomography

Authors: R. M. Siddiqui, D. Z. Moghaddam, T. R. Turlapati, S. H. Khan, I. Ul Ahad

Abstract:

Quality of 2D and 3D cross-sectional images produce by Computed Tomography primarily depend upon the degree of precision of primary and secondary X-Ray intensity detection. Traditional method of primary intensity detection is apt to errors. Recently the X-Ray intensity measurement system along with smart X-Ray sensors is developed by our group which is able to detect primary X-Ray intensity unerringly. In this study a new smart X-Ray sensor is developed using Light-to-Frequency converter TSL230 from Texas Instruments which has numerous advantages in terms of noiseless data acquisition and transmission. TSL230 construction is based on a silicon photodiode which converts incoming X-Ray radiation into the proportional current signal. A current to frequency converter is attached to this photodiode on a single monolithic CMOS integrated circuit which provides proportional frequency count to incoming current signal in the form of the pulse train. The frequency count is delivered to the center of PICDEM FS USB board with PIC18F4550 microcontroller mounted on it. With highly compact electronic hardware, this Demo Board efficiently read the smart sensor output data. The frequency output approaches overcome nonlinear behavior of sensors with analog output thus un-attenuated X-Ray intensities could be measured precisely and better normalization could be acquired in order to attain high resolution.

Keywords: Computed tomography, detector technology, X-Ray intensity measurement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2609
782 Prioritization of Customer Order Selection Factors by Utilizing Conjoint Analysis: A Case Study for a Structural Steel Firm

Authors: Burcu Akyildiz, Cigdem Kadaifci, Y. Ilker Topcu, Burc Ulengin

Abstract:

In today’s business environment, companies should  make strategic decisions to gain sustainable competitive advantage.  Order selection is a crucial issue among these decisions especially for  steel production industry. When the companies allocate a high  proportion of their design and production capacities to their ongoing  projects, determining which customer order should be chosen among  the potential orders without exceeding the remaining capacity is the  major critical problem. In this study, it is aimed to identify and  prioritize the evaluation factors for the customer order selection  problem. Conjoint Analysis is used to examine the importance level  of each factor which is determined as the potential profit rate per unit  of time, the compatibility of potential order with available capacity,  the level of potential future order with higher profit, customer credit  of future business opportunity, and the negotiability level of  production schedule for the order.

 

Keywords: Conjoint analysis, order prioritization, profit management, structural steel firm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2081
781 Least Square-SVM Detector for Wireless BPSK in Multi-Environmental Noise

Authors: J. P. Dubois, Omar M. Abdul-Latif

Abstract:

Support Vector Machine (SVM) is a statistical learning tool developed to a more complex concept of structural risk minimization (SRM). In this paper, SVM is applied to signal detection in communication systems in the presence of channel noise in various environments in the form of Rayleigh fading, additive white Gaussian background noise (AWGN), and interference noise generalized as additive color Gaussian noise (ACGN). The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these advanced stochastic noise models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to conventional binary signaling optimal model-based detector driven by binary phase shift keying (BPSK) modulation. We show that the SVM performance is superior to that of conventional matched filter-, innovation filter-, and Wiener filter-driven detectors, even in the presence of random Doppler carrier deviation, especially for low SNR (signal-to-noise ratio) ranges. For large SNR, the performance of the SVM was similar to that of the classical detectors. However, the convergence between SVM and maximum likelihood detection occurred at a higher SNR as the noise environment became more hostile.

Keywords: Colour noise, Doppler shift, innovation filter, least square-support vector machine, matched filter, Rayleigh fading, Wiener filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813
780 Evaluation of the Microscopic-Observation Drug-Susceptibility Assay Drugs Concentration for Detection of Multidrug-Resistant Tuberculosis

Authors: Anita, Sari Septiani Tangke, Rusdina Bte Ladju, Nasrum Massi

Abstract:

New diagnostic tools are urgently needed to interrupt the transmission of tuberculosis and multidrug-resistant tuberculosis. The microscopic-observation drug-susceptibility (MODS) assay is a rapid, accurate and simple liquid culture method to detect multidrug-resistant tuberculosis (MDR-TB). MODS were evaluated to determine a lower and same concentration of isoniazid and rifampin for detection of MDR-TB. Direct drug-susceptibility testing was performed with the use of the MODS assay. Drug-sensitive control strains were tested daily. The drug concentrations that used for both isoniazid and rifampin were at the same concentration: 0.16, 0.08 and 0.04μg per milliliter. We tested 56 M. tuberculosis clinical isolates and the control strains M. tuberculosis H37RV. All concentration showed same result. Of 53 M. tuberculosis clinical isolates, 14 were MDR-TB, 38 were susceptible with isoniazid and rifampin, 1 was resistant with isoniazid only. Drug-susceptibility testing was performed with the use of the proportion method using Mycobacteria Growth Indicator Tube (MGIT) system as reference. The result of MODS assay using lower concentration was significance (P<0.001) compare with the reference methods.

