Search results for: Green transportation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 892

Search results for: Green transportation

22 O-Functionalized CNT Mediated CO Hydro-Deoxygenation and Chain Growth

Authors: K. Mondal, S. Talapatra, M. Terrones, S. Pokhrel, C. Frizzel, B. Sumpter, V. Meunier, A. L. Elias

Abstract:

Worldwide energy independence is reliant on the ability to leverage locally available resources for fuel production. Recently, syngas produced through gasification of carbonaceous materials provided a gateway to a host of processes for the production of various chemicals including transportation fuels. The basis of the production of gasoline and diesel-like fuels is the Fischer Tropsch Synthesis (FTS) process: A catalyzed chemical reaction that converts a mixture of carbon monoxide (CO) and hydrogen (H2) into long chain hydrocarbons. Until now, it has been argued that only transition metal catalysts (usually Co or Fe) are active toward the CO hydrogenation and subsequent chain growth in the presence of hydrogen. In this paper, we demonstrate that carbon nanotube (CNT) surfaces are also capable of hydro-deoxygenating CO and producing long chain hydrocarbons similar to that obtained through the FTS but with orders of magnitude higher conversion efficiencies than the present state-of-the-art FTS catalysts. We have used advanced experimental tools such as XPS and microscopy techniques to characterize CNTs and identify C-O functional groups as the active sites for the enhanced catalytic activity. Furthermore, we have conducted quantum Density Functional Theory (DFT) calculations to confirm that C-O groups (inherent on CNT surfaces) could indeed be catalytically active towards reduction of CO with H2, and capable of sustaining chain growth. The DFT calculations have shown that the kinetically and thermodynamically feasible route for CO insertion and hydro-deoxygenation are different from that on transition metal catalysts. Experiments on a continuous flow tubular reactor with various nearly metal-free CNTs have been carried out and the products have been analyzed. CNTs functionalized by various methods were evaluated under different conditions. Reactor tests revealed that the hydrogen pre-treatment reduced the activity of the catalysts to negligible levels. Without the pretreatment, the activity for CO conversion as found to be 7 µmol CO/g CNT/s. The O-functionalized samples showed very activities greater than 85 µmol CO/g CNT/s with nearly 100% conversion. Analyses show that CO hydro-deoxygenation occurred at the C-O/O-H functional groups. It was found that while the products were similar to FT products, differences in selectivities were observed which, in turn, was a result of a different catalytic mechanism. These findings now open a new paradigm for CNT-based hydrogenation catalysts and constitute a defining point for obtaining clean, earth abundant, alternative fuels through the use of efficient and renewable catalyst.

Keywords: CNT, CO hydro-deoxygenation, DFT, liquid fuels, XPS, XTL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 754
21 Mechanical Behavior of Sandwiches with Various Glass Fiber/Epoxy Skins under Bending Load

Authors: Emre Kara, Metehan Demir, Şura Karakuzu, Kadir Koç, Ahmet F. Geylan, Halil Aykul

Abstract:

While the polymeric foam cored sandwiches have been realized for many years, recently there is a growing and outstanding interest on the use of sandwiches consisting of aluminum foam core because of their some of the distinct mechanical properties such as high bending stiffness, high load carrying and energy absorption capacities. These properties make them very useful in the transportation industry (automotive, aerospace, shipbuilding industry), where the "lightweight design" philosophy and the safety of vehicles are very important aspects. Therefore, in this study, the sandwich panels with aluminum alloy foam core and various types and thicknesses of glass fiber reinforced polymer (GFRP) skins produced via Vacuum Assisted Resin Transfer Molding (VARTM) technique were obtained by using a commercial toughened epoxy based adhesive with two components. The aim of this contribution was the analysis of the bending response of sandwiches with various glass fiber reinforced polymer skins. The three point bending tests were performed on sandwich panels at different values of support span distance using a universal static testing machine in order to clarify the effects of the type and thickness of the GFRP skins in terms of peak load, energy efficiency and absorbed energy values. The GFRP skins were easily bonded to the aluminum alloy foam core under press machine with a very low pressure. The main results of the bending tests are: force-displacement curves, peak force values, absorbed energy, collapse mechanisms and the influence of the support span length and GFRP skins. The obtained results of the experimental investigation presented that the sandwich with the skin made of thicker S-Glass fabric failed at the highest load and absorbed the highest amount of energy compared to the other sandwich specimens. The increment of the support span distance made the decrease of the peak force and absorbed energy values for each type of panels. The common collapse mechanism of the panels was obtained as core shear failure which was not affected by the skin materials and the support span distance.

Keywords: Aluminum foam, collapse mechanisms, light-weight structures, transport application

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1191
20 Smart Sustainable Cities: An Integrated Planning Approach towards Sustainable Urban Energy Systems, India

Authors: Adinarayanane Ramamurthy, Monsingh D. Devadas

Abstract:

Cities denote instantaneously a challenge and an opportunity for climate change policy. Cities are the place where most energy services are needed because urbanization is closely linked to high population densities and concentration of economic activities and production (Urban energy demand). Consequently, it is critical to explain about the role of cities within the world-s energy systems and its correlation with the climate change issue. With more than half of the world-s population already living in urban areas, and that percentage expected to rise to 75 per cent by 2050, it is clear that the path to sustainable development must pass through cities. Cities expanding in size and population pose increased challenges to the environment, of which energy is part as a natural resource, and to the quality of life. Nowadays, most cities have already understood the importance of sustainability, both at their local scale as in terms of their contribution to sustainability at higher geographical scales. It requires the perception of a city as a complex and dynamic ecosystem, an open system, or cluster of systems, where the energy as well as the other natural resources is transformed to satisfy the needs of the different urban activities. In fact, buildings and transportation generally represent most of cities direct energy demand, i.e., between 60 per cent and 80 per cent of the overall consumption. Buildings, both residential and services are usually influenced by the local physical and social conditions. In terms of transport, the energy demand is also strongly linked with the specific characteristics of a city (urban mobility).The concept of a “smart city" builds on statistics as seven key axes of a city-s success in moving towards common platform (brain nerve)of sustainable urban energy systems. With the aforesaid knowledge, the authors have suggested a frame work to role of cities, as energy actors for smart city management. The authors have discusses the potential elements needed for energy in smart cities and also identified potential energy actions and relevant barriers. Furthermore, three levels of city smartness in cities actions to overcome market /institutional failures with a local approach are distinguished. The authors have made an attempt to conceive and implement concepts of city smartness by adopting the city or local government as nerve center through an integrated planning approach. Finally, concluding with recommendations for the organization of the Smart Sustainable Cities for positive changes of urban India.

