Search results for: Flow visualization
1569 Development of a Complete Single Jet Common Rail Injection System Gas Dynamic Model for Hydrogen Fueled Engine with Port Injection Feeding System
Authors: Mohammed Kamil, M. M. Rahman, Rosli A. Bakar
Abstract:
Modeling of hydrogen fueled engine (H2ICE) injection system is a very important tool that can be used for explaining or predicting the effect of advanced injection strategies on combustion and emissions. In this paper, a common rail injection system (CRIS) is proposed for 4-strokes 4-cylinders hydrogen fueled engine with port injection feeding system (PIH2ICE). For this system, a numerical one-dimensional gas dynamic model is developed considering single injection event for each injector per a cycle. One-dimensional flow equations in conservation form are used to simulate wave propagation phenomenon throughout the CR (accumulator). Using this model, the effect of common rail on the injection system characteristics is clarified. These characteristics include: rail pressure, sound velocity, rail mass flow rate, injected mass flow rate and pressure drop across injectors. The interaction effects of operational conditions (engine speed and rail pressure) and geometrical features (injector hole diameter) are illustrated; and the required compromised solutions are highlighted. The CRIS is shown to be a promising enhancement for PIH2ICE.Keywords: Common rail, hydrogen engine, port injection, wave propagation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15911568 Normalizing Flow to Augmented Posterior: Conditional Density Estimation with Interpretable Dimension Reduction for High Dimensional Data
Authors: Cheng Zeng, George Michailidis, Hitoshi Iyatomi, Leo L Duan
Abstract:
The conditional density characterizes the distribution of a response variable y given other predictor x, and plays a key role in many statistical tasks, including classification and outlier detection. Although there has been abundant work on the problem of Conditional Density Estimation (CDE) for a low-dimensional response in the presence of a high-dimensional predictor, little work has been done for a high-dimensional response such as images. The promising performance of normalizing flow (NF) neural networks in unconditional density estimation acts a motivating starting point. In this work, we extend NF neural networks when external x is present. Specifically, they use the NF to parameterize a one-to-one transform between a high-dimensional y and a latent z that comprises two components [zP , zN]. The zP component is a low-dimensional subvector obtained from the posterior distribution of an elementary predictive model for x, such as logistic/linear regression. The zN component is a high-dimensional independent Gaussian vector, which explains the variations in y not or less related to x. Unlike existing CDE methods, the proposed approach, coined Augmented Posterior CDE (AP-CDE), only requires a simple modification on the common normalizing flow framework, while significantly improving the interpretation of the latent component, since zP represents a supervised dimension reduction. In image analytics applications, AP-CDE shows good separation of x-related variations due to factors such as lighting condition and subject id, from the other random variations. Further, the experiments show that an unconditional NF neural network, based on an unsupervised model of z, such as Gaussian mixture, fails to generate interpretable results.
Keywords: Conditional density estimation, image generation, normalizing flow, supervised dimension reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731567 Clinical Parameters Response to Low-Level Laser versus Monochromatic Near-Infrared Photo Energy in Diabetic Patients with Peripheral Neuropathy
Authors: Abeer A. Abdelhamed
Abstract:
Background: Diabetic sensorimotor polyneuropathy (DSP) is one of the most common microvascular complications of type 2 diabetes. Loss of sensation is thought to contribute to a lack of static and dynamic stability and increased risk of falling. Purpose: The purpose of this study was to compare the effects of low-level laser (LLL) and monochromatic near-infrared photo energy (MIRE) on pain, cutaneous sensation, static stability, and index of lower limb blood flow in diabetic patients with peripheral neuropathy. Methods: Forty diabetic patients with peripheral neuropathy were recruited for participation in this study. They were divided into two groups: The MIRE group, which contained 20 patients, and the LLL group, which contained 20 patients. All patients who participated in the study had been subjected to various physical assessment procedures, including pain, cutaneous sensation, Doppler flow meter, and static stability assessments. The baseline measurements were followed by treatment sessions that were conducted twice a week for six successive weeks. Results: The statistical analysis of the data revealed significant improvement of pain in both groups, with significant improvement in cutaneous sensation and static balance in the MIRE group compared to the LLL group; on the other hand, the results showed no significant differences in lower limb blood flow between the groups. Conclusion: LLL and MIRE can improve painful symptoms in patients with diabetic neuropathy. On the other hand, MIRE is also useful in improving cutaneous sensation and static stability in patients with diabetic neuropathy.Keywords: Diabetic neuropathy, Doppler flow meter, –Lowlevel laser, Monochromatic near-infrared photo energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18891566 Study on the Optimization of Completely Batch Water-using Network with Multiple Contaminants Considering Flow Change
