Search results for: Fuel Processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2204

Search results for: Fuel Processing

1334 Optimum Working Fluid Selection for Automotive Cogeneration System

Authors: Wonsim Cha, Kibum Kim, Kyungwook Choi, Kihyung Lee

Abstract:

A co-generation system in automobile can improve thermal efficiency of vehicle in some degree. The waste heat from the engine exhaust and coolant is still attractive energy source that reaches around 60% of the total energy converted from fuel. To maximize the effectiveness of heat exchangers for recovering the waste heat, it is vital to select the most suitable working fluid for the system, not to mention that it is important to find the optimum design for the heat exchangers. The design of heat exchanger is out of scoop of this study; rather, the main focus has been on the right selection of working fluid for the co-generation system. Simulation study was carried out to find the most suitable working fluid that can allow the system to achieve the optimum efficiency in terms of the heat recovery rate and thermal efficiency.

Keywords: Cycle Analysis, Heat Recovery, Rankine Cycle, Waste Heat Recovery, Working Fluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221
1333 Social Media Idea Ontology: A Concept for Semantic Search of Product Ideas in Customer Knowledge through User-Centered Metrics and Natural Language Processing

Authors: Martin H¨ausl, Maximilian Auch, Johannes Forster, Peter Mandl, Alexander Schill

Abstract:

In order to survive on the market, companies must constantly develop improved and new products. These products are designed to serve the needs of their customers in the best possible way. The creation of new products is also called innovation and is primarily driven by a company’s internal research and development department. However, a new approach has been taking place for some years now, involving external knowledge in the innovation process. This approach is called open innovation and identifies customer knowledge as the most important source in the innovation process. This paper presents a concept of using social media posts as an external source to support the open innovation approach in its initial phase, the Ideation phase. For this purpose, the social media posts are semantically structured with the help of an ontology and the authors are evaluated using graph-theoretical metrics such as density. For the structuring and evaluation of relevant social media posts, we also use the findings of Natural Language Processing, e. g. Named Entity Recognition, specific dictionaries, Triple Tagger and Part-of-Speech-Tagger. The selection and evaluation of the tools used are discussed in this paper. Using our ontology and metrics to structure social media posts enables users to semantically search these posts for new product ideas and thus gain an improved insight into the external sources such as customer needs.

Keywords: Idea ontology, innovation management, open innovation, semantic search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 783
1332 Parallel Pipelined Conjugate Gradient Algorithm on Heterogeneous Platforms

Authors: Sergey Kopysov, Nikita Nedozhogin, Leonid Tonkov

Abstract:

The article presents a parallel iterative solver for large sparse linear systems which can be used on a heterogeneous platform. Traditionally, the problem of solving linear systems do not scale well on cluster containing multiple Central Processing Units (multi-CPUs cluster) or cluster containing multiple Graphics Processing Units (multi-GPUs cluster). For example, most of the attempts to implement the classical conjugate gradient method were at best counted in the same amount of time as the problem was enlarged. The paper proposes the pipelined variant of the conjugate gradient method (PCG), a formulation that is potentially better suited for hybrid CPU/GPU computing since it requires only one synchronization point per one iteration, instead of two for standard CG (Conjugate Gradient). The standard and pipelined CG methods need the vector entries generated by current GPU and other GPUs for matrix-vector product. So the communication between GPUs becomes a major performance bottleneck on miltiGPU cluster. The article presents an approach to minimize the communications between parallel parts of algorithms. Additionally, computation and communication can be overlapped to reduce the impact of data exchange. Using pipelined version of the CG method with one synchronization point, the possibility of asynchronous calculations and communications, load balancing between the CPU and GPU for solving the large linear systems allows for scalability. The algorithm is implemented with the combined use of technologies: MPI, OpenMP and CUDA. We show that almost optimum speed up on 8-CPU/2GPU may be reached (relatively to a one GPU execution). The parallelized solver achieves a speedup of up to 5.49 times on 16 NVIDIA Tesla GPUs, as compared to one GPU.

Keywords: Conjugate Gradient, GPU, parallel programming, pipelined algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 370
1331 Early Depression Detection for Young Adults with a Psychiatric and AI Interdisciplinary Multimodal Framework

Authors: Raymond Xu, Ashley Hua, Andrew Wang, Yuru Lin

Abstract:

During COVID-19, the depression rate has increased dramatically. Young adults are most vulnerable to the mental health effects of the pandemic. Lower-income families have a higher ratio to be diagnosed with depression than the general population, but less access to clinics. This research aims to achieve early depression detection at low cost, large scale, and high accuracy with an interdisciplinary approach by incorporating clinical practices defined by American Psychiatric Association (APA) as well as multimodal AI framework. The proposed approach detected the nine depression symptoms with Natural Language Processing sentiment analysis and a symptom-based Lexicon uniquely designed for young adults. The experiments were conducted on the multimedia survey results from adolescents and young adults and unbiased Twitter communications. The result was further aggregated with the facial emotional cues analyzed by the Convolutional Neural Network on the multimedia survey videos. Five experiments each conducted on 10k data entries reached consistent results with an average accuracy of 88.31%, higher than the existing natural language analysis models. This approach can reach 300+ million daily active Twitter users and is highly accessible by low-income populations to promote early depression detection to raise awareness in adolescents and young adults and reveal complementary cues to assist clinical depression diagnosis.