A lower and same concentration of isoniazid and rifampin can be used to detect MDR-TB. Operational cost and application can be more efficient and easier in resource-limited environments. However, additional studies evaluating the MODS using lower and same concentration of isoniazid and rifampin must be conducted with a larger number of clinical isolates.

Keywords: Isoniazid, MODS assay, MDR-TB, Rifampin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
779 Computing Entropy for Ortholog Detection

Authors: Hsing-Kuo Pao, John Case

Abstract:

Biological sequences from different species are called or-thologs if they evolved from a sequence of a common ancestor species and they have the same biological function. Approximations of Kolmogorov complexity or entropy of biological sequences are already well known to be useful in extracting similarity information between such sequences -in the interest, for example, of ortholog detection. As is well known, the exact Kolmogorov complexity is not algorithmically computable. In prac-tice one can approximate it by computable compression methods. How-ever, such compression methods do not provide a good approximation to Kolmogorov complexity for short sequences. Herein is suggested a new ap-proach to overcome the problem that compression approximations may notwork well on short sequences. This approach is inspired by new, conditional computations of Kolmogorov entropy. A main contribution of the empir-ical work described shows the new set of entropy-based machine learning attributes provides good separation between positive (ortholog) and nega-tive (non-ortholog) data - better than with good, previously known alter-natives (which do not employ some means to handle short sequences well).Also empirically compared are the new entropy based attribute set and a number of other, more standard similarity attributes sets commonly used in genomic analysis. The various similarity attributes are evaluated by cross validation, through boosted decision tree induction C5.0, and by Receiver Operating Characteristic (ROC) analysis. The results point to the conclu-sion: the new, entropy based attribute set by itself is not the one giving the best prediction; however, it is the best attribute set for use in improving the other, standard attribute sets when conjoined with them.

Keywords: compression, decision tree, entropy, ortholog, ROC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
778 Performing Diagnosis in Building with Partially Valid Heterogeneous Tests

Authors: Houda Najeh, Mahendra Pratap Singh, Stéphane Ploix, Antoine Caucheteux, Karim Chabir, Mohamed Naceur Abdelkrim

Abstract:

Building system is highly vulnerable to different kinds of faults and human misbehaviors. Energy efficiency and user comfort are directly targeted due to abnormalities in building operation. The available fault diagnosis tools and methodologies particularly rely on rules or pure model-based approaches. It is assumed that model or rule-based test could be applied to any situation without taking into account actual testing contexts. Contextual tests with validity domain could reduce a lot of the design of detection tests. The main objective of this paper is to consider fault validity when validate the test model considering the non-modeled events such as occupancy, weather conditions, door and window openings and the integration of the knowledge of the expert on the state of the system. The concept of heterogeneous tests is combined with test validity to generate fault diagnoses. A combination of rules, range and model-based tests known as heterogeneous tests are proposed to reduce the modeling complexity. Calculation of logical diagnoses coming from artificial intelligence provides a global explanation consistent with the test result. An application example shows the efficiency of the proposed technique: an office setting at Grenoble Institute of Technology.

Keywords: Heterogeneous tests, validity, building system, sensor grids, sensor fault, diagnosis, fault detection and isolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 652
777 Sperm Identification Using Elliptic Model and Tail Detection

Authors: Vahid Reza Nafisi, Mohammad Hasan Moradi, Mohammad Hosain Nasr-Esfahani

Abstract:

The conventional assessment of human semen is a highly subjective assessment, with considerable intra- and interlaboratory variability. Computer-Assisted Sperm Analysis (CASA) systems provide a rapid and automated assessment of the sperm characteristics, together with improved standardization and quality control. However, the outcome of CASA systems is sensitive to the method of experimentation. While conventional CASA systems use digital microscopes with phase-contrast accessories, producing higher contrast images, we have used raw semen samples (no staining materials) and a regular light microscope, with a digital camera directly attached to its eyepiece, to insure cost benefits and simple assembling of the system. However, since the accurate finding of sperms in the semen image is the first step in the examination and analysis of the semen, any error in this step can affect the outcome of the analysis. This article introduces and explains an algorithm for finding sperms in low contrast images: First, an image enhancement algorithm is applied to remove extra particles from the image. Then, the foreground particles (including sperms and round cells) are segmented form the background. Finally, based on certain features and criteria, sperms are separated from other cells.

