Search results for: Attribute Weighted Class Complexity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2134

Search results for: Attribute Weighted Class Complexity

1234 Enhanced Economic Evaluation – Approach for a Holistic Evaluation of Factory Planning Variants

Authors: Candy P. Schulze, Michael Brieke, Prof. Peter Nyhuis

Abstract:

The building of a factory can be a strategic investment owing to its long service life. An evaluation that only focuses, for example, on payments for the building, the technical equipment of the factory, and the personnel for the enterprise is – considering the complexity of the system factory – not sufficient for this long-term view. The success of an investment is secured, among other things, by the attainment of nonmonetary goals, too, like transformability. Such aspects are not considered in traditional investment calculations like the net present value method. This paper closes this gap with the enhanced economic evaluation (EWR) for factory planning. The procedure and the first results of an application in a project are presented.

Keywords: economic efficiency, holistic evaluation, factory planning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
1233 Data Envelopment Analysis with Partially Perfect Objects

Authors: Alexander Y. Vaninsky

Abstract:

This paper presents a simplified version of Data Envelopment Analysis (DEA) - a conventional approach to evaluating the performance and ranking of competitive objects characterized by two groups of factors acting in opposite directions: inputs and outputs. DEA with a Perfect Object (DEA PO) augments the group of actual objects with a virtual Perfect Object - the one having greatest outputs and smallest inputs. It allows for obtaining an explicit analytical solution and making a step to an absolute efficiency. This paper develops this approach further and introduces a DEA model with Partially Perfect Objects. DEA PPO consecutively eliminates the smallest relative inputs or greatest relative outputs, and applies DEA PO to the reduced collections of indicators. The partial efficiency scores are combined to get the weighted efficiency score. The computational scheme remains simple, like that of DEA PO, but the advantage of the DEA PPO is taking into account all of the inputs and outputs for each actual object. Firm evaluation is considered as an example.

Keywords: Data Envelopment Analysis, Perfect object, Partially perfect object, Partial efficiency, Explicit solution, Simplified algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698
1232 Effective Context Lossless Image Coding Approach Based on Adaptive Prediction

Authors: Grzegorz Ulacha, Ryszard Stasiński

Abstract:

In the paper an effective context based lossless coding technique is presented. Three principal and few auxiliary contexts are defined. The predictor adaptation technique is an improved CoBALP algorithm, denoted CoBALP+. Cumulated predictor error combining 8 bias estimators is calculated. It is shown experimentally that indeed, the new technique is time-effective while it outperforms the well known methods having reasonable time complexity, and is inferior only to extremely computationally complex ones.

Keywords: Adaptive prediction, context coding, image losslesscoding, prediction error bias correction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1352
1231 Solitons and Universes with Acceleration Driven by Bulk Particles

Authors: A. C. Amaro de Faria Jr, A. M. Canone

Abstract:

Considering a scenario where our universe is taken as a 3d domain wall embedded in a 5d dimensional Minkowski space-time, we explore the existence of a richer class of solitonic solutions and their consequences for accelerating universes driven by collisions of bulk particle excitations with the walls. In particular it is shown that some of these solutions should play a fundamental role at the beginning of the expansion process. We present some of these solutions in cosmological scenarios that can be applied to models that describe the inflationary period of the Universe.

Keywords: Solitons, topological defects, Branes, kinks, accelerating universes in Brane scenarios.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 797
1230 Pseudo-almost Periodic Solutions of a Class Delayed Chaotic Neural Networks

Authors: Farouk Cherif

Abstract:

This paper is concerned with the existence and unique¬ness of pseudo-almost periodic solutions to the chaotic delayed neural networks (t)= —Dx(t) ± A f (x (t)) B f (x (t — r)) C f (x(p))dp J (t) . t-o Under some suitable assumptions on A, B, C, D, J and f, the existence and uniqueness of a pseudo-almost periodic solution to equation above is obtained. The results of this paper are new and they complement previously known results.