Authors: Jian Du, Shui Hong Hong, Lu Meng, Qing Wei Meng
Abstract:
This work addresses the problem of optimizing completely batch water-using network with multiple contaminants where the flow change caused by mass transfer is taken into consideration for the first time. A mathematical technique for optimizing water-using network is proposed based on source-tank-sink superstructure. The task is to obtain the freshwater usage, recycle assignments among water-using units, wastewater discharge and a steady water-using network configuration by following steps. Firstly, operating sequences of water-using units are determined by time constraints. Next, superstructure is simplified by eliminating the reuse and recycle from water-using units with maximum concentration of key contaminants. Then, the non-linear programming model is solved by GAMS (General Algebra Model System) for minimum freshwater usage, maximum water recycle and minimum wastewater discharge. Finally, numbers of operating periods are calculated to acquire the steady network configuration. A case study is solved to illustrate the applicability of the proposed approach.Keywords: Completely batch process, flow change, multiple contaminants, water-using network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14521565 Numerical Simulation of unsteady MHD Flow and Heat Transfer of a Second Grade Fluid with Viscous Dissipation and Joule Heating using Meshfree Approach
Authors: R. Bhargava, Sonam Singh
Abstract:
In the present study, a numerical analysis is carried out to investigate unsteady MHD (magneto-hydrodynamic) flow and heat transfer of a non-Newtonian second grade viscoelastic fluid over an oscillatory stretching sheet. The flow is induced due to an infinite elastic sheet which is stretched oscillatory (back and forth) in its own plane. Effect of viscous dissipation and joule heating are taken into account. The non-linear differential equations governing the problem are transformed into system of non-dimensional differential equations using similarity transformations. A newly developed meshfree numerical technique Element free Galerkin method (EFGM) is employed to solve the coupled non linear differential equations. The results illustrating the effect of various parameters like viscoelastic parameter, Hartman number, relative frequency amplitude of the oscillatory sheet to the stretching rate and Eckert number on velocity and temperature field are reported in terms of graphs and tables. The present model finds its application in polymer extrusion, drawing of plastic films and wires, glass, fiber and paper production etc.Keywords: EFGM, MHD, Oscillatory stretching sheet, Unsteady, Viscoelastic
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19011564 Gas Pressure Evaluation through Radial Velocity Measurement of Fluid Flow Modeled by Drift Flux Model
Authors: Aicha Rima Cheniti, Hatem Besbes, Joseph Haggege, Christophe Sintes
Abstract:
In this paper, we consider a drift flux mixture model of the blood flow. The mixture consists of gas phase which is carbon dioxide and liquid phase which is an aqueous carbon dioxide solution. This model was used to determine the distributions of the mixture velocity, the mixture pressure, and the carbon dioxide pressure. These theoretical data are used to determine a measurement method of mean gas pressure through the determination of radial velocity distribution. This method can be applicable in experimental domain.
Keywords: Mean carbon dioxide pressure, mean mixture pressure, mixture velocity, radial velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12481563 Sri Lanka – Middle East Labour Migration Corridor: Trends, Patterns and Structural Changes
Authors: Dinesha Siriwardhane, Indralal De Silva, Sampath Amaratunge
Abstract:
Objective of this study is to explore the recent trends, patterns and the structural changes in the labour migration from Sri Lanka to Middle East countries and to discuss the possible impacts of those changes on the remittance flow. Study uses secondary data published by Sri Lanka Bureau of Foreign Employment and Central Bank. Thematic analysis of the secondary data revealed that the migration for labour has increased rapidly during past decades. Parallel with that the gender and the skill composition of the migration flow has been changing. Similarly, the destinations for male migration have changed over the period. These show positive implications on the international remittance receipts to the country.