Keywords: Computer-Assisted Sperm Analysis (CASA), Sperm identification, Tail detection, Elliptic shape model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928
776 A Program Based on Artistic and Musical Activities to Acquire Educational Concepts for Children with Learning Difficulties

Authors: Ahmed Amin Mousa, Huda Mazeed, Eman Saad

Abstract:

The study aims to identify the extent of effectiveness of the artistic formation program using some types of pastes to reduce the hyperactivity of the kindergarten children with learning difficulties. The researchers have discussed the aforesaid topic, where the research sample included 120 children of ages between 5 to 6 years, from five schools for special needs, learning disability section, Cairo Governorate. The study used the quasi-empirical method, which depends on designing one group using the pre& post application measurements for the group to validate both, hypothesis and effectiveness of the program. The variables of the study were specified as follows; artistic formation program using Paper Mache as an independent variable, and its effect on the skills of kindergarten child with learning disabilities, as a dependent variable. The researchers utilized the application of an artistic formation program consisting of artistic and musical skills for kindergarten children with learning disabilities. The tools of the study, designed by the researchers, included: observation card used for recording the culling paper using pulp molding skills for kindergarten children with learning difficulties during practicing the artistic formation activity. Additionally, there was a program utilizing Artistic and Musical Activities for kindergarten children with learning disabilities to acquire educational concepts. The study was composed of 20 lessons for fine art activities and 20 lessons for musical activities, with obligation of giving the musical lesson with art lesson in one session to cast on the kindergarten child some educational concepts.

Keywords: musical activities, developing skills, early childhood, educational concepts, learning difficulties

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544
775 Dynamic Fault Diagnosis for Semi-Batch Reactor under Closed-Loop Control via Independent Radial Basis Function Neural Network

Authors: Abdelkarim M. Ertiame, D. W. Yu, D. L. Yu, J. B. Gomm

Abstract:

In this paper, a robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor, when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics, and using the weighted sum-squared prediction error as the residual. The Recursive Orthogonal Least Squares algorithm (ROLS) is employed to train the model to overcome the training difficulty of the independent mode of the network. Then, another RBFNN is used as a fault classifier to isolate faults from different features involved in the residual vector. Several actuator and sensor faults are simulated in a nonlinear simulation of the reactor in Simulink. The scheme is used to detect and isolate the faults on-line. The simulation results show the effectiveness of the scheme even the process is subjected to disturbances and uncertainties including significant changes in the monomer feed rate, fouling factor, impurity factor, ambient temperature, and measurement noise. The simulation results are presented to illustrate the effectiveness and robustness of the proposed method.

Keywords: Robust fault detection, cascade control, independent RBF model, RBF neural networks, Chylla-Haase reactor, FDI under closed-loop control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
774 Online Optic Disk Segmentation Using Fractals

Authors: Srinivasan Aruchamy, Partha Bhattacharjee, Goutam Sanyal

Abstract:

Optic disk segmentation plays a key role in the mass screening of individuals with diabetic retinopathy and glaucoma ailments. An efficient hardware-based algorithm for optic disk localization and segmentation would aid for developing an automated retinal image analysis system for real time applications. Herein, TMS320C6416DSK DSP board pixel intensity based fractal analysis algorithm for an automatic localization and segmentation of the optic disk is reported. The experiment has been performed on color and fluorescent angiography retinal fundus images. Initially, the images were pre-processed to reduce the noise and enhance the quality. The retinal vascular tree of the image was then extracted using canny edge detection technique. Finally, a pixel intensity based fractal analysis is performed to segment the optic disk by tracing the origin of the vascular tree. The proposed method is examined on three publicly available data sets of the retinal image and also with the data set obtained from an eye clinic. The average accuracy achieved is 96.2%. To the best of the knowledge, this is the first work reporting the use of TMS320C6416DSK DSP board and pixel intensity based fractal analysis algorithm for an automatic localization and segmentation of the optic disk. This will pave the way for developing devices for detection of retinal diseases in the future.

Keywords: Color retinal fundus images, Diabetic retinopathy, Fluorescein angiography retinal fundus images, Fractal analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2514
773 Performance Evaluation of an ANC-based Hybrid Algorithm for Multi-target Wideband Active Sonar Echolocation System

Authors: Jason Chien-Hsun Tseng

Abstract:

This paper evaluates performances of an adaptive noise cancelling (ANC) based target detection algorithm on a set of real test data supported by the Defense Evaluation Research Agency (DERA UK) for multi-target wideband active sonar echolocation system. The hybrid algorithm proposed is a combination of an adaptive ANC neuro-fuzzy scheme in the first instance and followed by an iterative optimum target motion estimation (TME) scheme. The neuro-fuzzy scheme is based on the adaptive noise cancelling concept with the core processor of ANFIS (adaptive neuro-fuzzy inference system) to provide an effective fine tuned signal. The resultant output is then sent as an input to the optimum TME scheme composed of twogauge trimmed-mean (TM) levelization, discrete wavelet denoising (WDeN), and optimal continuous wavelet transform (CWT) for further denosing and targets identification. Its aim is to recover the contact signals in an effective and efficient manner and then determine the Doppler motion (radial range, velocity and acceleration) at very low signal-to-noise ratio (SNR). Quantitative results have shown that the hybrid algorithm have excellent performance in predicting targets- Doppler motion within various target strength with the maximum false detection of 1.5%.

