Search results for: Data mining andInformation Extraction
7262 Statistical Analysis of the Factors that Influence the Properties of Blueberries from Cultivar Bluecrop
Authors: Raquel P. F. Guiné, Susana R. Matos, Daniela V. T. A. Costa, Fernando J. Gonçalves
Abstract:
Because blueberries are worldwide recognized as a good source of beneficial components, their consumption has increased in the past decades, and so have the scientific works about their properties. Hence, this work was undertaken to evaluate the effect of some production and conservation factors on the properties of blueberries from cultivar Bluecrop. The physical and chemical analyses were done according to established methodologies and then all data was treated using software SPSS for assessment of the possible differences among the factors investigated and/or the correlations between the variables at study. The results showed that location of production influenced some of the berries properties (caliber, sugars, antioxidant activity, color and texture) and that the age of the bushes was correlated with moisture, sugars and acidity, as well as lightness. On the other hand, altitude of the farm only was correlated to sugar content. With regards to conservation, it influenced only anthocyanins content and DPPH antioxidant activity. Finally, the type of extract and the order of extraction had a pronounced influence on all the phenolic properties evaluated.Keywords: Antioxidant activity, blueberry, conservation, geographical origin, phenolic compounds, statistical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21287261 Beneficiation of Low Grade Chromite Ore and Its Characterization for the Formation of Magnesia-Chromite Refractory by Economically Viable Process
Authors: Amit Kumar Bhandary, Prithviraj Gupta, Siddhartha Mukherjee, Mahua Ghosh Chaudhuri, Rajib Dey
Abstract:
Chromite ores are primarily used for extraction of chromium, which is an expensive metal. For low grade chromite ores (containing less than 40% Cr2O3), the chromium extraction is not usually economically viable. India possesses huge quantities of low grade chromite reserves. This deposit can be utilized after proper physical beneficiation. Magnetic separation techniques may be useful after reduction for the beneficiation of low grade chromite ore. The sample collected from the sukinda mines is characterized by XRD which shows predominant phases like maghemite, chromite, silica, magnesia and alumina. The raw ore is crushed and ground to below 75 micrometer size. The microstructure of the ore shows that the chromite grains surrounded by a silicate matrix and porosity observed the exposed side of the chromite ore. However, this ore may be utilized in refractory applications. Chromite ores contain Cr2O3, FeO, Al2O3 and other oxides like Fe-Cr, Mg-Cr have a high tendency to form spinel compounds, which usually show high refractoriness. Initially, the low grade chromite ore (containing 34.8% Cr2O3) was reduced at 1200 0C for 80 minutes with 30% coke fines by weight, before being subjected to magnetic separation. The reduction by coke leads to conversion of higher state of iron oxides converted to lower state of iron oxides. The pre-reduced samples are then characterized by XRD. The magnetically inert mass was then reacted with 20% MgO by weight at 1450 0C for 2 hours. The resultant product was then tested for various refractoriness parameters like apparent porosity, slag resistance etc. The results were satisfactory, indicating that the resultant spinel compounds are suitable for refractory applications for elevated temperature processes.
Keywords: Apparent porosity, beneficiation, low grade chromite, refractory, spinel compounds, slag resistance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23557260 Efficient Lossless Compression of Weather Radar Data
Authors: Wei-hua Ai, Wei Yan, Xiang Li
Abstract:
Data compression is used operationally to reduce bandwidth and storage requirements. An efficient method for achieving lossless weather radar data compression is presented. The characteristics of the data are taken into account and the optical linear prediction is used for the PPI images in the weather radar data in the proposed method. The next PPI image is identical to the current one and a dramatic reduction in source entropy is achieved by using the prediction algorithm. Some lossless compression methods are used to compress the predicted data. Experimental results show that for the weather radar data, the method proposed in this paper outperforms the other methods.