Keywords: Urbanization, Urban Energy Demand, Sustainable Urban Energy Systems, Integrated Planning Approach, Smart Sustainable City.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2942
19 Greenhouse Gasses’ Effect on Atmospheric Temperature Increase and the Observable Effects on Ecosystems

Authors: Alexander J. Severinsky

Abstract:

Radiative forces of greenhouse gases (GHG) increase the temperature of the Earth's surface, more on land, and less in oceans, due to their thermal capacities. Given this inertia, the temperature increase is delayed over time. Air temperature, however, is not delayed as air thermal capacity is much lower. In this study, through analysis and synthesis of multidisciplinary science and data, an estimate of atmospheric temperature increase is made. Then, this estimate is used to shed light on current observations of ice and snow loss, desertification and forest fires, and increased extreme air disturbances. The reason for this inquiry is due to the author’s skepticism that current changes cannot be explained by a "~1 oC" global average surface temperature rise within the last 50-60 years. The only other plausible cause to explore for understanding is that of atmospheric temperature rise. The study utilizes an analysis of air temperature rise from three different scientific disciplines: thermodynamics, climate science experiments, and climactic historical studies. The results coming from these diverse disciplines are nearly the same, within ± 1.6%. The direct radiative force of GHGs with a high level of scientific understanding is near 4.7 W/m2 on average over the Earth’s entire surface in 2018, as compared to one in pre-Industrial time in the mid-1700s. The additional radiative force of fast feedbacks coming from various forms of water gives approximately an additional ~15 W/m2. In 2018, these radiative forces heated the atmosphere by approximately 5.1 oC, which will create a thermal equilibrium average ground surface temperature increase of 4.6 oC to 4.8 oC by the end of this century. After 2018, the temperature will continue to rise without any additional increases in the concentration of the GHGs, primarily of carbon dioxide and methane. These findings of the radiative force of GHGs in 2018 were applied to estimates of effects on major Earth ecosystems. This additional force of nearly 20 W/m2 causes an increase in ice melting by an additional rate of over 90 cm/year, green leaves temperature increase by nearly 5 oC, and a work energy increase of air by approximately 40 Joules/mole. This explains the observed high rates of ice melting at all altitudes and latitudes, the spread of deserts and increases in forest fires, as well as increased energy of tornadoes, typhoons, hurricanes, and extreme weather, much more plausibly than the 1.5 oC increase in average global surface temperature in the same time interval. Planned mitigation and adaptation measures might prove to be much more effective when directed toward the reduction of existing GHGs in the atmosphere.

Keywords: GHG radiative forces, GHG air temperature, GHG thermodynamics, GHG historical, GHG experimental, GHG radiative force on ice, GHG radiative force on plants, GHG radiative force in air.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 526
18 New Suspension Mechanism Using Camber Thrust for a Formula Car

Authors: Shinji Kajiwara

Abstract:

The basic ability of a vehicle is to “run”, “turn” and “stop”. The safeness and comfort during a drive on various road surfaces and speed depends on the performance of these basic abilities of the vehicle. Stability and maneuverability of a vehicle are vital in automotive engineering. The stability of a vehicle is the ability of the vehicle to revert back to a stable state during a drive when faced with crosswinds and irregular road conditions. Maneuverability of a vehicle is the ability of the vehicle to change direction during a drive swiftly based on the steering of the driver. The stability and maneuverability of a vehicle can also be defined as the driving stability of the vehicle. Since the fossil fueled vehicle is the main type of transportation today, the environmental factor in automotive engineering is also vital. By improving the fuel efficiency of the vehicle, the overall carbon emission will be reduced, thus reducing the effect of global warming and greenhouse gas on the Earth. Another main focus of the automotive engineering is the safety performance of the vehicle, especially with the worrying increase of vehicle collision every day. With better safety performance of a vehicle, every driver will be more confident driving every day. Next, let us focus on the “turn” ability of a vehicle. By improving this particular ability of the vehicle, the cornering limit of the vehicle can be improved, thus increasing the stability and maneuverability factor. In order to improve the cornering limit of the vehicle, a study to find the balance between the steering systems, the stability of the vehicle, higher lateral acceleration and the cornering limit detection must be conducted. The aim of this research is to study and develop a new suspension system that will boost the lateral acceleration of the vehicle and ultimately improving the cornering limit of the vehicle. This research will also study environmental factor and the stability factor of the new suspension system. The double wishbone suspension system is widely used in a four-wheel vehicle, especially for high cornering performance sports car and racing car. The double wishbone designs allow the engineer to carefully control the motion of the wheel by controlling such parameters as camber angle, caster angle, toe pattern, roll center height, scrub radius, scuff, and more. The development of the new suspension system will focus on the ability of the new suspension system to optimize the camber control and to improve the camber limit during a cornering motion. The research will be carried out using the CAE analysis tool. Using this analysis tool we will develop a JSAE Formula Machine equipped with the double wishbone system and also the new suspension system and conduct simulation and conduct studies on the performance of both suspension systems.

Keywords: Automobile, Camber Thrust, Cornering force, Suspension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3576
17 Analysis of Non-Conventional Roundabout Performance in Mixed Traffic Conditions

Authors: Guneet Saini, Shahrukh, Sunil Sharma

Abstract:

Traffic congestion is the most critical issue faced by those in the transportation profession today. Over the past few years, roundabouts have been recognized as a measure to promote efficiency at intersections globally. In developing countries like India, this type of intersection still faces a lot of issues, such as bottleneck situations, long queues and increased waiting times, due to increasing traffic which in turn affect the performance of the entire urban network. This research is a case study of a non-conventional roundabout, in terms of geometric design, in a small town in India. These types of roundabouts should be analyzed for their functionality in mixed traffic conditions, prevalent in many developing countries. Microscopic traffic simulation is an effective tool to analyze traffic conditions and estimate various measures of operational performance of intersections such as capacity, vehicle delay, queue length and Level of Service (LOS) of urban roadway network. This study involves analyzation of an unsymmetrical non-circular 6-legged roundabout known as “Kala Aam Chauraha” in a small town Bulandshahr in Uttar Pradesh, India using VISSIM simulation package which is the most widely used software for microscopic traffic simulation. For coding in VISSIM, data are collected from the site during morning and evening peak hours of a weekday and then analyzed for base model building. The model is calibrated on driving behavior and vehicle parameters and an optimal set of calibrated parameters is obtained followed by validation of the model to obtain the base model which can replicate the real field conditions. This calibrated and validated model is then used to analyze the prevailing operational traffic performance of the roundabout which is then compared with a proposed alternative to improve efficiency of roundabout network and to accommodate pedestrians in the geometry. The study results show that the alternative proposed is an advantage over the present roundabout as it considerably reduces congestion, vehicle delay and queue length and hence, successfully improves roundabout performance without compromising on pedestrian safety. The study proposes similar designs for modification of existing non-conventional roundabouts experiencing excessive delays and queues in order to improve their efficiency especially in the case of developing countries. From this study, it can be concluded that there is a need to improve the current geometry of such roundabouts to ensure better traffic performance and safety of drivers and pedestrians negotiating the intersection and hence this proposal may be considered as a best fit.