Keywords: Labour migration, Remittances, Middle East, Sri Lanka.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28041562 Study of Unsteady Behaviour of Dynamic Shock Systems in Supersonic Engine Intakes
Authors: Siddharth Ahuja, T. M. Muruganandam
Abstract:
An analytical investigation is performed to study the unsteady response of a one-dimensional, non-linear dynamic shock system to external downstream pressure perturbations in a supersonic flow in a varying area duct. For a given pressure ratio across a wind tunnel, the normal shock's location can be computed as per one-dimensional steady gas dynamics. Similarly, for some other pressure ratio, the location of the normal shock will change accordingly, again computed using one-dimensional gas dynamics. This investigation focuses on the small-time interval between the first steady shock location and the new steady shock location (corresponding to different pressure ratios). In essence, this study aims to shed light on the motion of the shock from one steady location to another steady location. Further, this study aims to create the foundation of the Unsteady Gas Dynamics field enabling further insight in future research work. According to the new pressure ratio, a pressure pulse, generated at the exit of the tunnel which travels and perturbs the shock from its original position, setting it into motion. During such activity, other numerous physical phenomena also happen at the same time. However, three broad phenomena have been focused on, in this study - Traversal of a Wave, Fluid Element Interactions and Wave Interactions. The above mentioned three phenomena create, alter and kill numerous waves for different conditions. The waves which are created by the above-mentioned phenomena eventually interact with the shock and set it into motion. Numerous such interactions with the shock will slowly make it settle into its final position owing to the new pressure ratio across the duct, as estimated by one-dimensional gas dynamics. This analysis will be extremely helpful in the prediction of inlet 'unstart' of the flow in a supersonic engine intake and its prominence with the incoming flow Mach number, incoming flow pressure and the external perturbation pressure is also studied to help design more efficient supersonic intakes for engines like ramjets and scramjets.
Keywords: Analytical investigation, compression and expansion waves, fluid element interactions, shock trajectory, supersonic flow, unsteady gas dynamics, varying area duct, wave interactions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8821561 Fuzzy Control of the Air Conditioning System at Different Operating Pressures
Authors: Mohanad Alata , Moh'd Al-Nimr, Rami Al-Jarrah
Abstract:
The present work demonstrates the design and simulation of a fuzzy control of an air conditioning system at different pressures. The first order Sugeno fuzzy inference system is utilized to model the system and create the controller. In addition, an estimation of the heat transfer rate and water mass flow rate injection into or withdraw from the air conditioning system is determined by the fuzzy IF-THEN rules. The approach starts by generating the input/output data. Then, the subtractive clustering algorithm along with least square estimation (LSE) generates the fuzzy rules that describe the relationship between input/output data. The fuzzy rules are tuned by Adaptive Neuro-Fuzzy Inference System (ANFIS). The results show that when the pressure increases the amount of water flow rate and heat transfer rate decrease within the lower ranges of inlet dry bulb temperatures. On the other hand, and as pressure increases the amount of water flow rate and heat transfer rate increases within the higher ranges of inlet dry bulb temperatures. The inflection in the pressure effect trend occurs at lower temperatures as the inlet air humidity increases.
Keywords: Air Conditioning, ANFIS, Fuzzy Control, Sugeno System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33691560 Effects of Duct Geometry, Thickness and Types of Liners on Transmission Loss for Absorptive Silencers
Abstract:
Sound attenuation in absorptive silencers has been analyzed in this paper. The structure of such devices is as follows. When the rigid duct of an expansion chamber has been lined by a packed absorptive material under a perforated membrane, incident sound waves will be dissipated by the absorptive liners. This kind of silencer, usually are applicable for medium to high frequency ranges. Several conditions for different absorptive materials, variety in their thicknesses, and different shapes of the expansion chambers have been studied in this paper. Also, graphs of sound attenuation have been compared between empty expansion chamber and duct of silencer with applying liner. Plane waves have been assumed in inlet and outlet regions of the silencer. Presented results that have been achieved by applying finite element method (FEM), have shown the dependence of the sound attenuation spectrum to flow resistivity and the thicknesses of the absorptive materials, and geometries of the cross section (configuration of the silencer). As flow resistivity and thickness of absorptive materials increase, sound attenuation improves. In this paper, diagrams of the transmission loss (TL) for absorptive silencers in five different cross sections (rectangle, circle, ellipse, square, and rounded rectangle as the main geometry) have been presented. Also, TL graphs for silencers using different absorptive material (glass wool, wood fiber, and kind of spongy materials) as liner with three different thicknesses of 5 mm, 15 mm, and 30 mm for glass wool liner have been exhibited. At first, the effect of substances of the absorptive materials with the specific flow resistivity and densities on the TL spectrum, then the effect of the thicknesses of the glass wool, and at last the efficacy of the shape of the cross section of the silencer have been investigated.Keywords: Transmission loss, absorptive material, flow resistivity, thickness, frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11311559 Characteristics of Hydraulic Jump
Authors: Sumit Gandhi
Abstract:
The effect of an abruptly expanding channel on the main characteristics of hydraulic jump is considered experimentally. The present study was made for supercritical flow of Froude number varying between 2 to 9 and approach to expanded channel width ratios 0.4, 0.5, 0.6 and 0.8. Physical explanations of the variation of these characteristics under varying flow conditions are discussed based on the observation drawn from experimental results. The analytical equation for the sequent depth ratio in an abruptly expanding channel as given by eminent hydraulic engineers are verified well with the experimental data for all expansion ratios, and the empirical relation was also verified with the present experimental data.