Keywords: Artificial intelligence, depression detection, facial emotion recognition, natural language processing, mental disorder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1175
1330 Biodiesel Production from Palm Oil Using an Oscillatory Baffled Reactor

Authors: Malee Santikunaporn, Tattep Techopittayakul, Channarong Asavatesanupap

Abstract:

Biofuel production especially that of biodiesel has gained tremendous attention during the last decade due to environmental concerns and shortage in petroleum oil reservoir. This research aims to investigate the influences of operating parameters, such as the alcohol-to-oil molar ratio (4:1, 6:1, and 9:1) and the amount of catalyst (1, 1.5, and 2 wt.%) on the trans esterification of refined palm oil (RPO) in a medium-scale oscillatory baffle reactor.  It has been shown that an increase in the methanol-to-oil ratio resulted in an increase in fatty acid methyl esters (FAMEs) content. The amount of catalyst has an insignificant effect on the FAMEs content. Engine testing was performed on B0 (100 v/v% diesel) and blended fuel or B50 (50 v/v% diesel). Combustion of B50 was found to give lower torque compared to pure diesel. Exhaust gas from B50 was found to contain lower concentration of CO and CO2.

Keywords: Biodiesel, oscillatory baffled reactor, palm oil, transesterification, fatty acid methyl esters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 864
1329 Mechanical Design and Theoretical Analysis of a Skip-Cycle Mechanism for an Internal Combustion Engine

Authors: Ismail Gerzeli, Cemal Baykara, Osman Akin Kutlar

Abstract:

Skip cycle is a working strategy for spark ignition engines, which allows changing the effective stroke of an engine through skipping some of the four stroke cycles. This study proposes a new mechanism to achieve the desired skip-cycle strategy for internal combustion engines. The air and fuel leakage, which occurs through the gas exchange, negatively affects the efficiency of the engine at high speeds and loads. An absolute sealing is assured by direct use of poppet valves, which are kept in fully closed position during the skipped mode. All the components of the mechanism were designed according to the real dimensions of the Anadolu Motor's gasoline engine and modeled in 3D by means of CAD software. As the mechanism operates in two modes, two dynamically equivalent models are established to obtain the force and strength analysis for critical components.

Keywords: Dynamic Model, Mechanical Design, Skip Cycle System (SCS), Valve Disabling Mechanism

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2006
1328 Effect of Gold Loading on CeO2–Fe2O3 for Oxidative Steam Reforming of Methanol

Authors: Umpawan Satitthai, Apanee Luengnaruemitchai, Erdogan Gulari

Abstract:

In this study, oxidative steam reforming of methanol (OSRM) over a Au/CeO2–Fe2O3 catalyst prepared by a depositionprecipitation (DP) method was studied to produce hydrogen in order to feed a Proton Exchange Membrane Fuel Cell (PEMFC). The support (CeO2, Fe2O3, and CeO2–Fe2O3) were prepared by precipitation and co-precipitation methods. The impact of the support composition on the catalytic performance was studied by varying the Ce/(Ce+Fe) atomic ratio, it was found that the 1%Au/CF(0.25) calcined at 300 °C exhibited the highest catalytic activity in the whole temperature studied. In addition, the effect of Au content was investigated and 3%Au/CF(0.25) exhibited the highest activity under the optimum condition in the temperature range of 200 °C to 400 °C. The catalysts were characterized by various techniques: XRD, TPR, XRF, and UV-vis.