Keywords: Lossless compression, weather radar data, optical linear prediction, PPI image
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22577259 On-line Handwritten Character Recognition: An Implementation of Counterpropagation Neural Net
Authors: Muhammad Faisal Zafar, Dzulkifli Mohamad, Razib M. Othman
Abstract:
On-line handwritten scripts are usually dealt with pen tip traces from pen-down to pen-up positions. Time evaluation of the pen coordinates is also considered along with trajectory information. However, the data obtained needs a lot of preprocessing including filtering, smoothing, slant removing and size normalization before recognition process. Instead of doing such lengthy preprocessing, this paper presents a simple approach to extract the useful character information. This work evaluates the use of the counter- propagation neural network (CPN) and presents feature extraction mechanism in full detail to work with on-line handwriting recognition. The obtained recognition rates were 60% to 94% using the CPN for different sets of character samples. This paper also describes a performance study in which a recognition mechanism with multiple thresholds is evaluated for counter-propagation architecture. The results indicate that the application of multiple thresholds has significant effect on recognition mechanism. The method is applicable for off-line character recognition as well. The technique is tested for upper-case English alphabets for a number of different styles from different peoples.
Keywords: On-line character recognition, character digitization, counter-propagation neural networks, extreme coordinates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24317258 Artificial Intelligence Techniques Applications for Power Disturbances Classification
Authors: K.Manimala, Dr.K.Selvi, R.Ahila
Abstract:
Artificial Intelligence (AI) methods are increasingly being used for problem solving. This paper concerns using AI-type learning machines for power quality problem, which is a problem of general interest to power system to provide quality power to all appliances. Electrical power of good quality is essential for proper operation of electronic equipments such as computers and PLCs. Malfunction of such equipment may lead to loss of production or disruption of critical services resulting in huge financial and other losses. It is therefore necessary that critical loads be supplied with electricity of acceptable quality. Recognition of the presence of any disturbance and classifying any existing disturbance into a particular type is the first step in combating the problem. In this work two classes of AI methods for Power quality data mining are studied: Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs). We show that SVMs are superior to ANNs in two critical respects: SVMs train and run an order of magnitude faster; and SVMs give higher classification accuracy.
Keywords: back propagation network, power quality, probabilistic neural network, radial basis function support vector machine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15577257 Conceptualizing the Knowledge to Manage and Utilize Data Assets in the Context of Digitization: Case Studies of Multinational Industrial Enterprises
Authors: Martin Böhmer, Agatha Dabrowski, Boris Otto
Abstract:
The trend of digitization significantly changes the role of data for enterprises. Data turn from an enabler to an intangible organizational asset that requires management and qualifies as a tradeable good. The idea of a networked economy has gained momentum in the data domain as collaborative approaches for data management emerge. Traditional organizational knowledge consequently needs to be extended by comprehensive knowledge about data. The knowledge about data is vital for organizations to ensure that data quality requirements are met and data can be effectively utilized and sovereignly governed. As this specific knowledge has been paid little attention to so far by academics, the aim of the research presented in this paper is to conceptualize it by proposing a “data knowledge model”. Relevant model entities have been identified based on a design science research (DSR) approach that iteratively integrates insights of various industry case studies and literature research.
Keywords: Data management, digitization, Industry 4.0, knowledge engineering, metamodel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14587256 A Methodology for Data Migration between Different Database Management Systems
Authors: Bogdan Walek, Cyril Klimes
Abstract:
In present days the area of data migration is very topical. Current tools for data migration in the area of relational database have several disadvantages that are presented in this paper. We propose a methodology for data migration of the database tables and their data between various types of relational database systems (RDBMS). The proposed methodology contains an expert system. The expert system contains a knowledge base that is composed of IFTHEN rules and based on the input data suggests appropriate data types of columns of database tables. The proposed tool, which contains an expert system, also includes the possibility of optimizing the data types in the target RDBMS database tables based on processed data of the source RDBMS database tables. The proposed expert system is shown on data migration of selected database of the source RDBMS to the target RDBMS.
Keywords: Expert system, fuzzy, data migration, database, relational database, data type, relational database management system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34927255 CBIR Using Multi-Resolution Transform for Brain Tumour Detection and Stages Identification
Authors: H. Benjamin Fredrick David, R. Balasubramanian, A. Anbarasa Pandian
Abstract:
Image retrieval is the most interesting technique which is being used today in our digital world. CBIR, commonly expanded as Content Based Image Retrieval is an image processing technique which identifies the relevant images and retrieves them based on the patterns that are extracted from the digital images. In this paper, two research works have been presented using CBIR. The first work provides an automated and interactive approach to the analysis of CBIR techniques. CBIR works on the principle of supervised machine learning which involves feature selection followed by training and testing phase applied on a classifier in order to perform prediction. By using feature extraction, the image transforms such as Contourlet, Ridgelet and Shearlet could be utilized to retrieve the texture features from the images. The features extracted are used to train and build a classifier using the classification algorithms such as Naïve Bayes, K-Nearest Neighbour and Multi-class Support Vector Machine. Further the testing phase involves prediction which predicts the new input image using the trained classifier and label them from one of the four classes namely 1- Normal brain, 2- Benign tumour, 3- Malignant tumour and 4- Severe tumour. The second research work includes developing a tool which is used for tumour stage identification using the best feature extraction and classifier identified from the first work. Finally, the tool will be used to predict tumour stage and provide suggestions based on the stage of tumour identified by the system. This paper presents these two approaches which is a contribution to the medical field for giving better retrieval performance and for tumour stages identification.