Keywords: Abruptly Expanding Channel, Hydraulic Jump, Efficiency, Sequent Depth Ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42971558 Prediction of the Rear Fuselage Temperature with Radiation Shield
Authors: Kyung Joo Yi, Seung Wook Baek, Sung Nam Lee, Man Young Kim, Won Cheol Kim, Gun Yung Go
Abstract:
In order to enhance the aircraft survivability, the infrared signatures emitted by hot engine parts should be determined exactly. For its reduction it is necessary for the rear fuselage temperature to be decreased. In this study, numerical modeling of flow fields and heat transfer characteristics of an aircraft nozzle is performed and its temperature distribution along each component wall is predicted. The radiation shield is expected to reduce the skin temperature of rear fuselage. The effect of material characteristic of radiation shield on the heat transfer is also investigated. Through this numerical analysis, design parameters related to the susceptibility of aircraft are examined.Keywords: Infrared signature, Nozzle flow, Radiation shield, Rear fuselage temperature, Susceptibility
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21261557 EGCL: An Extended G-Code Language with Flow Control, Functions and Mnemonic Variables
Authors: Oscar E. Ruiz, S. Arroyave, J. F. Cardona
Abstract:
In the context of computer numerical control (CNC) and computer aided manufacturing (CAM), the capabilities of programming languages such as symbolic and intuitive programming, program portability and geometrical portfolio have special importance. They allow to save time and to avoid errors during part programming and permit code re-usage. Our updated literature review indicates that the current state of art presents voids in parametric programming, program portability and programming flexibility. In response to this situation, this article presents a compiler implementation for EGCL (Extended G-code Language), a new, enriched CNC programming language which allows the use of descriptive variable names, geometrical functions and flow-control statements (if-then-else, while). Our compiler produces low-level generic, elementary ISO-compliant Gcode, thus allowing for flexibility in the choice of the executing CNC machine and in portability. Our results show that readable variable names and flow control statements allow a simplified and intuitive part programming and permit re-usage of the programs. Future work includes allowing the programmer to define own functions in terms of EGCL, in contrast to the current status of having them as library built-in functions.
Keywords: CNC Programming, Compiler, G-code Language, Numerically Controlled Machine-Tools.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26241556 Effects of Tap Changing Transformer and Shunt Capacitor on Voltage Stability Enhancement of Transmission Networks
Authors: Pyone Lai Swe, Wanna Swe, Kyaw Myo Lin
Abstract:
Voltage stability has become an important issue to many power systems around the world due to the weak systems and long line on power system networks. In this paper, MATLAB load flow program is applied to obtain the weak points in the system combined with finding the voltage stability limit. The maximum permissible loading of a system, within the voltage stability limit, is usually determined. The methods for varying tap ratio (using tap changing transformer) and applying different values of shunt capacitor injection to improve the voltage stability within the limit are also provided.
Keywords: Load flow, Voltage stability, Tap changingtransformer, Shunt capacitor injection, Voltage stability limit
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59771555 Use of Time-Depend Effects for Mixing and Separation of the Two-Phase Flows
Authors: N. B. Fedosenko, A.A Iatcenko, S.A. Levanov
Abstract:
The paper shows some ability to manage two-phase flows arising from the use of unsteady effects. In one case, we consider the condition of fragmentation of the interface between the two components leads to the intensification of mixing. The problem is solved when the temporal and linear scale are small for the appearance of the developed mixing layer. Showing that exist such conditions for unsteady flow velocity at the surface of the channel, which will lead to the creation and fragmentation of vortices at Re numbers of order unity. Also showing that the Re is not a criterion of similarity for this type of flows, but we can introduce a criterion that depends on both the Re, and the frequency splitting of the vortices. It turned out that feature of this situation is that streamlines behave stable, and if we analyze the behavior of the interface between the components it satisfies all the properties of unstable flows. The other problem we consider the behavior of solid impurities in the extensive system of channels. Simulated unsteady periodic flow modeled breaths. Consider the behavior of the particles along the trajectories. It is shown that, depending on the mass and diameter of the particles, they can be collected in a caustic on the channel walls, stop in a certain place or fly back. Of interest is the distribution of particle velocity in frequency. It turned out that by choosing a behavior of the velocity field of the carrier gas can affect the trajectory of individual particles including force them to fly back.Keywords: Two-phase, mixing, separating, flow control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13571554 Measurements of Radial Velocity in Fixed Fluidized Bed for Fischer-Tropsch Synthesis Using LDV
Authors: Xiaolai Zhang, Haitao Zhang, Qiwen Sun, Weixin Qian, Weiyong Ying
Abstract:
High temperature Fischer-Tropsch synthesis process use fixed fluidized bed as a reactor. In order to understand the flow behavior in the fluidized bed better, the research of how the radial velocity affects the entire flow field is necessary. Laser Doppler Velocimetry (LDV) was used to study the radial velocity distribution along the diameter direction of the cross-section of the particle in a fixed fluidized bed. The velocity in the cross-section is fluctuating within a small range. The direction of the speed is a random phenomenon. In addition to r/R is 1, the axial velocity are more than 6 times of the radial velocity, the radial velocity has little impact on the axial velocity in a fixed fluidized bed.Keywords: LDV, fixed fluidized bed, velocity, Fischer-Tropsch synthesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16301553 A Web Pages Automatic Filtering System
Authors: O. Nouali, A. Saidi, H. Chahrat, A. Krinah, B. Toursel
Abstract:
This article describes a Web pages automatic filtering system. It is an open and dynamic system based on multi agents architecture. This system is built up by a set of agents having each a quite precise filtering task of to carry out (filtering process broken up into several elementary treatments working each one a partial solution). New criteria can be added to the system without stopping its execution or modifying its environment. We want to show applicability and adaptability of the multi-agents approach to the networks information automatic filtering. In practice, most of existing filtering systems are based on modular conception approaches which are limited to centralized applications which role is to resolve static data flow problems. Web pages filtering systems are characterized by a data flow which varies dynamically.Keywords: Agent, Distributed Artificial Intelligence, Multiagents System, Web pages filtering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13781552 Contributions of Natural and Human Activities to Urban Surface Runoff with Different Hydrological Scenarios (Orléans, France)
Authors: Mohammed Al-Juhaishi, Mikael Motelica-Heino, Fabrice Muller, Audrey Guirimand-Dufour, Christian Défarge
Abstract:
This study aims at improving the urban hydrological cycle of the Orléans agglomeration (France) and understanding the relationship between physical and chemical parameters of urban surface runoff and the hydrological conditions. In particular water quality parameters such as pH, conductivity, total dissolved solids, major dissolved cations and anions, and chemical and biological oxygen demands were monitored for three types of urban water discharges (wastewater treatment plant output (WWTP), storm overflow and stormwater outfall) under two hydrologic scenarios (dry and wet weather). The first results were obtained over a period of five months. Each investigated (Ormes, l’Egoutier and La Corne) outfall represents an urban runoff source that receives water from runoff roads, gutters, the irrigation of gardens and other sources of flow over the Earth’s surface that drains in its catchments and carries it to the Loire River. In wet weather conditions there is rain water runoff and an additional input from the roof gutters that have entered the stormwater system during rainfall. For the comparison the results La Chilesse is a storm overflow that was selected in our study as a potential source of waste water which is located before the (WWTP). The comparison of the physical-chemical parameters (total dissolved solids, turbidity, pH, conductivity, dissolved organic carbon (DOC), concentration of major cations and anions) together with the chemical oxygen demand (COD) and biological oxygen demand (BOD) helped to characterize sources of runoff waters in the different watersheds. It also helped to highlight the infiltration of wastewater in some stormwater systems that reject directly in the Loire River. The values of the conductivity measured in the outflow of Ormes were always higher than those measured in the other two outlets. The results showed a temporal variation for the Ormes outfall of conductivity from 1465 μS cm-1 in the dry weather flow to 650 μS cm-1 in the wet weather flow and also a spatial variation in the wet weather flow from 650 μS cm-1 in the Ormes outfall to 281 μS cm-1 in L’Egouttier outfall. The ultimate BOD (BOD28) showed a significant decrease in La Corne outfall from 181 mg L-1 in the wet weather flow to 95 mg L-1 in the dry weather flow because of the nutrient load that was transported by the runoff.Keywords: BOD, COD, the Loire River, urban hydrology, urban dry and wet weather discharges, macronutrients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32701551 Environmental Modeling of Storm Water Channels
Authors: L. Grinis
Abstract:
Turbulent flow in complex geometries receives considerable attention due to its importance in many engineering applications. It has been the subject of interest for many researchers. Some of these interests include the design of storm water channels. The design of these channels requires testing through physical models. The main practical limitation of physical models is the so called “scale effect”, that is, the fact that in many cases only primary physical mechanisms can be correctly represented, while secondary mechanisms are often distorted. These observations form the basis of our study, which centered on problems associated with the design of storm water channels near the Dead Sea, in Israel. To help reach a final design decision we used different physical models. Our research showed good coincidence with the results of laboratory tests and theoretical calculations, and allowed us to study different effects of fluid flow in an open channel. We determined that problems of this nature cannot be solved only by means of theoretical calculation and computer simulation. This study demonstrates the use of physical models to help resolve very complicated problems of fluid flow through baffles and similar structures. The study applies these models and observations to different construction and multiphase water flows, among them, those that include sand and stone particles, a significant attempt to bring to the testing laboratory a closer association with reality.