Keywords: Chaotic neural network, Hamiltonian systems, Pseudo almost periodic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1313
1229 A Weighted Group EI Incorporating Role Information for More Representative Group EI Measurement

Authors: Siyu Wang, Anthony Ward

Abstract:

Emotional intelligence (EI) is a well-established personal characteristic. It has been viewed as a critical factor which can influence an individual's academic achievement, ability to work and potential to succeed. When working in a group, EI is fundamentally connected to the group members' interaction and ability to work as a team. The ability of a group member to intelligently perceive and understand own emotions (Intrapersonal EI), to intelligently perceive and understand other members' emotions (Interpersonal EI), and to intelligently perceive and understand emotions between different groups (Cross-boundary EI) can be considered as Group emotional intelligence (Group EI). In this research, a more representative Group EI measurement approach, which incorporates the information of the composition of a group and an individual’s role in that group, is proposed. To demonstrate the claim of being more representative Group EI measurement approach, this study adopts a multi-method research design, involving a combination of both qualitative and quantitative techniques to establish a metric of Group EI. From the results, it can be concluded that by introducing the weight coefficient of each group member on group work into the measurement of Group EI, Group EI will be more representative and more capable of understanding what happens during teamwork than previous approaches.

Keywords: Emotional intelligence, EI, Group EI, multi-method research, teamwork.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 632
1228 An Experience Report on Course Teaching in Information Systems

Authors: Carlos Oliveira

Abstract:

This paper is a criticism of the traditional model of teaching and presents alternative teaching methods, different from the traditional lecture. These methods are accompanied by reports of experience of their application in a class. It was concluded that in the lecture, the student has a low learning rate and that other methods should be used to make the most engaging learning environment for the student, contributing (or facilitating) his learning process. However, the teacher should not use a single method, but rather a range of different methods to ensure the learning experience does not become repetitive and fatiguing for the student.

Keywords: Educational practices, experience report, IT in education, teaching methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1116
1227 Dataset Analysis Using Membership-Deviation Graph

Authors: Itgel Bayarsaikhan, Jimin Lee, Sejong Oh

Abstract:

Classification is one of the primary themes in computational biology. The accuracy of classification strongly depends on quality of a dataset, and we need some method to evaluate this quality. In this paper, we propose a new graphical analysis method using 'Membership-Deviation Graph (MDG)' for analyzing quality of a dataset. MDG represents degree of membership and deviations for instances of a class in the dataset. The result of MDG analysis is used for understanding specific feature and for selecting best feature for classification.

Keywords: feature, classification, machine learning algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450
1226 Evolutionary Query Optimization for Heterogeneous Distributed Database Systems

Authors: Reza Ghaemi, Amin Milani Fard, Hamid Tabatabaee, Mahdi Sadeghizadeh

Abstract:

Due to new distributed database applications such as huge deductive database systems, the search complexity is constantly increasing and we need better algorithms to speedup traditional relational database queries. An optimal dynamic programming method for such high dimensional queries has the big disadvantage of its exponential order and thus we are interested in semi-optimal but faster approaches. In this work we present a multi-agent based mechanism to meet this demand and also compare the result with some commonly used query optimization algorithms.

Keywords: Information retrieval systems, list fusion methods, document score, multi-agent systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3428
1225 Recognition of Isolated Speech Signals using Simplified Statistical Parameters

Authors: Abhijit Mitra, Bhargav Kumar Mitra, Biswajoy Chatterjee

Abstract:

We present a novel scheme to recognize isolated speech signals using certain statistical parameters derived from those signals. The determination of the statistical estimates is based on extracted signal information rather than the original signal information in order to reduce the computational complexity. Subtle details of these estimates, after extracting the speech signal from ambience noise, are first exploited to segregate the polysyllabic words from the monosyllabic ones. Precise recognition of each distinct word is then carried out by analyzing the histogram, obtained from these information.

Keywords: Isolated speech signals, Block overlapping technique, Positive peaks, Histogram analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435
1224 Freighter Aircraft Selection Using Entropic Programming for Multiple Criteria Decision Making Analysis

Authors: C. Ardil

Abstract:

This paper proposes entropic programming for the freighter aircraft selection problem using the multiple criteria decision analysis method. The study aims to propose a systematic and comprehensive framework by focusing on the perspective of freighter aircraft selection. In order to achieve this goal, an integrated entropic programming approach was proposed to evaluate and rank alternatives. The decision criteria and aircraft alternatives were identified from the research data analysis. The objective criteria weights were determined by the mean weight method and the standard deviation method. The proposed entropic programming model was applied to a practical decision problem for evaluating and selecting freighter aircraft. The proposed entropic programming technique gives robust, reliable, and efficient results in modeling decision making analysis problems. As a result of entropic programming analysis, Boeing B747-8F, a freighter aircraft alternative ( a3), was chosen as the most suitable freighter aircraft candidate.   