Keywords: CeO2, Fe2O3, Gold catalyst, Hydrogen production, Methanol, Oxidative steam reforming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
1327 Numerical Investigation of Nozzle Shape Effect on Shock Wave in Natural Gas Processing

Authors: Esam I. Jassim, Mohamed M. Awad

Abstract:

Natural gas flow contains undesirable solid particles, liquid condensation, and/or oil droplets and requires reliable removing equipment to perform filtration. Recent natural gas processing applications are demanded compactness and reliability of process equipment. Since conventional means are sophisticated in design, poor in efficiency, and continue lacking robust, a supersonic nozzle has been introduced as an alternative means to meet such demands. A 3-D Convergent-Divergent Nozzle is simulated using commercial Code for pressure ratio (NPR) varies from 1.2 to 2. Six different shapes of nozzle are numerically examined to illustrate the position of shock-wave as such spot could be considered as a benchmark of particle separation. Rectangle, triangle, circular, elliptical, pentagon, and hexagon nozzles are simulated using Fluent Code with all have same cross-sectional area. The simple one-dimensional inviscid theory does not describe the actual features of fluid flow precisely as it ignores the impact of nozzle configuration on the flow properties. CFD Simulation results, however, show that nozzle geometry influences the flow structures including location of shock wave. The CFD analysis predicts shock appearance when p01/pa>1.2 for almost all geometry and locates at the lower area ratio (Ae/At). Simulation results showed that shock wave in Elliptical nozzle has the farthest distance from the throat among the others at relatively small NPR. As NPR increases, hexagon would be the farthest. The numerical result is compared with available experimental data and has shown good agreement in terms of shock location and flow structure.

Keywords: CFD, Particle Separation, Shock wave, Supersonic Nozzle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3248
1326 Study of Carbon Monoxide Oxidation in a Monolithic Converter

Authors: S. Chauhan, T. P. K. Grewal, S. K. Agrawal, V. K. Srivastava

Abstract:

Combustion of fuels in industrial and transport sector has lead to an alarming release of polluting gases to the atmosphere. Carbon monoxide is one such pollutant, which is formed as a result of incomplete oxidation of the fuel. In order to analyze the effect of catalyst on the reduction of CO emissions to the atmosphere, two catalysts Mn2O3 and Hopcalite are considered. A model was formed based on mass and energy balance equations. Results show that Hopcalite catalyst as compared to Mn2O3 catalyst helped in faster conversion of the polluting gas as the operating temperature of the hopcalite catalyst is much lower as compared to the operating temperature of Mn2O3 catalyst.

Keywords: Carbon monoxide, modeling, hopcalite, manganese oxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699
1325 Low Temperature Biological Treatment of Chemical Oxygen Demand for Agricultural Water Reuse Application Using Robust Biocatalysts

Authors: Vedansh Gupta, Allyson Lutz, Ameen Razavi, Fatemeh Shirazi

Abstract:

The agriculture industry is especially vulnerable to forecasted water shortages. In the fresh and fresh-cut produce sector, conventional flume-based washing with recirculation exhibits high water demand. This leads to a large water footprint and possible cross-contamination of pathogens. These can be alleviated through advanced water reuse processes, such as membrane technologies including reverse osmosis (RO). Water reuse technologies effectively remove dissolved constituents but can easily foul without pre-treatment. Biological treatment is effective for the removal of organic compounds responsible for fouling, but not at the low temperatures encountered at most produce processing facilities. This study showed that the Microvi MicroNiche Engineering (MNE) technology effectively removes organic compounds (> 80%) at low temperatures (6-8 °C) from wash water. The MNE technology uses synthetic microorganism-material composites with negligible solids production, making it advantageously situated as an effective bio-pretreatment for RO. A preliminary technoeconomic analysis showed 60-80% savings in operation and maintenance costs (OPEX) when using the Microvi MNE technology for organics removal. This study and the accompanying economic analysis indicated that the proposed technology process will substantially reduce the cost barrier for adopting water reuse practices, thereby contributing to increased food safety and furthering sustainable water reuse processes across the agricultural industry.

Keywords: Biological pre-treatment, innovative technology, vegetable processing, water reuse, agriculture, reverse osmosis, MNE biocatalysts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 613
1324 Combustion and Emission Characteristics in a Can-type Combustion Chamber

Authors: Selvakuma Kumaresh, Man Young Kim

Abstract:

Combustion phenomenon will be accomplished effectively by the development of low emission combustor. One of the significant factors influencing the entire Combustion process is the mixing between a swirling angular jet (Primary Air) and the non-swirling inner jet (fuel). To study this fundamental flow, the chamber had to be designed in such a manner that the combustion process to sustain itself in a continuous manner and the temperature of the products is sufficiently below the maximum working temperature in the turbine. This study is used to develop the effective combustion with low unburned combustion products by adopting the concept of high swirl flow and motility of holes in the secondary chamber. The proper selection of a swirler is needed to reduce emission which can be concluded from the emission of Nox and CO2. The capture of CO2 is necessary to mitigate CO2 emissions from natural gas. Thus the suppression of unburned gases is a meaningful objective for the development of high performance combustor without affecting turbine blade temperature.