Keywords: Wideband Active Sonar Echolocation, ANC Neuro-Fuzzy, Wavelet Denoise, CWT, Hybrid Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059
772 Urban Growth Analysis Using Multi-Temporal Satellite Images, Non-stationary Decomposition Methods and Stochastic Modeling

Authors: Ali Ben Abbes, ImedRiadh Farah, Vincent Barra

Abstract:

Remotely sensed data are a significant source for monitoring and updating databases for land use/cover. Nowadays, changes detection of urban area has been a subject of intensive researches. Timely and accurate data on spatio-temporal changes of urban areas are therefore required. The data extracted from multi-temporal satellite images are usually non-stationary. In fact, the changes evolve in time and space. This paper is an attempt to propose a methodology for changes detection in urban area by combining a non-stationary decomposition method and stochastic modeling. We consider as input of our methodology a sequence of satellite images I1, I2, … In at different periods (t = 1, 2, ..., n). Firstly, a preprocessing of multi-temporal satellite images is applied. (e.g. radiometric, atmospheric and geometric). The systematic study of global urban expansion in our methodology can be approached in two ways: The first considers the urban area as one same object as opposed to non-urban areas (e.g. vegetation, bare soil and water). The objective is to extract the urban mask. The second one aims to obtain a more knowledge of urban area, distinguishing different types of tissue within the urban area. In order to validate our approach, we used a database of Tres Cantos-Madrid in Spain, which is derived from Landsat for a period (from January 2004 to July 2013) by collecting two frames per year at a spatial resolution of 25 meters. The obtained results show the effectiveness of our method.

Keywords: Multi-temporal satellite image, urban growth, Non-stationarity, stochastic modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
771 Web Proxy Detection via Bipartite Graphs and One-Mode Projections

Authors: Zhipeng Chen, Peng Zhang, Qingyun Liu, Li Guo

Abstract:

With the Internet becoming the dominant channel for business and life, many IPs are increasingly masked using web proxies for illegal purposes such as propagating malware, impersonate phishing pages to steal sensitive data or redirect victims to other malicious targets. Moreover, as Internet traffic continues to grow in size and complexity, it has become an increasingly challenging task to detect the proxy service due to their dynamic update and high anonymity. In this paper, we present an approach based on behavioral graph analysis to study the behavior similarity of web proxy users. Specifically, we use bipartite graphs to model host communications from network traffic and build one-mode projections of bipartite graphs for discovering social-behavior similarity of web proxy users. Based on the similarity matrices of end-users from the derived one-mode projection graphs, we apply a simple yet effective spectral clustering algorithm to discover the inherent web proxy users behavior clusters. The web proxy URL may vary from time to time. Still, the inherent interest would not. So, based on the intuition, by dint of our private tools implemented by WebDriver, we examine whether the top URLs visited by the web proxy users are web proxies. Our experiment results based on real datasets show that the behavior clusters not only reduce the number of URLs analysis but also provide an effective way to detect the web proxies, especially for the unknown web proxies.

Keywords: Bipartite graph, clustering, one-mode projection, web proxy detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 747
770 Durian Marker Kit for Durian (Durio zibethinus Murr.) Identity

Authors: Emma K. Sales

Abstract:

Durian is the flagship fruit of Mindanao and there is an abundance of several cultivars with many confusing identities/ names. The project was conducted to develop procedure for reliable and rapid detection and sorting of durian planting materials. Moreover, it is also aimed to establish specific genetic or DNA markers for routine testing and authentication of durian cultivars in question. The project developed molecular procedures for routine testing. SSR primers were also screened and identified for their utility in discriminating durian cultivars collected. Results of the study showed the following accomplishments: 1. Twenty (29) SSR primers were selected and identified based on their ability to discriminate durian cultivars, 2. Optimized and established standard procedure for identification and authentication of Durian cultivars 3. Genetic profile of durian is now available at Biotech Unit Our results demonstrate the relevance of using molecular techniques in evaluating and identifying durian clones. The most polymorphic primers tested in this study could be useful tools for detecting variation even at the early stage of the plant especially for commercial purposes. The process developed combines the efficiency of the microsatellites development process with the optimization of non-radioactive detection process resulting in a user-friendly protocol that can be performed in two (2) weeks and easily incorporated into laboratories about to start microsatellite development projects. This can be of great importance to extend microsatellite analyses to other crop species where minimal genetic information is currently available. With this, the University can now be a service laboratory for routine testing and authentication of durian clones.