Keywords: Brain tumour detection, content based image retrieval, classification of tumours, image retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7757254 Opening up Government Datasets for Big Data Analysis to Support Policy Decisions
Authors: K. Hardy, A. Maurushat
Abstract:
Policy makers are increasingly looking to make evidence-based decisions. Evidence-based decisions have historically used rigorous methodologies of empirical studies by research institutes, as well as less reliable immediate survey/polls often with limited sample sizes. As we move into the era of Big Data analytics, policy makers are looking to different methodologies to deliver reliable empirics in real-time. The question is not why did these people do this for the last 10 years, but why are these people doing this now, and if the this is undesirable, and how can we have an impact to promote change immediately. Big data analytics rely heavily on government data that has been released in to the public domain. The open data movement promises greater productivity and more efficient delivery of services; however, Australian government agencies remain reluctant to release their data to the general public. This paper considers the barriers to releasing government data as open data, and how these barriers might be overcome.
Keywords: Big data, open data, productivity, transparency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16367253 Forthcoming Big Data on Smart Buildings and Cities: An Experimental Study on Correlations among Urban Data
Authors: Yu-Mi Song, Sung-Ah Kim, Dongyoun Shin
Abstract:
Cities are complex systems of diverse and inter-tangled activities. These activities and their complex interrelationships create diverse urban phenomena. And such urban phenomena have considerable influences on the lives of citizens. This research aimed to develop a method to reveal the causes and effects among diverse urban elements in order to enable better understanding of urban activities and, therefrom, to make better urban planning strategies. Specifically, this study was conducted to solve a data-recommendation problem found on a Korean public data homepage. First, a correlation analysis was conducted to find the correlations among random urban data. Then, based on the results of that correlation analysis, the weighted data network of each urban data was provided to people. It is expected that the weights of urban data thereby obtained will provide us with insights into cities and show us how diverse urban activities influence each other and induce feedback.
Keywords: Big data, correlation analysis, data recommendation system, urban data network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11057252 On the Combination of Patient-Generated Data with Data from a Secure Clinical Network Environment – A Practical Example
Authors: Jeroen S. de Bruin, Karin Schindler, Christian Schuh
Abstract:
With increasingly more mobile health applications appearing due to the popularity of smartphones, the possibility arises that these data can be used to improve the medical diagnostic process, as well as the overall quality of healthcare, while at the same time lowering costs. However, as of yet there have been no reports of a successful combination of patient-generated data from smartphones with data from clinical routine. In this paper we describe how these two types of data can be combined in a secure way without modification to hospital information systems, and how they can together be used in a medical expert system for automatic nutritional classification and triage.