Keywords: Combustion, Emission, Can-type Combustion Chamber, CFD, Motility of Holes, Swirl Flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3505
1323 Implementation of Feed-in Tariffs into Multi-Energy Systems

Authors: M. Schulze, P. Crespo Del Granado

Abstract:

This paper considers the influence of promotion instruments for renewable energy sources (RES) on a multi-energy modeling framework. In Europe, so called Feed-in Tariffs are successfully used as incentive structures to increase the amount of energy produced by RES. Because of the stochastic nature of large scale integration of distributed generation, many problems have occurred regarding the quality and stability of supply. Hence, a macroscopic model was developed in order to optimize the power supply of the local energy infrastructure, which includes electricity, natural gas, fuel oil and district heating as energy carriers. Unique features of the model are the integration of RES and the adoption of Feed-in Tariffs into one optimization stage. Sensitivity studies are carried out to examine the system behavior under changing profits for the feed-in of RES. With a setup of three energy exchanging regions and a multi-period optimization, the impact of costs and profits are determined.

Keywords: Distributed generation, optimization methods, power system modeling, renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
1322 Numerical Simulation of Flow and Combustionin an Axisymmetric Internal Combustion Engine

Authors: Nureddin Dinler, Nuri Yucel

Abstract:

Improving the performance of internal combustion engines is one of the major concerns of researchers. Experimental studies are more expensive than computational studies. Also using computational techniques allows one to obtain all the required data for the cylinder, some of which could not be measured. In this study, an axisymmetric homogeneous charged spark ignition engine was modeled. Fluid motion and combustion process were investigated numerically. Turbulent flow conditions were considered. Standard k- ε turbulence model for fluid flow and eddy break-up model for turbulent combustion were utilized. The effects of valve angle on the fluid flow and combustion are analyzed for constant air/fuel and compression ratios. It is found that, velocities and strength of tumble increases in-cylinder flow and due to increase in turbulence strength, the flame propagation is faster for small valve angles.

Keywords: CFD simulation, eddy break-up model, k-εturbulence model, reciprocating engine flow and combustion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2250
1321 Optimizing Boiler Combustion System in a Petrochemical Plant Using Neuro-Fuzzy Inference System and Genetic Algorithm

Authors: Yul Y. Nazaruddin, Anas Y. Widiaribowo, Satriyo Nugroho

Abstract:

Boiler is one of the critical unit in a petrochemical plant. Steam produced by the boiler is used for various processes in the plant such as urea and ammonia plant. An alternative method to optimize the boiler combustion system is presented in this paper. Adaptive Neuro-Fuzzy Inference System (ANFIS) approach is applied to model the boiler using real-time operational data collected from a boiler unit of the petrochemical plant. Nonlinear equation obtained is then used to optimize the air to fuel ratio using Genetic Algorithm, resulting an optimal ratio of 15.85. This optimal ratio is then maintained constant by ratio controller designed using inverse dynamics based on ANFIS. As a result, constant value of oxygen content in the flue gas is obtained which indicates more efficient combustion process.

Keywords: ANFIS, boiler, combustion process, genetic algorithm, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 987
1320 Sloshing-Induced Overflow Assessment of the Seismically-Isolated Nuclear Tanks

Authors: Kihyon Kwon, Hyun T. Park, Gil Y. Chung, Sang-Hoon Lee

Abstract:

This paper focuses on assessing sloshing-induced overflow of the seismically-isolated nuclear tanks based on Fluid-Structure Interaction (FSI) analysis. Typically, fluid motion in the seismically-isolated nuclear tank systems may be rather amplified and even overflowed under earthquake. Sloshing-induced overflow in those structures has to be reliably assessed and predicted since it can often cause critical damages to humans and environments. FSI analysis is herein performed to compute the total cumulative overflowed water volume more accurately, by coupling ANSYS with CFX for structural and fluid analyses, respectively. The approach is illustrated on a nuclear liquid storage tank, Spent Fuel Pool (SFP), forgiven conditions under consideration: different liquid levels, Peak Ground Accelerations (PGAs), and post earthquakes. 

Keywords: FSI analysis, seismically-isolated nuclear tank system, sloshing-induced overflow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2875
1319 COVID_ICU_BERT: A Fine-tuned Language Model for COVID-19 Intensive Care Unit Clinical Notes

Authors: Shahad Nagoor, Lucy Hederman, Kevin Koidl, Annalina Caputo

Abstract:

Doctors’ notes reflect their impressions, attitudes, clinical sense, and opinions about patients’ conditions and progress, and other information that is essential for doctors’ daily clinical decisions. Despite their value, clinical notes are insufficiently researched within the language processing community. Automatically extracting information from unstructured text data is known to be a difficult task as opposed to dealing with structured information such as physiological vital signs, images and laboratory results. The aim of this research is to investigate how Natural Language Processing (NLP) techniques and machine learning techniques applied to clinician notes can assist in doctors’ decision making in Intensive Care Unit (ICU) for coronavirus disease 2019 (COVID-19) patients. The hypothesis is that clinical outcomes like survival or mortality can be useful to influence the judgement of clinical sentiment in ICU clinical notes. This paper presents two contributions: first, we introduce COVID_ICU_BERT, a fine-tuned version of a clinical transformer model that can reliably predict clinical sentiment for notes of COVID patients in ICU. We train the model on clinical notes for COVID-19 patients, ones not previously seen by Bio_ClinicalBERT or Bio_Discharge_Summary_BERT. The model which was based on Bio_ClinicalBERT achieves higher predictive accuracy than the one based on Bio_Discharge_Summary_BERT (Acc 93.33%, AUC 0.98, and Precision 0.96). Second, we perform data augmentation using clinical contextual word embedding that is based on a pre-trained clinical model to balance the samples in each class in the data (survived vs. deceased patients). Data augmentation improves the accuracy of prediction slightly (Acc 96.67%, AUC 0.98, and Precision 0.92).

Keywords: BERT fine-tuning, clinical sentiment, COVID-19, data augmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 274
1318 Investigating what Effects Aviation Fluids Have on the Flatwise Compressive Strength of Nomex® Honeycomb Core Material

Authors: G. Kim, R. Sterkenburg

Abstract:

One of the disadvantages of honeycomb sandwich structure is that they are prone to fluid intrusion. The purpose of this study is to determine if the structural properties of honeycomb core are affected by contact with a fluid. The test specimens were manufactured of fiberglass prepreg for the facesheets and Nomex® honeycomb core for the core material in accordance with ASTM C-365/365M. Test specimens were soaked in several different kinds of fluids, such as aircraft fuel, turbine engine oil, hydraulic fluid, and water for a period of 60 days. A flatwise compressive test was performed, and the test results were analyzed to determine how the contact with aircraft fluids affected the compressive strength of the Nomex® honeycomb core and how the strength was recovered when the specimens were dry. In addition, the investigation of de-bonding between facesheet and core material after soaking were performed to support the study.

Keywords: Debonding, environmental degradation, honeycomb sandwich structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 653
1317 Improvement in Performance and Emission Characteristics of a Single Cylinder S.I. Engine Operated on Blends of CNG and Hydrogen

Authors: Sarbjot Singh Sandhu

Abstract:

This paper presents the experimental results of a single cylinder Enfield engine using an electronically controlled fuel injection system which was developed to carry out exhaustive tests using neat CNG, and mixtures of hydrogen in compressed natural gas (HCNG) as 0, 5, 10, 15 and 20% by energy. Experiments were performed at 2000 and 2400 rpm with wide open throttle and varying the equivalence ratio. Hydrogen which has fast burning rate, when added to compressed natural gas, enhances its flame propagation rate. The emissions of HC, CO, decreased with increasing percentage of hydrogen but NOx was found to increase. The results indicated a marked improvement in the brake thermal efficiency with the increase in percentage of hydrogen added. The improved thermal efficiency was clearly observed to be more in lean region as compared to rich region. This study is expected to reduce vehicular emissions along with increase in thermal efficiency and thus help in reduction of further environmental degradation.

Keywords: Hydrogen, CNG, HCNG, Emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2710
1316 Survey of Communication Technologies for IoT Deployments in Developing Regions

Authors: Namugenyi Ephrance Eunice, Julianne Sansa Otim, Marco Zennaro, Stephen D. Wolthusen

Abstract:

The Internet of Things (IoT) is a network of connected data processing devices, mechanical and digital machinery, items, animals, or people that may send data across a network without requiring human-to-human or human-to-computer interaction. Each component has sensors that can pick up on specific phenomena, as well as processing software and other technologies that can link to and communicate with other systems and/or devices over the Internet or other communication networks and exchange data with them. IoT is increasingly being used in fields other than consumer electronics, such as public safety, emergency response, industrial automation, autonomous vehicles, the Internet of Medical Things (IoMT), and general environmental monitoring. Consumer-based IoT applications, like smart home gadgets and wearables, are also becoming more prevalent. This paper presents the main IoT deployment areas for environmental monitoring in developing regions and the backhaul options suitable for them based on a couple of related works. The study includes an overview of existing IoT deployments, the underlying communication architectures, protocols, and technologies that support them. This overview shows that Low Power Wireless Area Networks (LPWANs) are very well suited for monitoring environment architectures designed for remote locations. LoRa technology, particularly the LoRaWAN protocol, has an advantage over other technologies due to its low power consumption, adaptability, and suitable communication range. The current challenges of various architectures are discussed in detail, with the major issue identified as obstruction of communication paths by buildings, trees, hills, etc.