Keywords: Operational performance, roundabout, simulation, VISSIM, traffic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 753
16 Humic Acid and Azadirachtin Derivatives for the Management of Crop Pests

Authors: R. S. Giraddi, C. M. Poleshi

Abstract:

Organic cultivation of crops is gaining importance consumer awareness towards pesticide residue free foodstuffs is increasing globally. This is also because of high costs of synthetic fertilizers and pesticides, making the conventional farming non-remunerative. In India, organic manures (such as vermicompost) are an important input in organic agriculture.  Though vermicompost obtained through earthworm and microbe-mediated processes is known to comprise most of the crop nutrients, but they are in small amounts thus necessitating enrichment of nutrients so that crop nourishment is complete. Another characteristic of organic manures is that the pest infestations are kept under check due to induced resistance put up by the crop plants. In the present investigation, deoiled neem cake containing azadirachtin, copper ore tailings (COT), a source of micro-nutrients and microbial consortia were added for enrichment of vermicompost. Neem cake is a by-product obtained during the process of oil extraction from neem plant seeds. Three enriched vermicompost blends were prepared using vermicompost (at 70, 65 and 60%), deoiled neem cake (25, 30 and 35%), microbial consortia and COTwastes (5%). Enriched vermicompost was thoroughly mixed, moistened (25+5%), packed and incubated for 15 days at room temperature. In the crop response studies, the field trials on chili (Capsicum annum var. longum) and soybean, (Glycine max cv JS 335) were conducted during Kharif 2015 at the Main Agricultural Research Station, UAS, Dharwad-Karnataka, India. The vermicompost blend enriched with neem cake (known to possess higher amounts of nutrients) and vermicompost were applied to the crops and at two dosages and at two intervals of crop cycle (at sowing and 30 days after sowing) as per the treatment plan along with 50% recommended dose of fertilizer (RDF). 10 plants selected randomly in each plot were studied for pest density and plant damage. At maturity, crops were harvested, and the yields were recorded as per the treatments, and the data were analyzed using appropriate statistical tools and procedures. In the crops, chili and soybean, crop nourishment with neem enriched vermicompost reduced insect density and plant damage significantly compared to other treatments. These treatments registered as much yield (16.7 to 19.9 q/ha) as that realized in conventional chemical control (18.2 q/ha) in soybean, while 72 to 77 q/ha of green chili was harvested in the same treatments, being comparable to the chemical control (74 q/ha). The yield superiority of the treatments was of the order neem enriched vermicompost>conventional chemical control>neem cake>vermicompost>untreated control.  The significant features of the result are that it reduces use of inorganic manures by 50% and synthetic chemical insecticides by 100%.

Keywords: Humic acid, azadirachtin, vermicompost, insect-pest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 783
15 Utilization of Process Mapping Tool to Enhance Production Drilling in Underground Metal Mining Operations

Authors: Sidharth Talan, Sanjay Kumar Sharma, Eoin Joseph Wallace, Nikita Agrawal

Abstract:

Underground mining is at the core of rapidly evolving metals and minerals sector due to the increasing mineral consumption globally. Even though the surface mines are still more abundant on earth, the scales of industry are slowly tipping towards underground mining due to rising depth and complexities of orebodies. Thus, the efficient and productive functioning of underground operations depends significantly on the synchronized performance of key elements such as operating site, mining equipment, manpower and mine services. Production drilling is the process of conducting long hole drilling for the purpose of charging and blasting these holes for the production of ore in underground metal mines. Thus, production drilling is the crucial segment in the underground metal mining value chain. This paper presents the process mapping tool to evaluate the production drilling process in the underground metal mining operation by dividing the given process into three segments namely Input, Process and Output. The three segments are further segregated into factors and sub-factors. As per the study, the major input factors crucial for the efficient functioning of production drilling process are power, drilling water, geotechnical support of the drilling site, skilled drilling operators, services installation crew, oils and drill accessories for drilling machine, survey markings at drill site, proper housekeeping, regular maintenance of drill machine, suitable transportation for reaching the drilling site and finally proper ventilation. The major outputs for the production drilling process are ore, waste as a result of dilution, timely reporting and investigation of unsafe practices, optimized process time and finally well fragmented blasted material within specifications set by the mining company. The paper also exhibits the drilling loss matrix, which is utilized to appraise the loss in planned production meters per day in a mine on account of availability loss in the machine due to breakdowns, underutilization of the machine and productivity loss in the machine measured in drilling meters per unit of percussion hour with respect to its planned productivity for the day. The given three losses would be essential to detect the bottlenecks in the process map of production drilling operation so as to instigate the action plan to suppress or prevent the causes leading to the operational performance deficiency. The given tool is beneficial to mine management to focus on the critical factors negatively impacting the production drilling operation and design necessary operational and maintenance strategies to mitigate them. 

Keywords: Process map, drilling loss matrix, availability, utilization, productivity, percussion rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1055
14 Environmental Impact of Autoclaved Aerated Concrete in Modern Construction: A Case Study from the New Egyptian Administrative Capital

Authors: Esraa A. Khalil, Mohamed N. AbouZeid

Abstract:

Building materials selection is critical for the sustainability of any project. The choice of building materials has a huge impact on the built environment and cost of projects. Building materials emit huge amount of carbon dioxide (CO2) due to the use of cement as a basic component in the manufacturing process and as a binder, which harms our environment. Energy consumption from buildings has increased in the last few years; a huge amount of energy is being wasted from using unsustainable building and finishing materials, as well as from the process of heating and cooling of buildings. In addition, the construction sector in Egypt is taking a good portion of the economy; however, there is a lack of awareness of buildings environmental impacts on the built environment. Using advanced building materials and different wall systems can help in reducing heat consumption, the project’s initial and long-term costs, and minimizing the environmental impacts. Red Bricks is one of the materials that are being used widely in Egypt. There are many other types of bricks such as Autoclaved Aerated Concrete (AAC); however, the use of Red Bricks is dominating the construction industry due to its affordability and availability. This research focuses on the New Egyptian Administrative Capital as a case study to investigate the potential of the influence of using different wall systems such as AAC on the project’s cost and the environment. The aim of this research is to conduct a comparative analysis between the traditional and most commonly used bricks in Egypt, which is Red Bricks, and AAC wall systems. Through an economic and environmental study, the difference between the two wall systems will be justified to encourage the utilization of uncommon techniques in the construction industry to build more affordable, energy efficient and sustainable buildings. The significance of this research is to show the potential of using AAC in the construction industry and its positive influences. The study analyzes the factors associated with choosing suitable building materials for different projects according to the need and criteria of each project and its nature without harming the environment and wasting materials that could be saved or recycled. The New Egyptian Administrative Capital is considered as the country’s new heart, where ideas regarding energy savings and environmental benefits are taken into consideration. Meaning that, Egypt is taking good steps to move towards more sustainable construction. According to the analysis and site visits, there is a potential in reducing the initial costs of buildings by 12.1% and saving energy by using different techniques up to 25%. Interviews with the mega structures project engineers and managers reveal that they are more open to introducing sustainable building materials that will help in saving the environment and moving towards green construction as well as to studying more effective techniques for energy conservation.