Keywords: Data integration, disease-related malnutrition, expert systems, mobile health.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22007251 Combination of Different Classifiers for Cardiac Arrhythmia Recognition
Authors: M. R. Homaeinezhad, E. Tavakkoli, M. Habibi, S. A. Atyabi, A. Ghaffari
Abstract:
This paper describes a new supervised fusion (hybrid) electrocardiogram (ECG) classification solution consisting of a new QRS complex geometrical feature extraction as well as a new version of the learning vector quantization (LVQ) classification algorithm aimed for overcoming the stability-plasticity dilemma. Toward this objective, after detection and delineation of the major events of ECG signal via an appropriate algorithm, each QRS region and also its corresponding discrete wavelet transform (DWT) are supposed as virtual images and each of them is divided into eight polar sectors. Then, the curve length of each excerpted segment is calculated and is used as the element of the feature space. To increase the robustness of the proposed classification algorithm versus noise, artifacts and arrhythmic outliers, a fusion structure consisting of five different classifiers namely as Support Vector Machine (SVM), Modified Learning Vector Quantization (MLVQ) and three Multi Layer Perceptron-Back Propagation (MLP–BP) neural networks with different topologies were designed and implemented. The new proposed algorithm was applied to all 48 MIT–BIH Arrhythmia Database records (within–record analysis) and the discrimination power of the classifier in isolation of different beat types of each record was assessed and as the result, the average accuracy value Acc=98.51% was obtained. Also, the proposed method was applied to 6 number of arrhythmias (Normal, LBBB, RBBB, PVC, APB, PB) belonging to 20 different records of the aforementioned database (between– record analysis) and the average value of Acc=95.6% was achieved. To evaluate performance quality of the new proposed hybrid learning machine, the obtained results were compared with similar peer– reviewed studies in this area.Keywords: Feature Extraction, Curve Length Method, SupportVector Machine, Learning Vector Quantization, Multi Layer Perceptron, Fusion (Hybrid) Classification, Arrhythmia Classification, Supervised Learning Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22277250 Hyperspectral Mapping Methods for Differentiating Mangrove Species along Karachi Coast
Authors: Sher Muhammad, Mirza Muhammad Waqar
Abstract:
It is necessary to monitor and identify mangroves types and spatial extent near coastal areas because it plays an important role in coastal ecosystem and environmental protection. This research aims at identifying and mapping mangroves types along Karachi coast ranging from 24.790 to 24.850 in latitude and 66.910 to 66.970 in longitude using hyperspectral remote sensing data and techniques. Image acquired during February, 2012 through Hyperion sensor have been used for this research. Image pre processing includes geometric and radiometric correction followed by Minimum Noise Fraction (MNF) and Pixel Purity Index (PPI). The output of MNF and PPI has been analyzed by visualizing it in n-dimensions for end member extraction. Well distributed clusters on the n-dimensional scatter plot have been selected with the region of interest (ROI) tool as end members. These end members have been used as an input for classification techniques applied to identify and map mangroves species including Spectral Angle Mapper (SAM), Spectral Feature Fitting (SFF) and Spectral Information Diversion (SID). Only two types of mangroves namely Avicennia Marina (White Mangroves) and Avicennia germinans (Black Mangroves) have been observed throughout the study area.
Keywords: Mangrove, Hyperspectral, SAM, SFF, SID.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29087249 Full-genomic Network Inference for Non-model organisms: A Case Study for the Fungal Pathogen Candida albicans
Authors: Jörg Linde, Ekaterina Buyko, Robert Altwasser, Udo Hahn, Reinhard Guthke
Abstract:
Reverse engineering of full-genomic interaction networks based on compendia of expression data has been successfully applied for a number of model organisms. This study adapts these approaches for an important non-model organism: The major human fungal pathogen Candida albicans. During the infection process, the pathogen can adapt to a wide range of environmental niches and reversibly changes its growth form. Given the importance of these processes, it is important to know how they are regulated. This study presents a reverse engineering strategy able to infer fullgenomic interaction networks for C. albicans based on a linear regression, utilizing the sparseness criterion (LASSO). To overcome the limited amount of expression data and small number of known interactions, we utilize different prior-knowledge sources guiding the network inference to a knowledge driven solution. Since, no database of known interactions for C. albicans exists, we use a textmining system which utilizes full-text research papers to identify known regulatory interactions. By comparing with these known regulatory interactions, we find an optimal value for global modelling parameters weighting the influence of the sparseness criterion and the prior-knowledge. Furthermore, we show that soft integration of prior-knowledge additionally improves the performance. Finally, we compare the performance of our approach to state of the art network inference approaches.