Keywords: Communication technologies, environmental monitoring, Internet of Things, IoT, IoT deployment challenges.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 391
1315 Modeling Moisture and Density Behaviors of Wood in Biomass Torrefaction Environments

Authors: Gun Yung Go, Man Young Kim

Abstract:

Worldwide interests for the renewable energy are increasing due to environmental and climate changes from traditional petroleum related energy sources. To account for these social needs, ligneous biomass energy is considered as one of the environmentally friend energy solutions. The wood torrefaction process is a feasible method to improve the properties of the biomass fuel and makes the wood have low moisture, lower smoke emission and increased heating value. In this work, therefore, the moisture evaporation model which largely affects energy efficiency of ligneous biomass through moisture contents and heating value relative to its weight is studied with numerical modeling approach by analyzing the effects of torrefaction furnace temperature. The results show that the temperature and moisture fraction of wood decrease by increasing the furnace temperature. When the torrefaction temperature is lower than 423K, there were little changes of the moisture fraction in the wood. Also, it can be found that charcoal is produced more slowly when the torrefaction temperature is lower than 573K.

Keywords: Modeling, Torrefaction, Biomass, Moisture Fraction, Charcoal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
1314 Numerical Simulation of Diesel Sprays under Hot Bomb Conditions

Authors: Ishtiaq A. Chaudhry, Zia R Tahir, F. A. Siddiqui, F. Noor, M. J. Rashid

Abstract:

It has experimentally been proved that the performance of compression ignition (C.I.) engine is spray characteristics related. In modern diesel engine the spray formation and the eventual combustion process are the vital processes that offer more challenges towards enhancing the engine performance. In the present work the numerical simulation has been carried out for evaporating diesel sprays using Fluent software. For computational fluid dynamics simulation “Meshing” is done using Gambit software before transmitting it into Fluent. The simulation is carried out using hot bomb conditions under varying chamber conditions such as gas pressure, nozzle diameter and fuel injection pressure. For comparison purpose, the numerical simulations the chamber conditions were kept the same as that of the experimental data. At varying chamber conditions the spray penetration rates are compared with the existing experimental results.

Keywords: Evaporating diesel sprays, Penetration rates, Hot bomb conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2183
1313 Performance and Emission Prediction in a Biodiesel Engine Fuelled with Honge Methyl Ester Using RBF Neural Networks

Authors: Shivakumar, G. S. Vijay, P. Srinivas Pai, B. R. Shrinivasa Rao

Abstract:

In the present study, RBF neural networks were used for predicting the performance and emission parameters of a biodiesel engine. Engine experiments were carried out in a 4 stroke diesel engine using blends of diesel and Honge methyl ester as the fuel. Performance parameters like BTE, BSEC, Tex and emissions from the engine were measured. These experimental results were used for ANN modeling. RBF center initialization was done by random selection and by using Clustered techniques. Network was trained by using fixed and varying widths for the RBF units. It was observed that RBF results were having a good agreement with the experimental results. Networks trained by using clustering technique gave better results than using random selection of centers in terms of reduced MRE and increased prediction accuracy. The average MRE for the performance parameters was 3.25% with the prediction accuracy of 98% and for emissions it was 10.4% with a prediction accuracy of 80%.

Keywords: Radial Basis Function networks, emissions, Performance parameters, Fuzzy c means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728
1312 Numerical Simulation of the Air Pollutants Dispersion Emitted by CHP Using ANSYS CFX

Authors: Oliver Mărunţălu, Gheorghe Lăzăroiu, Elena Elisabeta Manea, Dana Andreya Bondrea, Lăcrămioara Diana Robescu

Abstract:

This paper presents the results obtained by numerical simulation using the software ANSYS CFX-CFD for the air pollutants dispersion in the atmosphere coming from the evacuation of combustion gases resulting from the fuel combustion in an electric thermal power plant. The model uses the Navier-Stokes equation to simulate the dispersion of pollutants in the atmosphere. It is considered as important factors in elaboration of simulation the atmospheric conditions (pressure, temperature, wind speed, wind direction), the exhaust velocity of the combustion gases, chimney height and the obstacles (buildings). Using the air quality monitoring stations it is measured the concentrations of main pollutants (SO2, NOx and PM). The pollutants were monitored over a period of 3 months, after that the average concentration are calculated, which is used by the software. The concentrations are: 8.915 μg/m3 (NOx), 9.587 μg/m3 (SO2) and 42 μg/m3 (PM). A comparison of test data with simulation results demonstrated that CFX was able to describe the dispersion of the pollutant as well the concentration of this pollutants in the atmosphere.