Keywords: entropic programming, additive weighted model, multiple criteria decision making analysis, MCDMA, TOPSIS, aircraft selection, freighter aircraft, Boeing B747-8F, Boeing B777F, Airbus A350F

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 552
1223 Evaluating Performance of Quality-of-Service Routing in Large Networks

Authors: V. Narasimha Raghavan, M. Venkatesh, T. Peer Meera Labbai, Praveen Dwarakanath Prabhu

Abstract:

The performance and complexity of QoS routing depends on the complex interaction between a large set of parameters. This paper investigated the scaling properties of source-directed link-state routing in large core networks. The simulation results show that the routing algorithm, network topology, and link cost function each have a significant impact on the probability of successfully routing new connections. The experiments confirm and extend the findings of other studies, and also lend new insight designing efficient quality-of-service routing policies in large networks.

Keywords: QoS, Link-State Routing, Dijkstra, Path Selection, Path Computation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585
1222 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection

Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra, Abdus Sobur

Abstract:

In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of artificial intelligence (AI), specifically deep learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images, representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our approach presents a hybrid model, amalgamating the strengths of two renowned convolutional neural networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.

Keywords: Artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561
1221 Fundamental Equation of Complete Factor Synergetics of Complex Systems with Normalization of Dimension

Authors: Li Zong-Cheng

Abstract:

It is by reason of the unified measure of varieties of resources and the unified processing of the disposal of varieties of resources, that these closely related three of new basic models called the resources assembled node and the disposition integrated node as well as the intelligent organizing node are put forth in this paper; the three closely related quantities of integrative analytical mechanics including the disposal intensity and disposal- weighted intensity as well as the charge of resource charge are set; and then the resources assembled space and the disposition integrated space as well as the intelligent organizing space are put forth. The system of fundamental equations and model of complete factor synergetics is preliminarily approached for the general situation in this paper, to form the analytical base of complete factor synergetics. By the essential variables constituting this system of equations we should set twenty variables respectively with relation to the essential dynamical effect, external synergetic action and internal synergetic action of the system.

Keywords: complex system, disposal of resources, completefactor synergetics, fundamental equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421
1220 Haar Wavelet Method for Solving Fitz Hugh-Nagumo Equation

Authors: G.Hariharan, K.Kannan

Abstract:

In this paper, we develop an accurate and efficient Haar wavelet method for well-known FitzHugh-Nagumo equation. The proposed scheme can be used to a wide class of nonlinear reaction-diffusion equations. The power of this manageable method is confirmed. Moreover the use of Haar wavelets is found to be accurate, simple, fast, flexible, convenient, small computation costs and computationally attractive.

Keywords: FitzHugh-Nagumo equation, Haar wavelet method, adomain decomposition method, computationally attractive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2786
1219 Analysis of Complex Quadrature Mirror Filter Banks

Authors: Chimin Tsai

Abstract:

This work consists of three parts. First, the alias-free condition for the conventional two-channel quadrature mirror filter bank is analyzed using complex arithmetic. Second, the approach developed in the first part is applied to the complex quadrature mirror filter bank. Accordingly, the structure is simplified and the theory is easier to follow. Finally, a new class of complex quadrature mirror filter banks is proposed. Interesting properties of this new structure are also discussed.

Keywords: Aliasing cancellation, complex signal processing, polyphase realization, quadrature mirror filter banks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2279
1218 Efficient Realization of an ADFE with a New Adaptive Algorithm

Authors: N. Praveen Kumar, Abhijit Mitra, C. Ardil

Abstract:

Decision feedback equalizers are commonly employed to reduce the error caused by intersymbol interference. Here, an adaptive decision feedback equalizer is presented with a new adaptation algorithm. The algorithm follows a block-based approach of normalized least mean square (NLMS) algorithm with set-membership filtering and achieves a significantly less computational complexity over its conventional NLMS counterpart with set-membership filtering. It is shown in the results that the proposed algorithm yields similar type of bit error rate performance over a reasonable signal to noise ratio in comparison with the latter one.