Keywords: Pathogen, network inference, text-mining, Candida albicans, LASSO, mutual information, reverse engineering, linear regression, modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16737248 Comparison of Imputation Techniques for Efficient Prediction of Software Fault Proneness in Classes
Authors: Geeta Sikka, Arvinder Kaur Takkar, Moin Uddin
Abstract:
Missing data is a persistent problem in almost all areas of empirical research. The missing data must be treated very carefully, as data plays a fundamental role in every analysis. Improper treatment can distort the analysis or generate biased results. In this paper, we compare and contrast various imputation techniques on missing data sets and make an empirical evaluation of these methods so as to construct quality software models. Our empirical study is based on NASA-s two public dataset. KC4 and KC1. The actual data sets of 125 cases and 2107 cases respectively, without any missing values were considered. The data set is used to create Missing at Random (MAR) data Listwise Deletion(LD), Mean Substitution(MS), Interpolation, Regression with an error term and Expectation-Maximization (EM) approaches were used to compare the effects of the various techniques.Keywords: Missing data, Imputation, Missing Data Techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16677247 Cluster Analysis for the Statistical Modeling of Aesthetic Judgment Data Related to Comics Artists
Authors: George E. Tsekouras, Evi Sampanikou
Abstract:
We compare three categorical data clustering algorithms with respect to the problem of classifying cultural data related to the aesthetic judgment of comics artists. Such a classification is very important in Comics Art theory since the determination of any classes of similarities in such kind of data will provide to art-historians very fruitful information of Comics Art-s evolution. To establish this, we use a categorical data set and we study it by employing three categorical data clustering algorithms. The performances of these algorithms are compared each other, while interpretations of the clustering results are also given.Keywords: Aesthetic judgment, comics artists, cluster analysis, categorical data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16347246 IoT Device Cost Effective Storage Architecture and Real-Time Data Analysis/Data Privacy Framework
Authors: Femi Elegbeleye, Seani Rananga
Abstract:
This paper focused on cost effective storage architecture using fog and cloud data storage gateway, and presented the design of the framework for the data privacy model and data analytics framework on a real-time analysis when using machine learning method. The paper began with the system analysis, system architecture and its component design, as well as the overall system operations. Several results obtained from this study on data privacy models show that when two or more data privacy models are integrated via a fog storage gateway, we often have more secure data. Our main focus in the study is to design a framework for the data privacy model, data storage, and real-time analytics. This paper also shows the major system components and their framework specification. And lastly, the overall research system architecture was shown, including its structure, and its interrelationships.
Keywords: IoT, fog storage, cloud storage, data analysis, data privacy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447245 Evaluation of Graph-based Analysis for Forest Fire Detections
Authors: Young Gi Byun, Yong Huh, Kiyun Yu, Yong Il Kim
Abstract:
Spatial outliers in remotely sensed imageries represent observed quantities showing unusual values compared to their neighbor pixel values. There have been various methods to detect the spatial outliers based on spatial autocorrelations in statistics and data mining. These methods may be applied in detecting forest fire pixels in the MODIS imageries from NASA-s AQUA satellite. This is because the forest fire detection can be referred to as finding spatial outliers using spatial variation of brightness temperature. This point is what distinguishes our approach from the traditional fire detection methods. In this paper, we propose a graph-based forest fire detection algorithm which is based on spatial outlier detection methods, and test the proposed algorithm to evaluate its applicability. For this the ordinary scatter plot and Moran-s scatter plot were used. In order to evaluate the proposed algorithm, the results were compared with the MODIS fire product provided by the NASA MODIS Science Team, which showed the possibility of the proposed algorithm in detecting the fire pixels.Keywords: Spatial Outlier Detection, MODIS, Forest Fire
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22267244 The Impact of System and Data Quality on Organizational Success in the Kingdom of Bahrain
Authors: Amal M. Alrayes
Abstract:
Data and system quality play a central role in organizational success, and the quality of any existing information system has a major influence on the effectiveness of overall system performance. Given the importance of system and data quality to an organization, it is relevant to highlight their importance on organizational performance in the Kingdom of Bahrain. This research aims to discover whether system quality and data quality are related, and to study the impact of system and data quality on organizational success. A theoretical model based on previous research is used to show the relationship between data and system quality, and organizational impact. We hypothesize, first, that system quality is positively associated with organizational impact, secondly that system quality is positively associated with data quality, and finally that data quality is positively associated with organizational impact. A questionnaire was conducted among public and private organizations in the Kingdom of Bahrain. The results show that there is a strong association between data and system quality, that affects organizational success.Keywords: Data quality, performance, system quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21187243 A Recognition Method for Spatio-Temporal Background in Korean Historical Novels
Authors: Seo-Hee Kim, Kee-Won Kim, Seung-Hoon Kim
Abstract:
The most important elements of a novel are the characters, events and background. The background represents the time, place and situation that character appears, and conveys event and atmosphere more realistically. If readers have the proper knowledge about background of novels, it may be helpful for understanding the atmosphere of a novel and choosing a novel that readers want to read. In this paper, we are targeting Korean historical novels because spatio-temporal background especially performs an important role in historical novels among the genre of Korean novels. To the best of our knowledge, we could not find previous study that was aimed at Korean novels. In this paper, we build a Korean historical national dictionary. Our dictionary has historical places and temple names of kings over many generations as well as currently existing spatial words or temporal words in Korean history. We also present a method for recognizing spatio-temporal background based on patterns of phrasal words in Korean sentences. Our rules utilize postposition for spatial background recognition and temple names for temporal background recognition. The knowledge of the recognized background can help readers to understand the flow of events and atmosphere, and can use to visualize the elements of novels.