Keywords: DNA, SSR Analysis, genotype, genetic diversity, cultivars.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3407
769 A method for Music Classification Based On Perceived Mood Detection for Indian Bollywood Music

Authors: Vallabha Hampiholi

Abstract:

A lot of research has been done in the past decade in the field of audio content analysis for extracting various information from audio signal. One such significant information is the "perceived mood" or the "emotions" related to a music or audio clip. This information is extremely useful in applications like creating or adapting the play-list based on the mood of the listener. This information could also be helpful in better classification of the music database. In this paper we have presented a method to classify music not just based on the meta-data of the audio clip but also include the "mood" factor to help improve the music classification. We propose an automated and efficient way of classifying music samples based on the mood detection from the audio data. We in particular try to classify the music based on mood for Indian bollywood music. The proposed method tries to address the following problem statement: Genre information (usually part of the audio meta-data) alone does not help in better music classification. For example the acoustic version of the song "nothing else matters by Metallica" can be classified as melody music and thereby a person in relaxing or chill out mood might want to listen to this track. But more often than not this track is associated with metal / heavy rock genre and if a listener classified his play-list based on the genre information alone for his current mood, the user shall miss out on listening to this track. Currently methods exist to detect mood in western or similar kind of music. Our paper tries to solve the issue for Indian bollywood music from an Indian cultural context

Keywords: Mood, music classification, music genre, rhythm, music analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3476
768 Using Time-Series NDVI to Model Land Cover Change: A Case Study in the Berg River Catchment Area, Western Cape, South Africa

Authors: A. S. Adesuyi, Z. Munch

Abstract:

This study investigates the use of a time-series of MODIS NDVI data to identify agricultural land cover change on an annual time step (2007 - 2012) and characterize the trend. Following an ISODATA classification of the MODIS imagery to selectively mask areas not agriculture or semi-natural, NDVI signatures were created to identify areas cereals and vineyards with the aid of ancillary, pictometry and field sample data for 2010. The NDVI signature curve and training samples were used to create a decision tree model in WEKA 3.6.9 using decision tree classifier (J48) algorithm; Model 1 including ISODATA classification and Model 2 not. These two models were then used to classify all data for the study area for 2010, producing land cover maps with classification accuracies of 77% and 80% for Model 1 and 2 respectively. Model 2 was subsequently used to create land cover classification and change detection maps for all other years. Subtle changes and areas of consistency (unchanged) were observed in the agricultural classes and crop practices. Over the years as predicted by the land cover classification. Forty one percent of the catchment comprised of cereals with 35% possibly following a crop rotation system. Vineyards largely remained constant with only one percent conversion to vineyard from other land cover classes.

Keywords: Change detection, Land cover, NDVI, time-series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2291
767 Use of Magnetic Nanoparticles in Cancer Detection with MRI

Authors: A. Taqaddas

Abstract:

Magnetic Nanoparticles (MNPs) have great potential to overcome many of the shortcomings of the present diagnostic and therapeutic approaches used in cancer diagnosis and treatment. This Literature review discusses the use of Magnetic Nanoparticles focusing mainly on Iron oxide based MNPs in cancer imaging using MRI.

Keywords: Cancer, Imaging, Magnetic Nanoparticles, MRI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3149
766 Diagnosis of Induction Machine Faults by DWT

Authors: Hamidreza Akbari

Abstract:

In this paper, for detection of inclined eccentricity in an induction motor, time–frequency analysis of the stator startup current is carried out. For this purpose, the discrete wavelet transform is used. Data are obtained from simulations, using winding function approach. The results show the validity of the approach for detecting the fault and discriminating with respect to other faults.

Keywords: Induction machine, Fault, DWT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
765 Modern Vibration Signal Processing Techniques for Vehicle Gearbox Fault Diagnosis

Authors: Mohamed El Morsy, Gabriela Achtenová

Abstract:

This paper presents modern vibration signalprocessing techniques for vehicle gearbox fault diagnosis, via the wavelet analysis and the Squared Envelope (SE) technique. The wavelet analysis is regarded as a powerful tool for the detection of sudden changes in non-stationary signals. The Squared Envelope (SE) technique has been extensively used for rolling bearing diagnostics. In the present work a scheme of using the Squared Envelope technique for early detection of gear tooth pit. The pitting defect is manufactured on the tooth side of a fifth speed gear on the intermediate shaft of a vehicle gearbox. The objective is to supplement the current techniques of gearbox fault diagnosis based on using the raw vibration and ordered signals. The test stand is equipped with three dynamometers; the input dynamometer serves as the internal combustion engine, the output dynamometers introduce the load on the flanges of output joint shafts. The gearbox used for experimental measurements is the type most commonly used in modern small to mid-sized passenger cars with transversely mounted powertrain and front wheel drive; a five-speed gearbox with final drive gear and front wheel differential. The results show that the approaches methods are effective for detecting and diagnosing localized gear faults in early stage under different operation conditions, and are more sensitive and robust than current gear diagnostic techniques.