Keywords: Decision feedback equalizer, Adaptive algorithm, Block based computation, Set membership filtering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680
1217 Shape Optimization of Permanent Magnet Motors Using the Reduced Basis Technique

Authors: A. Jabbari, M. Shakeri, A. Nabavi

Abstract:

In this paper, a tooth shape optimization method for cogging torque reduction in Permanent Magnet (PM) motors is developed by using the Reduced Basis Technique (RBT) coupled by Finite Element Analysis (FEA) and Design of Experiments (DOE) methods. The primary objective of the method is to reduce the enormous number of design variables required to define the tooth shape. RBT is a weighted combination of several basis shapes. The aim of the method is to find the best combination using the weights for each tooth shape as the design variables. A multi-level design process is developed to find suitable basis shapes or trial shapes at each level that can be used in the reduced basis technique. Each level is treated as a separated optimization problem until the required objective – minimum cogging torque – is achieved. The process is started with geometrically simple basis shapes that are defined by their shape co-ordinates. The experimental design of Taguchi method is used to build the approximation model and to perform optimization. This method is demonstrated on the tooth shape optimization of a 8-poles/12-slots PM motor.

Keywords: PM motor, cogging torque, tooth shape optimization, RBT, FEA, DOE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2506
1216 Reverse Logistics Information Management Using Ontological Approach

Authors: F. Lhafiane, A. Elbyed, M. Bouchoum

Abstract:

Reverse Logistics (RL) Network is considered as complex and dynamic network that involves many stakeholders such as: suppliers, manufactures, warehouse, retails and costumers, this complexity is inherent in such process due to lack of perfect knowledge or conflicting information. Ontologies on the other hand can be considered as an approach to overcome the problem of sharing knowledge and communication among the various reverse logistics partners. In this paper we propose a semantic representation based on hybrid architecture for building the Ontologies in ascendant way, this method facilitates the semantic reconciliation between the heterogeneous information systems that support reverse logistics processes and product data.

Keywords: Reverse Logistics, information management, heterogeneity, Ontologies, semantic web.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2970
1215 Prevention of Corruption in Public Purchases

Authors: Anatoly Krivinsh

Abstract:

The results of dissertation research "Preventing and  combating corruption in public procurement" are presented in this  publication. The study was conducted 2011 till 2013 in a Member  State of the European Union– in the Republic of Latvia.  Goal of the thesis is to explore corruption prevention and  combating issues in public procurement sphere, to identify the  prevalence rates, determinants and contributing factors and  prevention opportunities in Latvia.  In the first chapter the author analyzes theoretical aspects of  understanding corruption in public procurement, with particular  emphasis on corruption definition problem, its nature, causes and  consequences. A separate section is dedicated to the public  procurement concept, mechanism and legal framework. In the first  part of this work the author presents cognitive methodology of  corruption in public procurement field, based on which the author has  carried out an analysis of corruption situation in public procurement  in Republic of Latvia.  In the second chapter of the thesis, the author analyzes the  problem of corruption in public procurement, including its historical  aspects, typology and classification of corruption subjects involved,  corruption risk elements in public procurement and their  identification. During the development of the second chapter author's  practical experience in public procurements was widely used.  The third and fourth chapter deals with issues related to the  prevention and combating corruption in public procurement, namely  the operation of the concept, principles, methods and techniques,  subjects in Republic of Latvia, as well as an analysis of foreign  experience in preventing and combating corruption. The fifth chapter  is devoted to the corruption prevention and combating perspectives  and their assessment. In this chapter the author has made the  evaluation of corruption prevention and combating measures  efficiency in Republic of Latvia, assessment of anti-corruption  legislation development stage in public procurement field in Latvia. 

Keywords: Prevention of corruption, public purchases.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
1214 An Iterative Algorithm for KLDA Classifier

Authors: D.N. Zheng, J.X. Wang, Y.N. Zhao, Z.H. Yang

Abstract:

The Linear discriminant analysis (LDA) can be generalized into a nonlinear form - kernel LDA (KLDA) expediently by using the kernel functions. But KLDA is often referred to a general eigenvalue problem in singular case. To avoid this complication, this paper proposes an iterative algorithm for the two-class KLDA. The proposed KLDA is used as a nonlinear discriminant classifier, and the experiments show that it has a comparable performance with SVM.

