Designing Social Care Plans Considering Cause-Effect Relationships: A Study in Scotland
Authors: Sotirios N. Raptis
Abstract:
The paper links social needs to social classes by the creation of cohorts of public services matched as causes to other ones as effects using cause-effect (CE) models. It then compares these associations using CE and typical regression methods (LR, ARMA). The paper discusses such public service groupings offered in Scotland in the long term to estimate the risk of multiple causes or effects that can ultimately reduce the healthcare cost by linking the next services to the likely causes of them. The same generic goal can be achieved using LR or ARMA and differences are discussed. The work uses Health and Social Care (H&Sc) public services data from 11 service packs offered by Public Health Services (PHS) Scotland that boil down to 110 single-attribute year series, called ’factors’. The study took place at Macmillan Cancer Support, UK and Abertay University, Dundee, from 2020 to 2023. The paper discusses CE relationships as a main method and compares sample findings with Linear Regression (LR), ARMA, to see how the services are linked. Relationships found were between smoking-related healthcare provision, mental-health-related services, and epidemiological weight in Primary-1-Education Body-Mass-Index (BMI) in children as CE models. Insurance companies and public policymakers can pack CE-linked services in plans such as those for the elderly, low-income people, in the long term. The linkage of services was confirmed allowing more accurate resource planning.
Keywords: Probability, regression, cause-effect cohorts, data frames, services, prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 76References:
[1] Simon Bottery et al., A fork in the road: next steps for social care funding reform, The King’s Fund. Available at: https : //www.kingsfund.org.uk/publications/fork−road−social− care − funding − reform
[2] Shpitser I., Identification in Causal Models With Hidden Variables, J Soc Fr Statistique (2009). 2020 Jul;161(1):91-119. Epub 2020 Jun 30. PMID: 33240555; PMCID: PMC7685307. Available at: https : //www.ncbi.nlm.nih.gov/pmc/articles/PMC7685307/
[3] Olier, I., Zhan, Y., Liang, X. et al., Causal inference and observational data, BMC Med Res Methodol 23, 227 (2023). DOI: https://doi.org/10.1186/s12874-023-02058-5.Available at: https : //bmcmedresmethodol.biomedcentral.com/ articles/10.1186/s12874 − 023 − 02058 − 5
[4] Maria Ganopoulou, Dimitrios Koparanis, et al., Causal Structure assessment in Health-Related Quality of Life questionnaires, Conference: 35th Panhellenic and 1st International Statistics Conference, Athens, Greece, DOI:10.13140/RG.2.2.32272.58881. Available at: https : //www.researchgate.net/publication/371169040
[5] Salman Afsar, Laura B. McAvoy, Herv´e Le Louet, Sec. Advanced Methods in Pharmacovigilance and Pharmacoepidemiology, Front. Drug Saf. Regul., 25 May 2023, Volume 3 – 2023, DOI:https://doi.org/10.3389/fdsfr.2023.1193413. Available at: https : //www.frontiersin.org/articles /10.3389/fdsfr.2023.1193413/full
[6] Joachim P. Sturmberg, James A. Marcum, From cause and effect to causes and effects, 3 March 2017. DOI: https://doi.org/10.1139/er-2016-0109. Available at: https : //onlinelibrary.wiley.com/doi/full/10.1111/jep.13814
[7] Stefano Cucurachi and Sangwon Suh, Cause-effect analysis for sustainable development policy, Environmental Reviews. Available at: https : //cdnsciencepub.com/doi/abs/10.1139/er−2016−0109
[8] European Labour Authority, Measuring the effectiveness of policy approaches and performance of enforcement authorities, November 2022, Available at: https : //www.ela.europa.eu/sites/default/files/ 2023−02/Output− paper − from − plenary − thematic − discussion −measuring −the−effectiveness−of −policy −approaches −and − performance − of − enforcement − authorities − %282022%29.pdf
[9] British Property Federation, The Impact of Rent Control on the Private Rented Sector, May 2023. Available at: https : //bpf.org.uk/media/6296/2023−03−the−impact−of−rent− control−on−the−private−rented−sector−bpf −final.pdf4
[10] David Docquier, Giorgia Di Capua. Reik V. Donner et al. A comparison of two causal methods in the context of climate analyses, EGUsphere, Available at: https : //egusphere.copernicus.org/preprints/2023/egusphere − 2023 − 2212/egusphere − 2023 − 2212.pdf