Keywords: Data mining, Korean historical novels, Korean linguistic feature, spatio-temporal background.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11237242 Finding Authoritative Researchers on Academic Web Sites
Authors: Dalibor Fiala, Karel Jezek, Francois Rousselot
Abstract:
In this paper, we present a methodology for finding authoritative researchers by analyzing academic Web sites. We show a case study in which we concentrate on a set of Czech computer science departments- Web sites. We analyze the relations between them via hyperlinks and find the most important ones using several common ranking algorithms. We then examine the contents of the research papers present on these sites and determine the most authoritative Czech authors.Keywords: Authorities, citation analysis, prestige, ranking algorithms, Web mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12467241 Geochemistry of Natural Radionuclides Associated with Acid Mine Drainage (AMD) in a Coal Mining Area in Southern Brazil
Authors: Juliana A. Galhardi, Daniel M. Bonotto
Abstract:
Coal is an important non-renewable energy source of and can be associated with radioactive elements. In Figueira city, Paraná state, Brazil, it was recorded high uranium activity near the coal mine that supplies a local thermoelectric power plant. In this context, the radon activity (Rn-222, produced by the Ra-226 decay in the U-238 natural series) was evaluated in groundwater, river water and effluents produced from the acid mine drainage in the coal reject dumps. The samples were collected in August 2013 and in February 2014 and analyzed at LABIDRO (Laboratory of Isotope and Hydrochemistry), UNESP, Rio Claro city, Brazil, using an alpha spectrometer (AlphaGuard) adjusted to evaluate the mean radon activity concentration in five cycles of 10 minutes. No radon activity concentration above 100 Bq.L-1, which was a previous critic value established by the World Health Organization. The average radon activity concentration in groundwater was higher than in surface water and in effluent samples, possibly due to the accumulation of uranium and radium in the aquifer layers that favors the radon trapping. The lower value in the river waters can indicate dilution and the intermediate value in the effluents may indicate radon absorption in the coal particles of the reject dumps. The results also indicate that the radon activities in the effluents increase with the sample acidification, possibly due to the higher radium leaching and the subsequent radon transport to the drainage flow. The water samples of Laranjinha River and Ribeirão das Pedras stream, which, respectively, supply Figueira city and receive the mining effluent, exhibited higher pH values upstream the mine, reflecting the acid mine drainage discharge. The radionuclides transport indicates the importance of monitoring their activity concentration in natural waters due to the risks that the radioactivity can represent to human health.Keywords: Radon, radium, acid mine drainage, coal
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20507240 Integration of Multi-Source Data to Monitor Coral Biodiversity
Authors: K. Jitkue, W. Srisang, C. Yaiprasert, K. Jaroensutasinee, M. Jaroensutasinee
Abstract:
This study aims at using multi-source data to monitor coral biodiversity and coral bleaching. We used coral reef at Racha Islands, Phuket as a study area. There were three sources of data: coral diversity, sensor based data and satellite data.Keywords: Coral reefs, Remote sensing, Sea surfacetemperatue, Satellite imagery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15537239 Lung Cancer Detection and Multi Level Classification Using Discrete Wavelet Transform Approach
Authors: V. Veeraprathap, G. S. Harish, G. Narendra Kumar
Abstract:
Uncontrolled growth of abnormal cells in the lung in the form of tumor can be either benign (non-cancerous) or malignant (cancerous). Patients with Lung Cancer (LC) have an average of five years life span expectancy provided diagnosis, detection and prediction, which reduces many treatment options to risk of invasive surgery increasing survival rate. Computed Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI) for earlier detection of cancer are common. Gaussian filter along with median filter used for smoothing and noise removal, Histogram Equalization (HE) for image enhancement gives the best results without inviting further opinions. Lung cavities are extracted and the background portion other than two lung cavities is completely removed with right and left lungs segmented separately. Region properties measurements area, perimeter, diameter, centroid and eccentricity measured for the tumor segmented image, while texture is characterized by Gray-Level Co-occurrence Matrix (GLCM) functions, feature extraction provides Region of Interest (ROI) given as input to classifier. Two levels of classifications, K-Nearest Neighbor (KNN) is used for determining patient condition as normal or abnormal, while Artificial Neural Networks (ANN) is used for identifying the cancer stage is employed. Discrete Wavelet Transform (DWT) algorithm is used for the main feature extraction leading to best efficiency. The developed technology finds encouraging results for real time information and on line detection for future research.