Keywords: Linear discriminant analysis (LDA), kernel LDA (KLDA), conjugate gradient algorithm, nonlinear discriminant classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
1213 A study on a Generic Development Process for the BPM+SOA Design and Implementation

Authors: Toshimi Munehira

Abstract:

In order to optimize annual IT spending and to reduce the complexity of an entire system architecture, SOA trials have been started. It is common knowledge that to design an SOA system we have to adopt the top-down approach, but in reality silo systems are being made, so these companies cannot reuse newly designed services, and cannot enjoy SOA-s economic benefits. To prevent this situation, we designed a generic SOA development process referred to as the architecture of “mass customization." To define the generic detail development processes, we did a case study on an imaginary company. Through the case study, we could define the practical development processes and found this could vastly reduce updating development costs.

Keywords: SOA, BPM, Generic Model, MassCustomization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460
1212 Resource Discovery in Web-Services Based Grids

Authors: Damandeep Kaur, Jyotsna Sengupta

Abstract:

A Web-services based grid infrastructure is evolving to be readily available in the near future. In this approach, the Web services are inherited (encapsulated or functioned) into the same existing Grid services class. In practice there is not much difference between the existing Web and grid infrastructure. Grid services emerged as stateful web services. In this paper, we present the key components of web-services based grid and also how the resource discovery is performed on web-services based grid considering resource discovery, as a critical service, to be provided by any type of grid.

Keywords: Web services, resource discovery, grid computing, OGSA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645
1211 Designing Social Care Plans Considering Cause-Effect Relationships: A Study in Scotland

Authors: Sotirios N. Raptis

Abstract:

The paper links social needs to social classes by the creation of cohorts of public services matched as causes to other ones as effects using cause-effect (CE) models. It then compares these associations using CE and typical regression methods (LR, ARMA). The paper discusses such public service groupings offered in Scotland in the long term to estimate the risk of multiple causes or effects that can ultimately reduce the healthcare cost by linking the next services to the likely causes of them. The same generic goal can be achieved using LR or ARMA and differences are discussed. The work uses Health and Social Care (H&Sc) public services data from 11 service packs offered by Public Health Services (PHS) Scotland that boil down to 110 single-attribute year series, called ’factors’. The study took place at Macmillan Cancer Support, UK and Abertay University, Dundee, from 2020 to 2023. The paper discusses CE relationships as a main method and compares sample findings with Linear Regression (LR), ARMA, to see how the services are linked. Relationships found were between smoking-related healthcare provision, mental-health-related services, and epidemiological weight in Primary-1-Education Body-Mass-Index (BMI) in children as CE models. Insurance companies and public policymakers can pack CE-linked services in plans such as those for the elderly, low-income people, in the long term. The linkage of services was confirmed allowing more accurate resource planning.

Keywords: Probability, regression, cause-effect cohorts, data frames, services, prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 69
1210 A Generic, Functionally Comprehensive Approach to Maintaining an Ontology as a Relational Database

Authors: Jennifer Leopold, Alton Coalter, Leong Lee

Abstract:

An ontology is a data model that represents a set of concepts in a given field and the relationships among those concepts. As the emphasis on achieving a semantic web continues to escalate, ontologies for all types of domains increasingly will be developed. These ontologies may become large and complex, and as their size and complexity grows, so will the need for multi-user interfaces for ontology curation. Herein a functionally comprehensive, generic approach to maintaining an ontology as a relational database is presented. Unlike many other ontology editors that utilize a database, this approach is entirely domain-generic and fully supports Webbased, collaborative editing including the designation of different levels of authorization for users.

Keywords: Ontology Editor, Relational Database, CollaborativeCuration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451
1209 Turing Pattern in the Oregonator Revisited

Authors: Elragig Aiman, Dreiwi Hanan, Townley Stuart, Elmabrook Idriss

Abstract:

In this paper, we reconsider the analysis of the Oregonator model. We highlight an error in this analysis which leads to an incorrect depiction of the parameter region in which diffusion driven instability is possible. We believe that the cause of the oversight is the complexity of stability analyses based on eigenvalues and the dependence on parameters of matrix minors appearing in stability calculations. We regenerate the parameter space where Turing patterns can be seen, and we use the common Lyapunov function (CLF) approach, which is numerically reliable, to further confirm the dependence of the results on diffusion coefficients intensities.