Keywords: Wavelet analysis, Squared Envelope, gear faults.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2576
764 A Sensitive Approach on Trace Analysis of Methylparaben in Wastewater and Cosmetic Products Using Molecularly Imprinted Polymer

Authors: Soukaina Motia, Nadia El Alami El Hassani, Alassane Diouf, Benachir Bouchikhi, Nezha El Bari

Abstract:

Parabens are the antimicrobial molecules largely used in cosmetic products as a preservative agent. Among them, the methylparaben (MP) is the most frequently used ingredient in cosmetic preparations. Nevertheless, their potential dangers led to the development of sensible and reliable methods for their determination in environmental samples. Firstly, a sensitive and selective molecular imprinted polymer (MIP) based on screen-printed gold electrode (Au-SPE), assembled on a polymeric layer of carboxylated poly(vinyl-chloride) (PVC-COOH), was developed. After the template removal, the obtained material was able to rebind MP and discriminate it among other interfering species such as glucose, sucrose, and citric acid. The behavior of molecular imprinted sensor was characterized by Cyclic Voltammetry (CV), Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS) techniques. Then, the biosensor was found to have a linear detection range from 0.1 pg.mL-1 to 1 ng.mL-1 and a low limit of detection of 0.12 fg.mL-1 and 5.18 pg.mL-1 by DPV and EIS, respectively. For applications, this biosensor was employed to determine MP content in four wastewaters in Meknes city and two cosmetic products (shower gel and shampoo). The operational reproducibility and stability of this biosensor were also studied. Secondly, another MIP biosensor based on tungsten trioxide (WO3) functionalized by gold nanoparticles (Au-NPs) assembled on a polymeric layer of PVC-COOH was developed. The main goal was to increase the sensitivity of the biosensor. The developed MIP biosensor was successfully applied for the MP determination in wastewater samples and cosmetic products.

Keywords: Cosmetic products, methylparaben, molecularly imprinted polymer, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1006
763 Vehicle Gearbox Fault Diagnosis Based On Cepstrum Analysis

Authors: Mohamed El Morsy, Gabriela Achtenová

Abstract:

Research on damage of gears and gear pairs using vibration signals remains very attractive, because vibration signals from a gear pair are complex in nature and not easy to interpret. Predicting gear pair defects by analyzing changes in vibration signal of gears pairs in operation is a very reliable method. Therefore, a suitable vibration signal processing technique is necessary to extract defect information generally obscured by the noise from dynamic factors of other gear pairs.This article presents the value of cepstrum analysis in vehicle gearbox fault diagnosis. Cepstrum represents the overall power content of a whole family of harmonics and sidebands when more than one family of sidebands is present at the same time. The concept for the measurement and analysis involved in using the technique are briefly outlined. Cepstrum analysis is used for detection of an artificial pitting defect in a vehicle gearbox loaded with different speeds and torques. The test stand is equipped with three dynamometers; the input dynamometer serves asthe internal combustion engine, the output dynamometers introduce the load on the flanges of the output joint shafts. The pitting defect is manufactured on the tooth side of a gear of the fifth speed on the secondary shaft. Also, a method for fault diagnosis of gear faults is presented based on order Cepstrum. The procedure is illustrated with the experimental vibration data of the vehicle gearbox. The results show the effectiveness of Cepstrum analysis in detection and diagnosis of the gear condition.

Keywords: Cepstrum analysis, fault diagnosis, gearbox.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3310
762 Template-Based Object Detection through Partial Shape Matching and Boundary Verification

Authors: Feng Ge, Tiecheng Liu, Song Wang, Joachim Stahl

Abstract:

This paper presents a novel template-based method to detect objects of interest from real images by shape matching. To locate a target object that has a similar shape to a given template boundary, the proposed method integrates three components: contour grouping, partial shape matching, and boundary verification. In the first component, low-level image features, including edges and corners, are grouped into a set of perceptually salient closed contours using an extended ratio-contour algorithm. In the second component, we develop a partial shape matching algorithm to identify the fractions of detected contours that partly match given template boundaries. Specifically, we represent template boundaries and detected contours using landmarks, and apply a greedy algorithm to search the matched landmark subsequences. For each matched fraction between a template and a detected contour, we estimate an affine transform that transforms the whole template into a hypothetic boundary. In the third component, we provide an efficient algorithm based on oriented edge lists to determine the target boundary from the hypothetic boundaries by checking each of them against image edges. We evaluate the proposed method on recognizing and localizing 12 template leaves in a data set of real images with clutter back-grounds, illumination variations, occlusions, and image noises. The experiments demonstrate the high performance of our proposed method1.