[11] Wenkai Hu, Jiandong Wang, Fan Yang, Banglei Han, Zhen Wang, Analysis of time-varying cause-effect relations based on qualitative trends and change amplitudes, Computers & Chemical Engineering, Volume 162, 2022, 107813,ISSN 0098-1354, DOI: https://doi.org/10.1016/j.compchemeng.2022.107813 Available at: https : //www.sciencedirect.com/science/ article/abs/pii/S009813542200151X
[12] Kay H. Brodersen, Fabian Galluser, Jim Koehler, Nicolas Remy and Steven L. Scott, Inferring Causal Impact Using Bayesian Structural Time-Series Models, The Annals of Applied Statistics 2015, Vol. 9, No. 1, 247–274. DOI: 10.1214/14-AOAS788.2015. Available at: https : //static.googleusercontent.com/ media/research.google.com/en//pubs/archive/41854.pdf
[13] Oki Oktaviani, Budi Susetyo, Bambang Purwoko Kusumo Bintoro, Risk Management Model using Cause and Effect Analysis in Industrial Building Project, International Journal of Research and Review, Vol.8; Issue: 8; August 2021. DOI: https://doi.org/10.52403/ijrr.20210832 www.ijrrjournal.com ISSN: 2349-9788; P-ISSN: 2454-2237. Available at: https : //www.ijrrjournal.com/ IJRRV ol.8I ssue.8Aug2021/IJRR032.pdf
[14] Arman Oganisian and Jason A. Roy, A Practical Introduction to Bayesian Estimation of Causal Effects: Parametric and Nonparametric Approaches, Stat Med. 2021 Jan 30; 40(2): 518–551. DOI: 10.1002/sim.8761 PMCID: PMC8640942 NIHMSID: NIHMS1755614 PMID: 33015870 Available at: https : //www.ncbi.nlm.nih.gov/pmc/articles/PMC8640942/
[15] Koopmans E, Schiller DC. Understanding Causation in Healthcare: An Introduction to Critical Realism. Qual Health Res. 2022 Jul;32(8-9):1207-1214. DOI: 10.1177/10497323221105737. Epub 2022 Jun 1. PMID: 35649292; PMCID: PMC9350449. Available at: Available at: https : //www.ncbi.nlm.nih.gov/pmc/articles/PMC9350449/
[16] Erik Igelstr¨om, Peter Craig, Jim Lewsey, John Lynch, Anna Pearce, Srinivasa Vittal Katikireddi, Causal inference and effect estimation using observational data, BMJ. J Epidemiol Community Health 2022;76:960–966. doi:10.1136/jech-2022-219267. Available at: https : //jech.bmj.com/content/jech/76/11/960.full.pdf
[17] Vidushi Adlakha and Eric Kuo Statistical causal inference methods for observational research in PER: a primer. Available at: https : //arxiv.org/pdf/2305.14558.pdf
[18] Zhouxuan, Kai Zhang, Yashar Talebi et al. Causal Inference for Estimation of Vaccine Effects from Time-to-Event Data. DOI: https://doi.org/10.1101/2023.09.24.23296040 Available at: https : //www.medrxiv.org/content/ 10.1101/2023.09.24.23296040v1.full.pdf
[19] Bl¨obaum P, Janzing D, Washio T, Shimizu S, Sch¨olkopf B. Analysis of cause-effect inference by comparing regression errors. PeerJ Comput Sci. 2019 Jan 21;5:e169. Doi: 10.7717/peerj-cs.169. PMID: 33816822; PMCID: PMC7924496. Available at: https : //www.ncbi.nlm.nih.gov/pmc/articles/PMC7924496/
[20] Alberto Maydeu-Olivares, Dexin Shi, Amanda Fairchild, Estimating Causal Effects in Linear Regression Models With Observational Data: The Instrumental Variables Regression Model, July 2019, Psychological Methods, 25(2). DOI:10.1037/met0000226. Available at: https : //www.researchgate.net/publication/334402799 Estimating causal effects in linear regression models with observational data The instrumental variables regression model
[21] Gredell (2019), Comparison of Machine Learning Algorithms for Predictive Modelling of Beef Attributes Using Rapid Evaporative Ionization Mass Spectrometry (REIMS) Data, Sci Rep, 9, 5721. Available at: https : //doi.org/10.1038/s41598−019−40927−6
[22] Venkatasubramaniam, A., Mateen, B.A., Shields, B.M. et al., Comparison of causal forest and regression-based approaches to evaluate treatment effect heterogeneity: an application for type 2 diabetes precision medicine. BMC Med Inform Decis Mak 23, 110 (2023). DOI:https : //doi.org/10.1186/s12911 − 023 − 02207 − 2
[23] Bebbington E., Linear regression analysis of Hospital Episode Statistics predicts a large increase in demand for elective hand surgery in England. DOI:01081557=document; 01:09:2016. Available at:https : //www : ncbi : nlm : nih : gov = pmc = articles = PMC4315884 =
[24] Uematsu H, Yamashita K, Kunisawa S, Otsubo T, Imanaka Y., Prediction of pneumonia hospitalization in adults using health checkup data. PLOS ONE. 2017;12(6) : e0180159.