Keywords: Baffles, open channel, physical modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19161550 The Comprehensive Study Based on Ultrasonic and X-ray Visual Technology for GIS Equipment Detection
Authors: Wei Zhang, Hong Yu, Xian-ping Zhao, Da-da Wang, Fei Xue
Abstract:
For lack of the visualization of the ultrasonic detection method of partial discharge (PD), the ultrasonic detection technology combined with the X-ray visual detection method (UXV) is proposed. The method can conduct qualitative analysis accurately and conduct reliable positioning diagnosis to the internal insulation defects of GIS, and while it could make up the blindness of the X-ray visual detection method and improve the detection rate. In this paper, an experimental model of GIS is used as the trial platform, a variety of insulation defects are set inside the GIS cavity. With the proposed method, the ultrasonic method is used to conduct the preliminary detection, and then the X-ray visual detection is used to locate and diagnose precisely. Therefore, the proposed UXV technology is feasible and practical.Keywords: GIS, ultrasonic, visual detection, X-ray
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17241549 Thermal-Fluid Characteristics of Heating Element in Rotary Heat Exchanger in Accordance with Fouling Phenomena
Authors: Young Mun Lee, Seon Ho Kim, Seok Min Choi, JeongJu Kim, Seungyeong Choi, Hyung Hee Cho
Abstract:
To decrease sulfur oxide in the flue gas from coal power plant, a flue gas de-sulfurization facility is operated. In the reactor, a chemical reaction occurs with a temperature change of the gas so that sulfur oxide is removed and cleaned air is emitted. In this process, temperature change induces a serious problem which is a cold erosion of stack. To solve this problem, the rotary heat exchanger is managed before the stack. In the heat exchanger, a heating element is equipped to increase a heat transfer area. Heat transfer and pressure loss is a big issue to improve a performance. In this research, thermal-fluid characteristics of the heating element are analyzed by computational fluid dynamics. Fouling simulation is also conducted to calculate a performance of heating element. Numerical analysis is performed on the situation where plugging phenomenon has already occurred and existed in the inlet region of the heating element. As the pressure of the rear part of the plugging decreases suddenly and the flow velocity becomes slower, it is found that the flow is gathered from both sides as it develops in the flow direction, and it is confirmed that the pressure difference due to plugging is increased.
Keywords: Heating element, plugging, rotary heat exchanger, thermal fluid characteristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12191548 The Study of Synbiotic Dairy Products Rheological Properties during Shelf-Life
Authors: Ilze Beitane, Inga Ciprovica
Abstract:
The influence of lactulose and inulin on rheological properties of fermented milk during storage was studied.Pasteurized milk, freeze-dried starter culture Bb-12 (Bifidobacterium lactis, Chr. Hansen, Denmark), inulin – RAFTILINE®HP (ORAFI, Belgium) and syrup of lactulose (Duphalac®, the Netherlands) were used for experiments. The fermentation process was realized at 37 oC for 16 hours and the storage of products was provided at 4 oC for 7 days. Measurements were carried out by BROOKFIELD standard methods and the flow curves were described by Herschel-Bulkley model. The results of dispersion analysis have shown that both the concentration of prebiotics (p=0.04<0.05) and shelf life (p=0.003<0.05) have a significant influence on the apparent viscosity of the product.Keywords: Apparent viscosity, B.lactis, consistency coefficient, flow behavior index, prebiotics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22521547 Streamwise Vorticity in the Wake of a Sliding Bubble
Authors: R. O’Reilly Meehan, D. B. Murray
Abstract:
In many practical situations, bubbles are dispersed in a liquid phase. Understanding these complex bubbly flows is therefore a key issue for applications such as shell and tube heat exchangers, mineral flotation and oxidation in water treatment. Although a large body of work exists for bubbles rising in an unbounded medium, that of bubbles rising in constricted geometries has received less attention. The particular case of a bubble sliding underneath an inclined surface is common to two-phase flow systems. The current study intends to expand this knowledge by performing experiments to quantify the streamwise flow structures associated with a single sliding air bubble under an inclined surface in quiescent water. This is achieved by means of two-dimensional, two-component particle image velocimetry (PIV), performed with a continuous wave laser and high-speed camera. PIV vorticity fields obtained in a plane perpendicular to the sliding surface show that there is significant bulk fluid motion away