Keywords: Diffusion driven instability, common Lyapunov function (CLF), turing pattern, positive-definite matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1051
1208 Development of a RAM Simulation Model for Acid Gas Removal System

Authors: Ainul Akmar Mokhtar, Masdi Muhammad, Hilmi Hussin, Mohd Amin Abdul Majid

Abstract:

A reliability, availability and maintainability (RAM) model has been built for acid gas removal plant for system analysis that will play an important role in any process modifications, if required, for achieving its optimum performance. Due to the complexity of the plant, the model was based on a Reliability Block Diagram (RBD) with a Monte Carlo simulation engine. The model has been validated against actual plant data as well as local expert opinions, resulting in an acceptable simulation model. The results from the model showed that the operation and maintenance can be further improved, resulting in reduction of the annual production loss.

Keywords: Acid gas removal plant, RAM model, Reliabilityblock diagram

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2349
1207 On the Symbol Based Decision Feedback Equalizer

Authors: Mohammed Nafie

Abstract:

Decision Feedback equalizers (DFEs) usually outperform linear equalizers for channels with intersymbol interference. However, the DFE performance is highly dependent on the availability of reliable past decisions. Hence, in coded systems, where reliable decisions are only available after decoding the full block, the performance of the DFE will be affected. A symbol based DFE is a DFE that only uses the decision after the block is decoded. In this paper we derive the optimal settings of both the feedforward and feedback taps of the symbol based equalizer. We present a novel symbol based DFE filterbank, and derive its taps optimal settings. We also show that it outperforms the classic DFE in terms of complexity and/or performance.

Keywords: Coding, DFE, Equalization, Exponential Channelmodels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2308
1206 Arrival and Departure Scheduling at Hub Airports Considering Airlines Level

Authors: A. Nourmohammadzadeh, R. Tavakkoli- Moghaddam

Abstract:

As the air traffic increases at a hub airport, some flights cannot land or depart at their preferred target time. This event happens because the airport runways become occupied to near their capacity. It results in extra costs for both passengers and airlines because of the loss of connecting flights or more waiting, more fuel consumption, rescheduling crew members, etc. Hence, devising an appropriate scheduling method that determines a suitable runway and time for each flight in order to efficiently use the hub capacity and minimize the related costs is of great importance. In this paper, we present a mixed-integer zero-one model for scheduling a set of mixed landing and departing flights (despite of most previous studies considered only landings). According to the fact that the flight cost is strongly affected by the level of airline, we consider different airline categories in our model. This model presents a single objective minimizing the total sum of three terms, namely 1) the weighted deviation from targets, 2) the scheduled time of the last flight (i.e., makespan), and 3) the unbalancing the workload on runways. We solve 10 simulated instances of different sizes up to 30 flights and 4 runways. Optimal solutions are obtained in a reasonable time, which are satisfactory in comparison with the traditional rule, namely First- Come-First-Serve (FCFS) that is far apart from optimality in most cases.

Keywords: Arrival and departure scheduling, Airline level, Mixed-integer model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
1205 Inflation and Unemployment Rates as Indicators of the Transition European Union Countries Monetary Policy Orientation

Authors: Elza Jurun, Damir Piplica, Tea Poklepović

Abstract:

Numerous studies carried out in the developed  western democratic countries have shown that the ideological  framework of the governing party has a significant influence on the  monetary policy. The executive authority consisting of a left-wing  party gives a higher weight to unemployment suppression and central  bank implements a more expansionary monetary policy. On the other  hand, right-wing governing party considers the monetary stability to  be more important than unemployment suppression and in such a  political framework the main macroeconomic objective becomes the  inflation rate reduction. The political framework conditions in the  transition countries which are new European Union (EU) members  are still highly specific in relation to the other EU member countries.  In the focus of this paper is the question whether the same  monetary policy principles are valid in these transitional countries as  well as they apply in developed western democratic EU member  countries. The data base consists of inflation rate and unemployment  rate for 11 transitional EU member countries covering the period  from 2001 to 2012. The essential information for each of these 11  countries and for each year of the observed period is right or left  political orientation of the ruling party.  In this paper we use t-statistics to test our hypothesis that there are  differences in inflation and unemployment between right and left  political orientation of the governing party. To explore the influence  of different countries, through years and different political  orientations descriptive statistics is used. Inflation and unemployment  should be strongly negatively correlated through time, which is tested  using Pearson correlation coefficient.  Regarding the fact whether the governing authority is consisted  from left or right politically oriented parties, monetary authorities  will adjust its policy setting the higher priority on lower inflation or  unemployment reduction. 

Keywords: Inflation rate, monetary policy orientation, transition EU countries, unemployment rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2327