[25] Juang WC, Huang SJ, Huang FD, Cheng PW, Wann SR., Application of time series analysis in modelling and forecasting emergency department visits in a medical centre in Southern Taiwan. BMJ Open. 2017;7(11):e018628. DOI : 10.1136/bmjopen − 2017 − 018628, PMID29196487.
[26] Harutyunyan H, Khachatrian H, Kale DC, Ver Steeg G, Galstyan A., Multitask learning and benchmarking with clinical time series data. Sci Data. 2019;6(1):96. DOI : 10.1038/s41597 − 019 − 0103 − 9
[27] Muge Capan, Stephen Hoover et al. (2019), Time Series Analysis for Forecasting Hospital Census: Application to the Neonatal Intensive Care Unit. Multitask learning and benchmarking with clinical time series data, Appl Clin Inform.2019, 7(2): pp. 275–289. Available at: https : //dx.doi.org/10.4338%2FACI −2015−09−RA−0127
[28] Ambarish Chattopadhyay, Jos´e R Zubizarreta, On the implied weights of linear regression for causal inference, Biometrika, Volume 110, Issue 3, September 2023, Pages 615–629, Available DOI : https : //doi.org/10.1093/biomet/asac058
[29] Atul Gupta, Joseph R. Martinez, Amol S. Navathe, Selection and Causal Effects in Voluntary Programs: Bundled Payments in Medicare, NBER Working Paper Series. Available at: nber.org/system/files/workingpapers/w31256/w31256.pdf
[30] Langton JM2018. Wong ST, Burge F et al. (2015). Population segments as a tool for health care performance reporting: an exploratory study in the Canadian province of British Columbia, BMC Fam Pract. 2020: pp. 21-98. Available at: DOI : 10.1186/s12875 − 020 − 01141 − w
[31] Md Saiful Islam, Md Mahmudul Hasan (2018) A Systematic Review on Healthcare Analytics: Application and Theoretical Perspective of Data Mining, Healthcare, 2018, pp. 6-54. Available at: https : //www.ncbi.nlm.nih.gov/pmc/articles/PMC6023432/
[32] Chen Chen, Bin Huang, Michal Kouril, et al., An application programming interface implementing Bayesian approaches for evaluating effect of time-varying treatment with R and Python, Front. Comput. Sci., 16 August 2023, Volume 5 - 2023. Sec. Software. DOI: https://doi.org/10.3389/fcomp.2023.1183380 Available at: https : //www.frontiersin.org/articles/10.3389/ fcomp.2023.1183380/full
[33] Dimitris Bertsimas, Colin Pawlowski, Ying Daisy Zhuo (2018), From Predictive Methods to Missing Data Imputation: An Optimization Approach, Journal of Machine Learning Research, 18 (2018) 1-39. Available at: http : //jmlr.org/papers/volume18/17 − 073/17 − 073.pdf
[34] E.M. Mirkes, T.J. Coats, J. Levesley, A.N. Gorban (2018), From Predictive Methods to Missing Data Imputation: An Optimisation Approach, Journal of Machine Learning Research, 18 (2018), pp. 1-39. DOI : http : //dx.doi.org/10.1016/j.compbiomed.2016.06.004
[35] deRooij M. (2018), Transitional modelling of experimental longitudinal data with missing values, Adv Data AnalClassif, 12, pp. 107–130. Available at: https : //link.springer.com/article/10.1007/s11634 − 015 − 0226 − 6
[36] Scottish Government, statistics.gov.scot Available at: https : //statistics.gov.scot/datahome
[37] Public health Scotland. Data and intelligence (2020). A – Z Subject Index, 2020. Available at: https : //www.isdscotland.org/A−to− Z − index/index.asp.