Keywords: AAC blocks, building material, environmental impact, modern construction, New Egyptian Administrative Capital.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874
13 Neighborhood Sustainability Assessment Tools: A Conceptual Framework for Their Use in Building Adaptive Capacity to Climate Change

Authors: Sally Naji, Julie Gwilliam

Abstract:

Climate change remains a challenging matter for the human and the built environment in the 21st century, where the need to consider adaptation to climate change in the development process is paramount. However, there remains a lack of information regarding how we should prepare responses to this issue, such as through developing organized and sophisticated tools enabling the adaptation process. This study aims to build a systematic framework approach to investigate the potentials that Neighborhood Sustainability Assessment tools (NSA) might offer in enabling both the analysis of the emerging adaptive capacity to climate change. The analysis of the framework presented in this paper aims to discuss this issue in three main phases. The first part attempts to link sustainability and climate change, in the context of adaptive capacity. It is argued that in deciding to promote sustainability in the context of climate change, both the resilience and vulnerability processes become central. However, there is still a gap in the current literature regarding how the sustainable development process can respond to climate change. As well as how the resilience of practical strategies might be evaluated. It is suggested that the integration of the sustainability assessment processes with both the resilience thinking process, and vulnerability might provide important components for addressing the adaptive capacity to climate change. A critical review of existing literature is presented illustrating the current lack of work in this field, integrating these three concepts in the context of addressing the adaptive capacity to climate change. The second part aims to identify the most appropriate scale at which to address the built environment for the climate change adaptation. It is suggested that the neighborhood scale can be considered as more suitable than either the building or urban scales. It then presents the example of NSAs, and discusses the need to explore their potential role in promoting the adaptive capacity to climate change. The third part of the framework presents a comparison among three example NSAs, BREEAM Communities, LEED-ND, and CASBEE-UD. These three tools have been selected as the most developed and comprehensive assessment tools that are currently available for the neighborhood scale. This study concludes that NSAs are likely to present the basis for an organized framework to address the practical process for analyzing and yet promoting Adaptive Capacity to Climate Change. It is further argued that vulnerability (exposure & sensitivity) and resilience (Interdependence & Recovery) form essential aspects to be addressed in the future assessment of NSA’s capability to adapt to both short and long term climate change impacts. Finally, it is acknowledged that further work is now required to understand impact assessment in terms of the range of physical sectors (Water, Energy, Transportation, Building, Land Use and Ecosystems), Actor and stakeholder engagement as well as a detailed evaluation of the NSA indicators, together with a barriers diagnosis process.

Keywords: Adaptive capacity, climate change, NSA tools, resilience, vulnerability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2140
12 Biogas Yield Potential Research of Tithonia diversifolia in Mesophilic Anaerobic Fermentation in China

Authors: Duan Huanyun, Xu Rui, Li Jianchang, Yuan Yage, Wang Qiuxia, Nomana Intekhab Hadi

Abstract:

BioEnergy is an archetypal appropriate technology and alternate source of energy in rural areas of China, and can meet the basic need for cooking fuel in rural areas. The paper introduces with an alternate mean of research that can accelerate the biogas energy production. Tithonia diversifolia or the Tree marigold can be hailed as mesophillic anaerobic digestion to increase the production of more Bioenergy. Tithonia diversifolia is very native to Mexico and Central America, which can be served as ornamental plants- green manure and can prevent soil erosion. Tithonia diversifolia is widely grown and known to Asia, Africa, America and Australia as well. Nowadays, Considering China’s geographical condition it is found that Tithonia diversifolia is widely growing plant in the many tropical and subtropical regions of southern Yunnan- which can have great usage in accelerating and increasing the Bioenergy production technology. The paper discussed aiming at proving possibility that Tithonia diversifolia can be applied in biogas fermentation and its biogas production potential, the research carried experiment on Tithonia diversifolia biogas fermentation under the mesophilic condition (35 Celsius Degree). The result revealed that Tithonia diversifolia can be used as biogas fermentative material, and 6% concentration can get the best biogas production, with the TS biogas production rate 656mL/g and VS biogas production rate 801mL/g. It is well addressed that Tithonia diversifolia grows wildly in 53 Counties and 9 cities of Yunnan Province, which mainly grows in form of the road side plants, the edge of the field, countryside, forest edge, open space; of which demersum-natures can form dense monospecific beds -causing serious harm to agricultural production landforms threatening the ecological system as a potentially harmful exotic plant. There are also found the three types of invasive daisy alien plants -Eupatorium adenophorum, Eupatorium Odorata and Tithonia diversifolia in Yunnan Province of China-among them the Tithonia diversifolia is responsible for causing serious harm to agricultural production. In this paper we have designed the experimental explanation of Biogas energy production that requires anaerobic environment and some microbes; Tithonia diversifolia plant has been taken into consideration while carrying experiments and with successful resulting of generating more BioEnergy emphasizing on the practical applications of Tithonia diversifolia. This paper aims at- to find a new mechanism to provide a more scientific basis for the development of this plant herbicides in Biogas energy and to improve the utilization throughout the world as well.