Keywords: Object detection, shape matching, contour grouping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2305
761 Region Segmentation based on Gaussian Dirichlet Process Mixture Model and its Application to 3D Geometric Stricture Detection

Authors: Jonghyun Park, Soonyoung Park, Sanggyun Kim, Wanhyun Cho, Sunworl Kim

Abstract:

In general, image-based 3D scenes can now be found in many popular vision systems, computer games and virtual reality tours. So, It is important to segment ROI (region of interest) from input scenes as a preprocessing step for geometric stricture detection in 3D scene. In this paper, we propose a method for segmenting ROI based on tensor voting and Dirichlet process mixture model. In particular, to estimate geometric structure information for 3D scene from a single outdoor image, we apply the tensor voting and Dirichlet process mixture model to a image segmentation. The tensor voting is used based on the fact that homogeneous region in an image are usually close together on a smooth region and therefore the tokens corresponding to centers of these regions have high saliency values. The proposed approach is a novel nonparametric Bayesian segmentation method using Gaussian Dirichlet process mixture model to automatically segment various natural scenes. Finally, our method can label regions of the input image into coarse categories: “ground", “sky", and “vertical" for 3D application. The experimental results show that our method successfully segments coarse regions in many complex natural scene images for 3D.

Keywords: Region segmentation, tensor voting, image-based 3D, geometric structure, Gaussian Dirichlet process mixture model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
760 Computer Countenanced Diagnosis of Skin Nodule Detection and Histogram Augmentation: Extracting System for Skin Cancer

Authors: S. Zith Dey Babu, S. Kour, S. Verma, C. Verma, V. Pathania, A. Agrawal, V. Chaudhary, A. Manoj Puthur, R. Goyal, A. Pal, T. Danti Dey, A. Kumar, K. Wadhwa, O. Ved

Abstract:

Background: Skin cancer is now is the buzzing button in the field of medical science. The cyst's pandemic is drastically calibrating the body and well-being of the global village. Methods: The extracted image of the skin tumor cannot be used in one way for diagnosis. The stored image contains anarchies like the center. This approach will locate the forepart of an extracted appearance of skin. Partitioning image models has been presented to sort out the disturbance in the picture. Results: After completing partitioning, feature extraction has been formed by using genetic algorithm and finally, classification can be performed between the trained and test data to evaluate a large scale of an image that helps the doctors for the right prediction. To bring the improvisation of the existing system, we have set our objectives with an analysis. The efficiency of the natural selection process and the enriching histogram is essential in that respect. To reduce the false-positive rate or output, GA is performed with its accuracy. Conclusions: The objective of this task is to bring improvisation of effectiveness. GA is accomplishing its task with perfection to bring down the invalid-positive rate or outcome. The paper's mergeable portion conflicts with the composition of deep learning and medical image processing, which provides superior accuracy. Proportional types of handling create the reusability without any errors.

Keywords: Computer-aided system, detection, image segmentation, morphology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544
759 Performance Analysis of Reconstruction Algorithms in Diffuse Optical Tomography

Authors: K. Uma Maheswari, S. Sathiyamoorthy, G. Lakshmi

Abstract:

Diffuse Optical Tomography (DOT) is a non-invasive imaging modality used in clinical diagnosis for earlier detection of carcinoma cells in brain tissue. It is a form of optical tomography which produces gives the reconstructed image of a human soft tissue with by using near-infra-red light. It comprises of two steps called forward model and inverse model. The forward model provides the light propagation in a biological medium. The inverse model uses the scattered light to collect the optical parameters of human tissue. DOT suffers from severe ill-posedness due to its incomplete measurement data. So the accurate analysis of this modality is very complicated. To overcome this problem, optical properties of the soft tissue such as absorption coefficient, scattering coefficient, optical flux are processed by the standard regularization technique called Levenberg - Marquardt regularization. The reconstruction algorithms such as Split Bregman and Gradient projection for sparse reconstruction (GPSR) methods are used to reconstruct the image of a human soft tissue for tumour detection. Among these algorithms, Split Bregman method provides better performance than GPSR algorithm. The parameters such as signal to noise ratio (SNR), contrast to noise ratio (CNR), relative error (RE) and CPU time for reconstructing images are analyzed to get a better performance.