[38] Scottish Government(2019). Statistics Service Health and Social Care Data. Available at: https : //statistics.gov.scot/datahome
[39] Aristotelis Koskinas, Eleni Zaharopoulou, George Pouliasis, Ilias Deligiannis, ’Estimating the Statistical Significance of Cross–Correlations between Hydroclimatic Processes in the Presence of Long–Range Dependence’. Available at: https : //www.itia.ntua.gr/el/getfile/2234/1/documents/earth − 03 − 00059 − v3.pdf
[40] Fan Chao, Guang Yu, Causal inference using regression-based statistical control: Confusion in Econometrics, Journal of Data and Information Science 8(1):21-28 DOI:10.2478/jdis-2023-0006. Available: https : //www.researchgate.net/publication /368691749Causal inference using regression − based statistical control Confusion in Econometrics 23 May 2023. arXiv:2305.14558v1
[stat.ME]
[41] Bui C, Pham N, Vo A, Tran A, Nguyen A, Le T., Time series forecasting for healthcare diagnosis and prognostics with the focus on cardiovascular diseases. IFMBE Proc, 6th International Conference on the Development of Biomedical Engineering in Vietnam (BME6); BME. 2017;63:138.
[42] Liew BXW, Peolsson A, Rugamer D, Wibault J, L¨ofgren H, Dedering A et al. (2020), Clinical predictive modelling of post-surgical recovery in individuals with cervical radiculopathy: a machine learning approach. Sci Rep. 2020;10(1):16782. DOI : 10.1038/s41598−020−73740−7
[43] Dunsmuir WT., Dangers and uses of cross-correlation in analyzing time series in perception, performance, movement, and neuroscience: the importance of constructing transfer function autoregressive models. Behav Res Methods. 2019;48(2),2016,783-802. DOI : 10.3758/s13428 − 015 − 0611 − 2
[44] Damos, P., Using multivariate cross correlations, ”Granger causality and graphical models to quantify spatiotemporal synchronization and causality between pest populations”. BMC Ecol 16, 33 (2016). DOI : https : //doi.org/10.1186/s12898 − 016 − 0087 − 7
[45] Granger, C. W. J. (1969)., Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica. 37 (3): 424–438. doi:10.2307/1912791. JSTOR 1912791.
[46] J. Pearl and D. Mackenzie, The book of why: the new science of cause and effect (Basic books, 2018).
[47] Patrick A. Stokes, Patrick L. Purdon, A study of problems encountered in Granger causality analysis from a neuroscience perspective, PNAS, August 4, 2017, 114 (34) E7063-E7072, DOI: https : //doi.org/10.1073/pnas.1704663114
[48] G¨ulnur ˙Ilg¨un, Murat Konca, and Seda S¨onmez, The Granger Causality Between Health Expenditure and Gross Domestic Product in OECD Countries (June 30, 2022). Journal of Health Management, Volume 24, Issue 3 DOI:https : //doi.org/10.1177/09720634221109306
[49] Skiera B, Reiner J., Regression analysis, Homburg, Christian, Klarmann, martin. In: Vomberg A, editor. Handbook of market research. DOI:https : //doi : org = 10 : 1007 = 978 − 3 − 319 − 05542 − 817 − 1; 2018.
[50] Shivapratap Gopakumar, Shivapratap Gopakumar, Truyen Tran, Wei Luo, Dinh Phung, Forecasting Daily Patient Outflow From a Ward Having No Real-Time Clinical Data, July 2016. JMIR Medical Informatics 4(3):e25. DOI:10.2196/medinform. 5650. Available at: https : //www.researchgate.net/profile/T ruyen − Tran − 2/publication/305522446 Forecasting Daily Patient Outflow From a Ward Having No Real − Time Clinical Data/links/57c2c0f408ae2f5eb33917f3/ Forecasting − Daily −Patient − Outflow − From − a − Ward − Having − No − Real − Time − Clinical − Data.pdf
[51] Chan DL, Sullivan EA., Teenage smoking in pregnancy and birthweight: a population study, 2001-2004. Med J Aust. 2008 Apr 14 7;188(7):392-6.DOI : 10.5694/j.1326 − 5377.2008.tb01682.x.. PMID:18393741
[52] Rumrich I, V¨ah¨akangas K, Viluksela M, et al., Effects of maternal smoking on body size and proportions at birth: a register-based cohort study of 1.4 million births, BMJ Open 2020;10:e033465. doi : 10.1136/bmjopen − 2019 − 033465
[53] Yang C, Delcher C, Shenkman E et al., Expenditure variations analysis using residuals for identifying high health care utilizers in a state Medicaid program. BMC Med Inform Decis Mak. 2019. Available at: https : //bmcmedinformdecismak.biomedcentral.com/articles/10.1186/ s12911 − 019 − 0870 − 4
[54] Boelaert, Julien & Ollion, Etienne. (2018)., The Great Regression. Machine Learning, Econometrics, and the Future of Quantitative Social Sciences. Revue franc¸aise de sociologie. DOI : 59.10.3917/rfs.593.0475.
[55] Marno Verbeek (2017), A Guide to Modern Econometrics, 5th edition, Wiley, New Jersey, 2017. str. 520