Keywords: Biogas Energy Production, Tithonia diversifolia, Energy Development, Ecological Agriculture, Eupatorium adenophorum, Eupatorium odorata, Anaerobic Fermentation, Biogas Production Potential, Mesopilic Fermentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2633
11 Exploring the Role of Hydrogen to Achieve the Italian Decarbonization Targets Using an Open-Source Energy System Optimization Model

Authors: A. Balbo, G. Colucci, M. Nicoli, L. Savoldi

Abstract:

Hydrogen is expected to become an undisputed player in the ecological transition throughout the next decades. The decarbonization potential offered by this energy vector provides various opportunities for the so-called “hard-to-abate” sectors, including industrial production of iron and steel, glass, refineries and the heavy-duty transport. In this regard, Italy, in the framework of decarbonization plans for the whole European Union, has been considering a wider use of hydrogen to provide an alternative to fossil fuels in hard-to-abate sectors. This work aims to assess and compare different options concerning the pathway to be followed in the development of the future Italian energy system in order to meet decarbonization targets as established by the Paris Agreement and by the European Green Deal, and to infer a techno-economic analysis of the required asset alternatives to be used in that perspective. To accomplish this objective, the Energy System Optimization Model TEMOA-Italy is used, based on the open-source platform TEMOA and developed at PoliTo as a tool to be used for technology assessment and energy scenario analysis. The adopted assessment strategy includes two different scenarios to be compared with a business-as-usual one, which considers the application of current policies in a time horizon up to 2050. The studied scenarios are based on the up-to-date hydrogen-related targets and planned investments included in the National Hydrogen Strategy and in the Italian National Recovery and Resilience Plan, with the purpose of providing a critical assessment of what they propose. One scenario imposes decarbonization objectives for the years 2030, 2040 and 2050, without any other specific target. The second one (inspired to the national objectives on the development of the sector) promotes the deployment of the hydrogen value-chain. These scenarios provide feedback about the applications hydrogen could have in the Italian energy system, including transport, industry and synfuels production. Furthermore, the decarbonization scenario where hydrogen production is not imposed, will make use of this energy vector as well, showing the necessity of its exploitation in order to meet pledged targets by 2050. The distance of the planned policies from the optimal conditions for the achievement of Italian objectives is clarified, revealing possible improvements of various steps of the decarbonization pathway, which seems to have as a fundamental element Carbon Capture and Utilization technologies for its accomplishment. In line with the European Commission open science guidelines, the transparency and the robustness of the presented results are ensured by the adoption of the open-source open-data model such as the TEMOA-Italy.

Keywords: Decarbonization, energy system optimization models, hydrogen, open-source modeling, TEMOA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 628
10 Isolation and Identification of an Acetobacter Strain from Iranian White-Red Cherry with High Acetic Acid Productivity as a Potential Strain for Cherry Vinegar Production in Foodand Agriculture Biotechnology

Authors: K. Beheshti Maal, R. Shafiee

Abstract:

According to FDA (Food and Drug Administration of the United States), vinegar is definedas a sour liquid containing at least 4 grams acetic acid in 100 cubic centimeter (4% solution of acetic acid) of solution that is produced from sugary materials by alcoholic fermentation. In the base of microbial starters, vinegars could be contained of more than 50 types of volatile and aromatic substances that responsible for their sweet taste and smelling. Recently the vinegar industry has a great proportion in agriculture, food and microbial biotechnology. The acetic acid bacteria are from the family Acetobacteraceae. Regarding to the latest version of Bergy-s Mannual of Systematic Bacteriology that has categorized bacteria in the base of their 16s RNA differences, the most important acetic acid genera are included Acetobacter (genus I), Gluconacetobacter (genus VIII) and Gluconobacter (genus IX). The genus Acetobacter that is primarily used in vinegar manufacturing plants is a gram negative, obligate aerobe coccus or rod shaped bacterium with the size 0.6 - 0.8 X 1.0 - 4.0 μm, nonmotile or motile with peritrichous flagella and catalase positive – oxidase negative biochemically. Some strains are overoxidizer that could convert acetic acid to carbon dioxide and water.In this research one Acetobacter native strain with high acetic acid productivity was isolated from Iranian white – red cherry. We used two specific culture media include Carr medium [yeast extract, 3%; ethanol, 2% (v/v); bromocresol green, 0.002%; agar, 2% and distilled water, 1000 ml], Frateur medium [yeast extract, 10 g/l; CaCO3, 20 g/l; ethanol, 20 g/l; agar, 20 g/l and distilled water, 1000 ml] and an industrial culture medium. In addition to high acetic acid production and high growth rate, this strain had a good tolerance against ethanol concentration that was examined using modified Carr media with 5%, 7% and 9% ethanol concentrations. While the industrial strains of acetic acid bacteria grow in the thermal range of 28 – 30 °C, this strain was adapted for growth in 34 – 36 °C after 96 hours incubation period. These dramatic characteristics suggest a potential biotechnological strain in production of cherry vinegar with a sweet smell and different nutritional properties in comparison to recent vinegar types. The lack of growth after 24, 48 and 72 hours incubation at 34 – 36 °C and the growth after 96 hours indicates a good and fast thermal flexibility of this strain as a significant characteristic of biotechnological and industrial strains.

Keywords: Acetobacte, acetic acid bacteria, white – red cherry, food and agriculture biotechnology, industrial fermentation, vinegar

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4980
9 Community Resilience in Response to the Population Growth in Al-Thahabiah Neighborhood

Authors: Layla Mujahed

Abstract:

Amman, the capital of Jordan, is the main political, economic, social and cultural center of Jordan and beyond. The city faces multitude demographic challenges related to the unstable political situation in the surrounded countries. It has regional and local migrants who left their homes to find better life in the capital. This resulted with random and unequaled population distribution. Some districts have high population and pressure on the infrastructure and services more than other districts.Government works to resolve this challenge in compliance with 100 Cities Resilience Framework (CRF). Amman participated in this framework as a member in December 2014 to work in achieving the four goals: health and welfare, infrastructure and utilities, economy and education as well as administration and government.  Previous research studies lack in studying Amman resilient work in neighborhood scale and the population growth as resilient challenge. For that, this study focuses on Al-Thahabiah neighborhood in Shafa Badran district in Amman. This paper studies the reasons and drivers behind this population growth during the selected period in this area then provide strategies to improve the resilient work in neighborhood scale. The methodology comprises of primary and secondary data. The primary data consist of interviews with chief officer in the executive part in Great Amman Municipality and resilient officer. The secondary data consist of papers, journals, newspaper, articles and book’s reading. The other part of data consists of maps and statistical data which describe the infrastructural and social situation in the neighborhood and district level during the studying period. Based upon those data, more detailed information will be found, e.g., the centralizing position of population and the provided infrastructure for them. This will help to provide these services and infrastructure to other neighborhoods and enhance population distribution. This study develops an analytical framework to assess urban demographical time series in accordance with the criteria of CRF to make accurate detailed projections on the requirements for the future development in the neighborhood scale and organize the human requirements for affordable quality housing, employment, transportation, health and education in this neighborhood to improve the social relations between its inhabitants and the community. This study highlights on the localization of resilient work in neighborhood scale and spread the resilient knowledge related to the shortage of its research in Jordan. Studying the resilient work from population growth challenge perspective helps improve the facilities provide to the inhabitants and improve their quality of life.