Keywords: Air pollutants, computational fluid dynamics, dispersion, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4471
1311 Literature-Based Discoveries in Lupus Treatment

Authors: Oluwaseyi Jaiyeoba, Vetria Byrd

Abstract:

Systemic lupus erythematosus (aka lupus) is a chronic disease known for its chameleon-like ability to mimic symptoms of other diseases rendering it hard to detect, diagnose and treat. The heterogeneous nature of the disease generates disparate data that are often multifaceted and multi-dimensional. Musculoskeletal manifestation of lupus is one of the most common clinical manifestations of lupus. This research links disparate literature on the treatment of lupus as it affects the musculoskeletal system using the discoveries from literature-based research articles available on the PubMed database. Several Natural Language Processing (NPL) tools exist to connect disjointed but related literature, such as Connected Papers, Bitola, and Gopalakrishnan. Literature-based discovery (LBD) has been used to bridge unconnected disciplines based on text mining procedures. The technical/medical literature consists of many technical/medical concepts, each having its  sub-literature. This approach has been used to link Parkinson’s, Raynaud, and Multiple Sclerosis treatment within works of literature.  Literature-based discovery methods can connect two or more related but disjointed literature concepts to produce a novel and plausible approach to solving a research problem. Data visualization techniques with the help of natural language processing tools are used to visually represent the result of literature-based discoveries. Literature search results can be voluminous, but Data visualization processes can provide insight and detect subtle patterns in large data. These insights and patterns can lead to discoveries that would have otherwise been hidden from disjointed literature. In this research, literature data are mined and combined with visualization techniques for heterogeneous data to discover viable treatments reported in the literature for lupus expression in the musculoskeletal system. This research answers the question of using literature-based discovery to identify potential treatments for a multifaceted disease like lupus. A three-pronged methodology is used in this research: text mining, natural language processing, and data visualization. These three research-related fields are employed to identify patterns in lupus-related data that, when visually represented, could aid research in the treatment of lupus. This work introduces a method for visually representing interconnections of various lupus-related literature. The methodology outlined in this work is the first step toward literature-based research and treatment planning for the musculoskeletal manifestation of lupus. The results also outline the interconnection of complex, disparate data associated with the manifestation of lupus in the musculoskeletal system. The societal impact of this work is broad. Advances in this work will improve the quality of life for millions of persons in the workforce currently diagnosed and silently living with a musculoskeletal disease associated with lupus.

Keywords: Systemic lupus erythematosus, LBD, Data Visualization, musculoskeletal system, treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 505
1310 Defect Prevention and Detection of DSP-software

Authors: Deng Shiwei

Abstract:

The users are now expecting higher level of DSP(Digital Signal Processing) software quality than ever before. Prevention and detection of defect are critical elements of software quality assurance. In this paper, principles and rules for prevention and detection of defect are suggested, which are not universal guidelines, but are useful for both novice and experienced DSP software developers.

Keywords: defect detection, defect prevention, DSP-software, software development, software testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
1309 Heavy Metal Contents in Vegetable Oils of Kazakhstan Origin and Life Risk Assessment

Authors: A. E. Mukhametov, M. T. Yerbulekova, D. R. Dautkanova, G. A. Tuyakova, G. Aitkhozhayeva

Abstract:

The accumulation of heavy metals in food is a constant problem in many parts of the world. Vegetable oils are widely used, both for cooking and for processing in the food industry, meeting the main dietary requirements. One of the main chemical pollutants, heavy metals, is usually found in vegetable oils. These chemical pollutants are carcinogenic, teratogenic and immunotoxic, harmful to consumption and have a negative effect on human health even in trace amounts. Residues of these substances can easily accumulate in vegetable oil during cultivation, processing and storage. In this article, the content of the concentration of heavy metal ions in vegetable oils of Kazakhstan production is studied: sunflower, rapeseed, safflower and linseed oil. Heavy metals: arsenic, cadmium, lead and nickel, were determined in three repetitions by the method of flame atomic absorption. Analysis of vegetable oil samples revealed that the largest lead contamination (Pb) was determined to be 0.065 mg/kg in linseed oil. The content of cadmium (Cd) in the largest amount of 0.009 mg/kg was found in safflower oil. Arsenic (As) content was determined in rapeseed and safflower oils at 0.003 mg/kg, and arsenic (As) was not detected in linseed and sunflower oil. The nickel (Ni) content in the largest amount of 0.433 mg/kg was in linseed oil. The heavy metal contents in the test samples complied with the requirements of regulatory documents for vegetable oils. An assessment of the health risk of vegetable oils with a daily consumption of 36 g per day shows that all samples of vegetable oils produced in Kazakhstan are safe for consumption. But further monitoring is needed, since all these metals are toxic and their harmful effects become apparent only after several years of exposure.