from the surface. The associated momentum of the bubble means that this wake motion persists for a significant time before viscous dissipation. The magnitude and direction of the flow structures in the streamwise measurement plane are found to depend on the point on its path through which the bubble enters the plane. This entry point, represented by a phase angle, affects the nature and strength of the vortical structures. This study reconstructs the vorticity field in the wake of the bubble, converting the field at different instances in time to slices of a large-scale wake structure. This is, in essence, Taylor’s ”frozen turbulence” hypothesis. Applying this to the vorticity fields provides a pseudo three-dimensional representation from 2-D data, allowing for a more intuitive understanding of the bubble wake. This study provides insights into the complex dynamics of a situation common to many engineering applications, particularly shell and tube heat exchangers in the nucleate boiling regime.Keywords: Bubbly flow, particle image velocimetry, two-phase flow, wake structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19221546 Effects of Thermal Radiation and Magnetic Field on Unsteady Stretching Permeable Sheet in Presence of Free Stream Velocity
Authors: Phool Singh, Ashok Jangid, N. S. Tomer, Deepa Sinha
Abstract:
The aim of this paper is to investigate twodimensional unsteady flow of a viscous incompressible fluid about stagnation point on permeable stretching sheet in presence of time dependent free stream velocity. Fluid is considered in the influence of transverse magnetic field in the presence of radiation effect. Rosseland approximation is use to model the radiative heat transfer. Using time-dependent stream function, partial differential equations corresponding to the momentum and energy equations are converted into non-linear ordinary differential equations. Numerical solutions of these equations are obtained by using Runge-Kutta Fehlberg method with the help of Newton-Raphson shooting technique. In the present work the effect of unsteadiness parameter, magnetic field parameter, radiation parameter, stretching parameter and the Prandtl number on flow and heat transfer characteristics have been discussed. Skin-friction coefficient and Nusselt number at the sheet are computed and discussed. The results reported in the paper are in good agreement with published work in literature by other researchers.
Keywords: Magneto hydrodynamics, stretching sheet, thermal radiation, unsteady flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22681545 Growth of Multi-Layered Graphene Using Organic Solvent-PMMA Film as the Carbon Source under Low Temperature Conditions
Authors: Alaa Y. Ali, Natalie P. Holmes, John Holdsworth, Warwick Belcher, Paul Dastoor, Xiaojing Zhou
Abstract:
Multi-layered graphene has been produced under low temperature chemical vapour deposition (CVD) growth conditions by utilizing an organic solvent and polymer film source. Poly(methylmethacrylate) (PMMA) was dissolved in chlorobenzene solvent and used as a drop-cast film carbon source on a quartz slide. A source temperature (Tsource) of 180 °C provided sufficient carbon to grow graphene, as identified by Raman spectroscopy, on clean copper foil catalytic surfaces. Systematic variation of hydrogen gas (H2) flow rate from 25 standard cubic centimeters per minute (sccm) to 100 sccm and CVD temperature (Tgrowth) from 400 to 800 °C, yielded graphene films of varying quality as characterized by Raman spectroscopy. The optimal graphene growth parameters were found to occur with a hydrogen flow rate of 75 sccm sweeping the 180 °C source carbon past the Cu foil at 600 °C for 1 min. The deposition at 600 °C with a H2 flow rate of 75 sccm yielded a 2D band peak with ~53.4 cm-1 FWHM and a relative intensity ratio of the G to 2D bands (IG/I2D) of 0.21. This recipe fabricated a few layers of good quality graphene.
Keywords: Graphene, chemical vapour deposition, carbon source, low temperature growth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9111544 Analysis of a Double Pipe Heat Exchanger Performance by Use of Porous Baffles and Nanofluids
Authors: N. Targui, H. Kahalerras
Abstract:
The present work is a numerical simulation of nanofluids flow in a double pipe heat exchanger provided with porous baffles. The hot nanofluid flows in the inner cylinder, whereas the cold nanofluid circulates in the annular gap. The Darcy- Brinkman-Forchheimer model is adopted to describe the flow in the porous regions, and the governing equations with the appropriate boundary conditions are solved by the finite volume method. The results reveal that the addition of metallic nanoparticles enhances the rate of heat transfer in comparison to conventional fluids but this augmentation is accompanied by an increase in pressure drop. The highest heat exchanger performances are obtained when nanoparticles are added only to the cold fluid.