Keywords: City resilience framework, CRF, demography, population growth, stakeholders, urban resilience.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 498
8 Nanopaper Innovation in Paper and Packaging Industry

Authors: Hajar Mohammadpour Kachlami , Ghasem Javadzadeh Moghtader , Habib Mohammadpour Kachlami

Abstract:

Nowadays due to globalization of economy and competition environment, innovation and technology plays key role at creation of wealth and economic growth of countries. In fact prompt growth of practical and technologic knowledge may results in social benefits for countries when changes into effective innovation. Considering the importance of innovation for the development of countries, this study addresses the radical technological innovation introduced by nanopapers at different stages of producing paper including stock preparation, using authorized additives, fillers and pigments, using retention, calender, stages of producing conductive paper, porous nanopaper and Layer by layer self-assembly. Research results show that in coming years the jungle related products will lose considerable portion of their market share, unless embracing radical innovation. Although incremental innovations can make this industry still competitive in mid-term, but to have economic growth and competitive advantage in long term, radical innovations are necessary. Radical innovations can lead to new products and materials which their applications in packaging industry can produce value added. However application of nanotechnology in this industry can be costly, it can be done in cooperation with other industries to make the maximum use of nanotechnology possible. Therefore this technology can be used in all the production process resulting in the mass production of simple and flexible papers with low cost and special properties such as facility at shape, form, easy transportation, light weight, recovery and recycle marketing abilities, and sealing. Improving the resistance of the packaging materials without reducing the performance of packaging materials enhances the quality and the value added of packaging. Improving the cellulose at nano scale can have considerable electron optical and magnetic effects leading to improvement in packaging and value added. Comparing to the specifications of thermoplastic products and ordinary papers, nanopapers show much better performance in terms of effective mechanical indexes such as the modulus of elasticity, tensile strength, and strain-stress. In densities lower than 640 kgm -3, due to the network structure of nanofibers and the balanced and randomized distribution of NFC in flat space, these specifications will even improve more. For nanopapers, strains are 1,4Gpa, 84Mpa and 17%, 13,3 Gpa, 214Mpa and 10% respectively. In layer by layer self assembly method (LbL) the tensile strength of nanopaper with Tio3 particles and Sio2 and halloysite clay nanotube are 30,4 ±7.6Nm/g and 13,6 ±0.8Nm/g and 14±0.3,3Nm/g respectively that fall within acceptable range of similar samples with virgin fiber. The usage of improved brightness and porosity index in nanopapers can create more competitive advantages at packaging industry.

Keywords: Innovation; NanoPaper; Nanofiber; Packaging

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3094
7 Hybrid Living: Emerging Out of the Crises and Divisions

Authors: Yiorgos Hadjichristou

Abstract:

The paper will focus on the hybrid living typologies which are brought about due to the Global Crisis. Mixing of the generations and the groups of people, mingling the functions of living with working and socializing, merging the act of living in synergy with the urban realm and its constituent elements will be the springboard of proposing an essential sustainable housing approach and the respective urban development. The thematic will be based on methodologies developed both on the academic, educational environment including participation of students’ research and on the practical aspect of architecture including case studies executed by the author in the island of Cyprus. Both paths of the research will deal with the explorative understanding of the hybrid ways of living, testing the limits of its autonomy. The evolution of the living typologies into substantial hybrid entities, will deal with the understanding of new ways of living which include among others: re-introduction of natural phenomena, accommodation of the activity of work and services in the living realm, interchange of public and private, injections of communal events into the individual living territories. The issues and the binary questions raised by what is natural and artificial, what is private and what public, what is ephemeral and what permanent and all the in-between conditions are eloquently traced in the everyday life in the island. Additionally, given the situation of Cyprus with the eminent scar of the dividing ‘Green line’ and the waiting of the ‘ghost city’ of Famagusta to be resurrected, the conventional way of understanding the limits and the definitions of the properties is irreversibly shaken. The situation is further aggravated by the unprecedented phenomenon of the crisis on the island. All these observations set the premises of reexamining the urban development and the respective sustainable housing in a synergy where their characteristics start exchanging positions, merge into each other, contemporarily emerge and vanish, changing from permanent to ephemeral. This fluidity of conditions will attempt to render a future of the built- and unbuilt realm where the main focusing point will be redirected to the human and the social. Weather and social ritual scenographies together with ‘spontaneous urban landscapes’ of ‘momentary relationships’ will suggest a recipe for emerging urban environments and sustainable living. Thus, the paper will aim at opening a discourse on the future of the sustainable living merged in a sustainable urban development in relation to the imminent solution of the division of island, where the issue of property became the main obstacle to be overcome. At the same time, it will attempt to link this approach to the global need for a sustainable evolution of the urban and living realms.

Keywords: Social ritual scenographies, spontaneous urban landscapes, substantial hybrid entities, re-introduction of natural phenomena.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1049
6 Design Approach to Incorporate Unique Performance Characteristics of Special Concrete

Authors: Devendra Kumar Pandey, Debabrata Chakraborty

Abstract:

The advancement in various concrete ingredients like plasticizers, additives and fibers, etc. has enabled concrete technologists to develop many viable varieties of special concretes in recent decades. Such various varieties of concrete have significant enhancement in green as well as hardened properties of concrete. A prudent selection of appropriate type of concrete can resolve many design and application issues in construction projects. This paper focuses on usage of self-compacting concrete, high early strength concrete, structural lightweight concrete, fiber reinforced concrete, high performance concrete and ultra-high strength concrete in the structures. The modified properties of strength at various ages, flowability, porosity, equilibrium density, flexural strength, elasticity, permeability etc. need to be carefully studied and incorporated into the design of the structures. The paper demonstrates various mixture combinations and the concrete properties that can be leveraged. The selection of such products based on the end use of structures has been proposed in order to efficiently utilize the modified characteristics of these concrete varieties. The study involves mapping the characteristics with benefits and savings for the structure from design perspective. Self-compacting concrete in the structure is characterized by high shuttering loads, better finish, and feasibility of closer reinforcement spacing. The structural design procedures can be modified to specify higher formwork strength, height of vertical members, cover reduction and increased ductility. The transverse reinforcement can be spaced at closer intervals compared to regular structural concrete. It allows structural lightweight concrete structures to be designed for reduced dead load, increased insulation properties. Member dimensions and steel requirement can be reduced proportionate to about 25 to 35 percent reduction in the dead load due to self-weight of concrete. Steel fiber reinforced concrete can be used to design grade slabs without primary reinforcement because of 70 to 100 percent higher tensile strength. The design procedures incorporate reduction in thickness and joint spacing. High performance concrete employs increase in the life of the structures by improvement in paste characteristics and durability by incorporating supplementary cementitious materials. Often, these are also designed for slower heat generation in the initial phase of hydration. The structural designer can incorporate the slow development of strength in the design and specify 56 or 90 days strength requirement. For designing high rise building structures, creep and elasticity properties of such concrete also need to be considered. Lastly, certain structures require a performance under loading conditions much earlier than final maturity of concrete. High early strength concrete has been designed to cater to a variety of usages at various ages as early as 8 to 12 hours. Therefore, an understanding of concrete performance specifications for special concrete is a definite door towards a superior structural design approach.