Keywords: Kazakhstan, oil, safety, toxic metals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 755
1308 Burning Rates of Turbulent Gaseous and Aerosol Flames

Authors: Shaharin A. Sulaiman, Malcolm Lawes

Abstract:

Combustion of sprays is of technological importance, but its flame behavior is not fully understood. Furthermore, the multiplicity of dependent variables such as pressure, temperature, equivalence ratio, and droplet sizes complicates the study of spray combustion. Fundamental study on the influence of the presence of liquid droplets has revealed that laminar flames within aerosol mixtures more readily become unstable than for gaseous ones and this increases the practical burning rate. However, fundamental studies on turbulent flames of aerosol mixtures are limited particularly those under near mono-dispersed droplet conditions. In the present work, centrally ignited expanding flames at near atmospheric pressures are employed to quantify the burning rates in gaseous and aerosol flames. Iso-octane-air aerosols are generated by expansion of the gaseous pre-mixture to produce a homogeneously distributed suspension of fuel droplets. The effects of the presence of droplets and turbulence velocity in relation to the burning rates of the flame are also investigated.

Keywords: Burning Rate, Droplets, Flames, Turbulent

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
1307 Design and Sensitivity Analysis of Photovoltaic/Thermal Solar Collector

Authors: H. M. Farghally, N. M. Ahmed, H. T. El-Madany, D. M. Atia, F. H. Fahmy

Abstract:

Energy is required in almost every aspect of human activities and development of any nation in the world. Increasing fossil fuel price, energy security and climate change have important bearings on sustainable development of any nation. The renewable energy technology is considered one of the drastic approaches which taken over the world to reduce the energy problem. The preservation of vegetables by freezing is one of the most important methods of retaining quality in agricultural products over long-term storage periods. Freezing factories show high demand of energy for both heat and electricity; the hybrid Photovoltaic/Thermal (PV/T) systems could be used in order to meet this requirement. This paper presents PV/T system design for freezing factory. Also, the complete mathematical modeling and MATLAB SIMULINK of PV/T collector is introduced. The sensitivity analysis for the manufacturing parameters of PV/T collector is carried out to study their effect on both thermal and electrical efficiency.

Keywords: Renewable energy, Hybrid PV/T system, Sensitivity analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3893
1306 Effect of Equivalence Ratio on Performance of Fluidized Bed Gasifier Run with Sized Biomass

Authors: J. P. Makwana, A. K. Joshi, Rajesh N. Patel, Darshil Patel

Abstract:

Recently, fluidized bed gasification becomes an attractive technology for power generation due to its higher efficiency. The main objective pursued in this work is to investigate the producer gas production potential from sized biomass (sawdust and pigeon pea) by applying the air gasification technique. The size of the biomass selected for the study was in the range of 0.40-0.84 mm. An experimental study was conducted using a fluidized bed gasifier with 210 mm diameter and 1600 mm height. During the experiments, the fuel properties and the effects of operating parameters such as gasification temperatures 700 to 900 °C, equivalence ratio 0.16 to 0.46 were studied. It was concluded that substantial amounts of producer gas (up to 1110 kcal/m3) could be produced utilizing biomass such as sawdust and pigeon pea by applying this fluidization technique. For both samples, the rise of temperature till 900 °C and equivalence ratio of 0.4 favored further gasification reactions and resulted into producer gas with calorific value 1110 kcal/m3.

Keywords: Sized biomass, fluidized bed gasifier, equivalence ratio, temperature profile, gas composition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
1305 Data Privacy and Safety with Large Language Models

Authors: Ashly Joseph, Jithu Paulose

Abstract:

Large language models (LLMs) have revolutionized natural language processing capabilities, enabling applications such as chatbots, dialogue agents, image, and video generators. Nevertheless, their trainings on extensive datasets comprising personal information poses notable privacy and safety hazards. This study examines methods for addressing these challenges, specifically focusing on approaches to enhance the security of LLM outputs, safeguard user privacy, and adhere to data protection rules. We explore several methods including post-processing detection algorithms, content filtering, reinforcement learning from human and AI inputs, and the difficulties in maintaining a balance between model safety and performance. The study also emphasizes the dangers of unintentional data leakage, privacy issues related to user prompts, and the possibility of data breaches. We highlight the significance of corporate data governance rules and optimal methods for engaging with chatbots. In addition, we analyze the development of data protection frameworks, evaluate the adherence of LLMs to General Data Protection Regulation (GDPR), and examine privacy legislation in academic and business policies. We demonstrate the difficulties and remedies involved in preserving data privacy and security in the age of sophisticated artificial intelligence by employing case studies and real-life instances. This article seeks to educate stakeholders on practical strategies for improving the security and privacy of LLMs, while also assuring their responsible and ethical implementation.

Keywords: Data privacy, large language models, artificial intelligence, machine learning, cybersecurity, general data protection regulation, data safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 101