Keywords: Diffuse optical tomography, ill-posedness, Levenberg Marquardt method, Split Bregman, the Gradient projection for sparse reconstruction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
758 Neuromuscular Control and Performance during Sudden Acceleration in Subjects with and without Unilateral Acute Ankle Sprains

Authors: M. Qorbani

Abstract:

Neuromuscular control of posture as understood through studies of responses to mechanical sudden acceleration automatically has been previously demonstrated in individuals with chronic ankle instability (CAI), but the presence of acute condition has not been previously explored specially in a sudden acceleration. The aim of this study was to determine neuromuscular control pattern in those with and without unilateral acute ankle sprains. Design: Case - control. Setting: University research laboratory. The sinker–card protocol with surface translation was be used as a sudden acceleration protocol with study of EMG upon 4 posture stabilizer muscles in two sides of the body in response to sudden acceleration in forward and backward directions. 20 young adult women in two groups (10 LAS; 23.9 ± 2.03 yrs and 10 normal; 26.4 ± 3.2 yrs). The data of EMG were assessed by using multivariate test and one-way repeated measures 2×2×4 ANOVA (P< 0.05). The results showed a significant muscle by direction interaction. Higher TA activity of left and right side in LAS group than normal group in forward direction significantly be showed. Higher MGR activity in normal group than LAS group in backward direction significantly showed. These findings suggest that compared two sides of the body in two directions for 4 muscles EMG activities between and within group for neuromuscular control of posture in avoiding fall. EMG activations of two sides of the body in lateral ankle sprain (LAS) patients were symmetric significantly. Acute ankle instability following once ankle sprains caused to coordinated temporal spatial patterns and strategy selection.

Keywords: Neuromuscular response, sEMG, Lateral Ankle Sprain, posture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1034
757 New Simultaneous High Performance Liquid Chromatographic Method for Determination of NSAIDs and Opioid Analgesics in Advanced Drug Delivery Systems and Human Plasma

Authors: Asad Ullah Madni, Mahmood Ahmad, Naveed Akhtar, Muhammad Usman

Abstract:

A new and cost effective RP-HPLC method was developed and validated for simultaneous analysis of non steroidal anti inflammatory dugs Diclofenac sodium (DFS), Flurbiprofen (FLP) and an opioid analgesic Tramadol (TMD) in advanced drug delivery systems (Liposome and Microcapsules), marketed brands and human plasma. Isocratic system was employed for the flow of mobile phase consisting of 10 mM sodium dihydrogen phosphate buffer and acetonitrile in molar ratio of 67: 33 with adjusted pH of 3.2. The stationary phase was hypersil ODS column (C18, 250×4.6 mm i.d., 5 μm) with controlled temperature of 30 C°. DFS in liposomes, microcapsules and marketed drug products was determined in range of 99.76-99.84%. FLP and TMD in microcapsules and brands formulation were 99.78 - 99.94 % and 99.80 - 99.82 %, respectively. Single step liquid-liquid extraction procedure using combination of acetonitrile and trichloroacetic acid (TCA) as protein precipitating agent was employed. The detection limits (at S/N ratio 3) of quality control solutions and plasma samples were 10, 20, and 20 ng/ml for DFS, FLP and TMD, respectively. The Assay was acceptable in linear dynamic range. All other validation parameters were found in limits of FDA and ICH method validation guidelines. The proposed method is sensitive, accurate and precise and could be applicable for routine analysis in pharmaceutical industry as well as in human plasma samples for bioequivalence and pharmacokinetics studies.

Keywords: Diclofenac Sodium, Flurbiprofen, Tramadol, HPLCUV detection, Validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1859
756 Intelligent Assistive Methods for Diagnosis of Rheumatoid Arthritis Using Histogram Smoothing and Feature Extraction of Bone Images

Authors: SP. Chokkalingam, K. Komathy

Abstract:

Advances in the field of image processing envision a new era of evaluation techniques and application of procedures in various different fields. One such field being considered is the biomedical field for prognosis as well as diagnosis of diseases. This plethora of methods though provides a wide range of options to select from, it also proves confusion in selecting the apt process and also in finding which one is more suitable. Our objective is to use a series of techniques on bone scans, so as to detect the occurrence of rheumatoid arthritis (RA) as accurately as possible. Amongst other techniques existing in the field our proposed system tends to be more effective as it depends on new methodologies that have been proved to be better and more consistent than others. Computer aided diagnosis will provide more accurate and infallible rate of consistency that will help to improve the efficiency of the system. The image first undergoes histogram smoothing and specification, morphing operation, boundary detection by edge following algorithm and finally image subtraction to determine the presence of rheumatoid arthritis in a more efficient and effective way. Using preprocessing noises are removed from images and using segmentation, region of interest is found and Histogram smoothing is applied for a specific portion of the images. Gray level co-occurrence matrix (GLCM) features like Mean, Median, Energy, Correlation, Bone Mineral Density (BMD) and etc. After finding all the features it stores in the database. This dataset is trained with inflamed and noninflamed values and with the help of neural network all the new images are checked properly for their status and Rough set is implemented for further reduction.

Keywords: Computer Aided Diagnosis, Edge Detection, Histogram Smoothing, Rheumatoid Arthritis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2479