Keywords: High performance concrete, special concrete, structural design, structural lightweight concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 890
5 Review of Carbon Materials: Application in Alternative Energy Sources and Catalysis

Authors: Marita Pigłowska, Beata Kurc, Maciej Galiński

Abstract:

The application of carbon materials in the branches of the electrochemical industry shows an increasing tendency each year due to the many interesting properties they possess. These are, among others, a well-developed specific surface, porosity, high sorption capacity, good adsorption properties, low bulk density, electrical conductivity and chemical resistance. All these properties allow for their effective use, among others in supercapacitors, which can store electric charges of the order of 100 F due to carbon electrodes constituting the capacitor plates. Coals (including expanded graphite, carbon black, graphite carbon fibers, activated carbon) are commonly used in electrochemical methods of removing oil derivatives from water after tanker disasters, e.g., phenols and their derivatives by their electrochemical anodic oxidation. Phenol can occupy practically the entire surface of carbon material and leave the water clean of hydrophobic impurities. Regeneration of such electrodes is also not complicated, it is carried out by electrochemical methods consisting in unblocking the pores and reducing resistances, and thus their reactivation for subsequent adsorption processes. Graphite is commonly used as an anode material in lithium-ion cells, while due to the limited capacity it offers (372 mAh g-1), new solutions are sought that meet both capacitive, efficiency and economic criteria. Increasingly, biodegradable materials, green materials, biomass, waste (including agricultural waste) are used in order to reuse them and reduce greenhouse effects and, above all, to meet the biodegradability criterion necessary for the production of lithium-ion cells as chemical power sources. The most common of these materials are cellulose, starch, wheat, rice, and corn waste, e.g., from agricultural, paper and pharmaceutical production. Such products are subjected to appropriate treatments depending on the desired application (including chemical, thermal, electrochemical). Starch is a biodegradable polysaccharide that consists of polymeric units such as amylose and amylopectin that build an ordered (linear) and amorphous (branched) structure of the polymer. Carbon is also used as a catalyst. Elemental carbon has become available in many nano-structured forms representing the hybridization combinations found in the primary carbon allotropes, and the materials can be enriched with a large number of surface functional groups. There are many examples of catalytic applications of coal in the literature, but the development of this field has been hampered by the lack of a conceptual approach combining structure and function and a lack of understanding of material synthesis. In the context of catalytic applications, the integrity of carbon environmental management properties and parameters such as metal conductivity range and bond sequence management should be characterized. Such data, along with surface and textured information, can form the basis for the provision of network support services.

Keywords: carbon materials, catalysis, BET, capacitors, lithium ion cell

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1096
4 Modern Detection and Description Methods for Natural Plants Recognition

Authors: Masoud Fathi Kazerouni, Jens Schlemper, Klaus-Dieter Kuhnert

Abstract:

Green planet is one of the Earth’s names which is known as a terrestrial planet and also can be named the fifth largest planet of the solar system as another scientific interpretation. Plants do not have a constant and steady distribution all around the world, and even plant species’ variations are not the same in one specific region. Presence of plants is not only limited to one field like botany; they exist in different fields such as literature and mythology and they hold useful and inestimable historical records. No one can imagine the world without oxygen which is produced mostly by plants. Their influences become more manifest since no other live species can exist on earth without plants as they form the basic food staples too. Regulation of water cycle and oxygen production are the other roles of plants. The roles affect environment and climate. Plants are the main components of agricultural activities. Many countries benefit from these activities. Therefore, plants have impacts on political and economic situations and future of countries. Due to importance of plants and their roles, study of plants is essential in various fields. Consideration of their different applications leads to focus on details of them too. Automatic recognition of plants is a novel field to contribute other researches and future of studies. Moreover, plants can survive their life in different places and regions by means of adaptations. Therefore, adaptations are their special factors to help them in hard life situations. Weather condition is one of the parameters which affect plants life and their existence in one area. Recognition of plants in different weather conditions is a new window of research in the field. Only natural images are usable to consider weather conditions as new factors. Thus, it will be a generalized and useful system. In order to have a general system, distance from the camera to plants is considered as another factor. The other considered factor is change of light intensity in environment as it changes during the day. Adding these factors leads to a huge challenge to invent an accurate and secure system. Development of an efficient plant recognition system is essential and effective. One important component of plant is leaf which can be used to implement automatic systems for plant recognition without any human interface and interaction. Due to the nature of used images, characteristic investigation of plants is done. Leaves of plants are the first characteristics to select as trusty parts. Four different plant species are specified for the goal to classify them with an accurate system. The current paper is devoted to principal directions of the proposed methods and implemented system, image dataset, and results. The procedure of algorithm and classification is explained in details. First steps, feature detection and description of visual information, are outperformed by using Scale invariant feature transform (SIFT), HARRIS-SIFT, and FAST-SIFT methods. The accuracy of the implemented methods is computed. In addition to comparison, robustness and efficiency of results in different conditions are investigated and explained.

Keywords: SIFT combination, feature extraction, feature detection, natural images, natural plant recognition, HARRIS-SIFT, FAST-SIFT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 706
3 Blockchain Based Hydrogen Market: A Paradigm-Shifting Innovative Solution for Climate-Friendly and Sustainable Structural Change

Authors: Volker Wannack

Abstract:

Regional and global strategies focusing on hydrogen (H2) and blockchain technologies are fueling remarkable advancements. These strategies underpin the revolutionary 'Blockchain Based Hydrogen Market (BBH2)' project, with the primary objective of creating a Blockchain Minimum Viable Product (B-MVP) tailored to the hydrogen market. The B-MVP harnesses blockchain's capabilities, establishing a unified platform for secure, automated transactions via smart contracts. This innovation promises to reshape hydrogen logistics, trade, and transactions. The B-MVP carries transformative potential across diverse sectors, benefiting renewable energy producers, surplus energy-based hydrogen manufacturers, grid operators, and consumers. By implementing standardized, automated, tamper-proof processes, it bolsters cost-efficiency and enables transparent, traceable transactions. Its core mission is to verify the integrity of 'green' hydrogen, tracing its journey from renewable producers to end-users. This emphasis on transparency fosters economic, ecological, and social sustainability within a secure, transparent market. A standout feature of the B-MVP is its cross-border adaptability, obviating the need for nation-specific data storage, and broadening its global reach. This adaptability also spurs long-term job creation by establishing a dedicated blockchain operating firm. By attracting skilled labor and offering training, the B-MVP fortifies the hydrogen sector's workforce. Furthermore, it catalyzes innovative business models, luring more companies and startups, contributing to sustained job growth. For example, data analysis can tailor tariffs to offer demand-centric network capacities to producers and operators, providing tamper-proof pricing options to redistributors and end-customers. Beyond technological and economic progress, the B-MVP amplifies the prominence of national and international standards efforts. The region implementing the B-MVP becomes recognized as a pioneer in climate-friendly, sustainable, and forward-thinking practices, generating interest and attention beyond its geographic boundaries. Additionally, it fosters knowledge transfer between academia and industry, promoting scientific advancements, aligning with innovation management, and nurturing an innovation culture in the hydrogen sector. Through blockchain-hydrogen integration, the B-MVP champions comprehensive innovation, contributing to a sustainable future in the hydrogen industry. Implementation involves evaluating blockchain tech, developing smart contracts, and ensuring interoperability with existing systems. Scalability testing and data format development further validate the B-MVP's potential. BBH2 secures funding under the 'Technology Offensive Hydrogen,' a part of the Federal Ministry of Economics and Climate Protection's 7th Energy Research Program.