Keywords: Double pipe heat exchanger, Nanofluids, Nanoparticles, Porous baffles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35191543 Network Reconfiguration of Distribution System Using Artificial Bee Colony Algorithm
Authors: S. Ganesh
Abstract:
Power distribution systems typically have tie and sectionalizing switches whose states determine the topological configuration of the network. The aim of network reconfiguration of the distribution network is to minimize the losses for a load arrangement at a particular time. Thus the objective function is to minimize the losses of the network by satisfying the distribution network constraints. The various constraints are radiality, voltage limits and the power balance condition. In this paper the status of the switches is obtained by using Artificial Bee Colony (ABC) algorithm. ABC is based on a particular intelligent behavior of honeybee swarms. ABC is developed based on inspecting the behaviors of real bees to find nectar and sharing the information of food sources to the bees in the hive. The proposed methodology has three stages. In stage one ABC is used to find the tie switches, in stage two the identified tie switches are checked for radiality constraint and if the radilaity constraint is satisfied then the procedure is proceeded to stage three otherwise the process is repeated. In stage three load flow analysis is performed. The process is repeated till the losses are minimized. The ABC is implemented to find the power flow path and the Forward Sweeper algorithm is used to calculate the power flow parameters. The proposed methodology is applied for a 33–bus single feeder distribution network using MATLAB.
Keywords: Artificial Bee Colony (ABC) algorithm, Distribution system, Loss reduction, Network reconfiguration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38101542 Advanced Image Analysis Tools Development for the Early Stage Bronchial Cancer Detection
Authors: P. Bountris, E. Farantatos, N. Apostolou
Abstract:
Autofluorescence (AF) bronchoscopy is an established method to detect dysplasia and carcinoma in situ (CIS). For this reason the “Sotiria" Hospital uses the Karl Storz D-light system. However, in early tumor stages the visualization is not that obvious. With the help of a PC, we analyzed the color images we captured by developing certain tools in Matlab®. We used statistical methods based on texture analysis, signal processing methods based on Gabor models and conversion algorithms between devicedependent color spaces. Our belief is that we reduced the error made by the naked eye. The tools we implemented improve the quality of patients' life.Keywords: Bronchoscopy, digital image processing, lung cancer, texture analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14371541 Numerical Simulation of Three-Dimensional Cavitating Turbulent Flow in Francis Turbines with ANSYS
Authors: Raza Abdulla Saeed
Abstract:
In this study, the three-dimensional cavitating turbulent flow in a complete Francis turbine is simulated using mixture model for cavity/liquid two-phase flows. Numerical analysis is carried out using ANSYS CFX software release 12, and standard k-ε turbulence model is adopted for this analysis. The computational fluid domain consist of spiral casing, stay vanes, guide vanes, runner and draft tube. The computational domain is discretized with a threedimensional mesh system of unstructured tetrahedron mesh. The finite volume method (FVM) is used to solve the governing equations of the mixture model. Results of cavitation on the runner’s blades under three different boundary conditions are presented and discussed. From the numerical results it has been found that the numerical method was successfully applied to simulate the cavitating two-phase turbulent flow through a Francis turbine, and also cavitation is clearly predicted in the form of water vapor formation inside the turbine. By comparison the numerical prediction results with a real runner; it’s shown that the region of higher volume fraction obtained by simulation is consistent with the region of runner cavitation damage.Keywords: Computational Fluid Dynamics, Hydraulic Francis Turbine, Numerical Simulation, Two-Phase Mixture Cavitation Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32301540 CFD Simulations of a Co-current Spray Dryer
Authors: Saad Nahi Saleh
Abstract:
This paper presents the prediction of air flow, humidity and temperature patterns in a co-current pilot plant spray dryer fitted with a pressure nozzle using a three dimensional model. The modelling was done with a Computational Fluid Dynamic package (Fluent 6.3), in which the gas phase is modelled as continuum using the Euler approach and the droplet/ particle phase is modelled by the Discrete Phase model (Lagrange approach).Good agreement was obtained with published experimental data where the CFD simulation correctly predicts a fast downward central flowing core and slow recirculation zones near the walls. In this work, the effects of the air flow pattern on droplets trajectories, residence time distribution of droplets and deposition of the droplets on the wall also were investigated where atomizing of maltodextrin solution was used.Keywords: Spray, CFD, multiphase, drying, droplet, particle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4015