Keywords: Hydrogen, blockchain, sustainability, structural change.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 123
2 Courtyard Evolution in Contemporary Sustainable Living

Authors: Yiorgos Hadjichristou

Abstract:

The paper will focus on the strategic development deriving from the evolution of the traditional courtyard spatial organization towards a new, contemporary sustainable way of living. New sustainable approaches that engulf the social issues, the notion of place, the understanding of weather architecture blended together with the bioclimatic behavior will be seen through a series of experimental case studies in the island of Cyprus, inspired and originated from its traditional wisdom, ranging from small scale of living to urban interventions. Weather and nature will be seen as co-architectural authors with architects. Furthermore, the building will be seen not as an object but rather as a vessel of human activities. This will further enhance the notion of merging the material and immaterial, the built and unbuilt, subject-human, and the object-building. This eventually will enable to generate the discussion of the understanding of the building in relation to the place and its inhabitants, where the human topography is more important than the material topography. The specificities of the divided island and the dealing with sites that are in vicinity with the diving Green Line will further trigger explorations dealing with the regeneration issues and the social sustainability offering unprecedented opportunities for innovative sustainable ways of living. Opening up a discourse with premises of weather-nature, materialimmaterial, human-material topographies in relation to the contested sites of the borders will lead us to develop innovative strategies for a profound, both technical and social sustainability, which fruitfully yields to innovative living built environments, responding to the ever changing environmental and social needs. As a starting point, a case study in Kaimakli in Nicosia, a refurbishment with an extension of a traditional house, already engulfs all the traditional/ vernacular wisdom of the bioclimatic architecture. The project focusses on the direct and quite obvious bioclimatic features such as south orientation and cross ventilation. Furthermore, it tries to reinvent the adaptation of these parameters in order to turn the whole house to a contemporary living environment. In order to succeed this, evolutions of traditional architectural elements and spatial conditions are integrated in a way that does not only respond to some certain weather conditions, but they integrate and blend the weather within the built environment. A series of innovations aiming at maximum flexibility is proposed. The house can finally be transformed into a winter enclosure, while for the most part of the year it turns into a ‘camping’ living environment. Parallel to experimental interventions in existing traditional units, we will proceed examining the implementation of the same developed methodology in designing living units and complexes. Malleable courtyard organizations that attempt to blend the traditional wisdom with the contemporary needs for living, the weather and nature with the built environment will be seen tested in both horizontal and vertical developments. Social activities are seen as directly affected and forged by the weather conditions thus generating a new social identity of people where people are directly involved and interacting with the weather. The human actions and interaction with the built, material environment in order to respond to weather will be seen as the result of balancing the social with the technological sustainability, the immaterial, and the material aspects of the living environment.

Keywords: Building as a verb, contemporary living, traditional bioclimatic wisdom, weather architecture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2044
1 An Integrated Solid Waste Management Strategy for Semi-Urban and Rural Areas of Pakistan

Authors: Z. Zaman Asam, M. Ajmal, R. Saeed, H. Miraj, M. Muhammad Ahtisham, B. Hameed, A. -Sattar Nizami

Abstract:

In Pakistan, environmental degradation and consequent human health deterioration has rapidly accelerated in the past decade due to solid waste mismanagement. As the situation worsens with time, establishment of proper waste management practices is urgently needed especially in semi urban and rural areas of Pakistan. This study uses a concept of Waste Bank, which involves a transfer station for collection of sorted waste fractions and its delivery to the targeted market such as recycling industries, biogas plants, composting facilities etc. The management efficiency and effectiveness of Waste Bank depend strongly on the proficient sorting and collection of solid waste fractions at household level. However, the social attitude towards such a solution in semi urban/rural areas of Pakistan demands certain prerequisites to make it workable. Considering these factors the objectives of this study are to: [A] Obtain reliable data about quantity and characteristics of generated waste to define feasibility of business and design factors, such as required storage area, retention time, transportation frequency of the system etc. [B] Analyze the effects of various social factors on waste generation to foresee future projections. [C] Quantify the improvement in waste sorting efficiency after awareness campaign. We selected Gujrat city of Central Punjab province of Pakistan as it is semi urban adjoined by rural areas. A total of 60 houses (20 from each of the three selected colonies), belonging to different social status were selected. Awareness sessions about waste segregation were given through brochures and individual lectures in each selected household. Sampling of waste, that households had attempted to sort, was then carried out in the three colored bags that were provided as part of the awareness campaign. Finally, refined waste sorting, weighing of various fractions and measurement of dry mass was performed in environmental laboratory using standard methods. It was calculated that sorting efficiency of waste improved from 0 to 52% as a result of the awareness campaign. The generation of waste (dry mass basis) on average from one household was 460 kg/year whereas per capita generation was 68 kg/year. Extrapolating these values for Gujrat Tehsil, the total waste generation per year is calculated to be 101921 tons dry mass (DM). Characteristics found in waste were (i) organic decomposable (29.2%, 29710 tons/year DM), (ii) recyclables (37.0%, 37726 tons/year DM) that included plastic, paper, metal and glass, and (iii) trash (33.8%, 34485 tons/year DM) that mainly comprised of polythene bags, medicine packaging, pampers and wrappers. Waste generation was more in colonies with comparatively higher income and better living standards. In future, data collection for all four seasons and improvements due to expansion of awareness campaign to educational institutes will be quantified. This waste management system can potentially fulfill vital sustainable development goals (e.g. clean water and sanitation), reduce the need to harvest fresh resources from the ecosystem, create business and job opportunities and consequently solve one of the most pressing environmental issues of the country.

Keywords: Integrated solid waste management, waste segregation, waste bank, community development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1018