Keywords: ANN, DWT, GLCM, KNN, ROI, artificial neural networks, discrete wavelet transform, gray-level co-occurrence matrix, k-nearest neighbor, region of interest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9607238 Process Analysis through Length Consistency
Authors: James E. Ponder
Abstract:
The requirement for consistency in physics can sometimes offer a common ground between disciplines such that their fundamental equations share a common parameter set and mathematical method for equation extraction. The parameter set shared by Relativity and Quantum Wave Mechanics enables an analysis which will be seen to be very straightforward, primarily classical in nature using linear algebra concepts, yet deriving a theoretical estimate of the value of the Gravitational Constant along with dependencies never before known.
Keywords: Gravitational Constant, Physical Consistency, Quantum Mechanics, Relativity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15397237 Feature Extraction from Aerial Photos
Authors: Mesut Gündüz, Ferruh Yildiz, Ayşe Onat
Abstract:
In Geographic Information System, one of the sources of obtaining needed geographic data is digitizing analog maps and evaluation of aerial and satellite photos. In this study, a method will be discussed which can be used to extract vectorial features and creating vectorized drawing files for aerial photos. At the same time a software developed for these purpose. Converting from raster to vector is also known as vectorization and it is the most important step when creating vectorized drawing files. In the developed algorithm, first of all preprocessing on the aerial photo is done. These are; converting to grayscale if necessary, reducing noise, applying some filters and determining the edge of the objects etc. After these steps, every pixel which constitutes the photo are followed from upper left to right bottom by examining its neighborhood relationship and one pixel wide lines or polylines obtained. The obtained lines have to be erased for preventing confusion while continuing vectorization because if not erased they can be perceived as new line, but if erased it can cause discontinuity in vector drawing so the image converted from 2 bit to 8 bit and the detected pixels are expressed as a different bit. In conclusion, the aerial photo can be converted to vector form which includes lines and polylines and can be opened in any CAD application.Keywords: Vectorization, Aerial Photos, Vectorized DrawingFile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16087236 Latent Topic Based Medical Data Classification
Authors: Jian-hua Yeh, Shi-yi Kuo
Abstract:
This paper discusses the classification process for medical data. In this paper, we use the data from ACM KDDCup 2008 to demonstrate our classification process based on latent topic discovery. In this data set, the target set and outliers are quite different in their nature: target set is only 0.6% size in total, while the outliers consist of 99.4% of the data set. We use this data set as an example to show how we dealt with this extremely biased data set with latent topic discovery and noise reduction techniques. Our experiment faces two major challenge: (1) extremely distributed outliers, and (2) positive samples are far smaller than negative ones. We try to propose a suitable process flow to deal with these issues and get a best AUC result of 0.98.
Keywords: classification, latent topics, outlier adjustment, feature scaling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16427235 Data Collection in Hospital Emergencies: A Questionnaire Survey
Authors: Nouha Mhimdi, Wahiba Ben Abdessalem Karaa, Henda Ben Ghezala
Abstract:
Many methods are used to collect data like questionnaires, surveys, focus group interviews. Or the collection of poor-quality data resulting, for example, from poorly designed questionnaires, the absence of good translators or interpreters, and the incorrect recording of data allow conclusions to be drawn that are not supported by the data or to focus only on the average effect of the program or policy. There are several solutions to avoid or minimize the most frequent errors, including obtaining expert advice on the design or adaptation of data collection instruments; or use technologies allowing better "anonymity" in the responses. In this context, and to overcome the aforementioned problems, we suggest in this paper an approach to achieve the collection of relevant data, by carrying out a large-scale questionnaire-based survey. We have been able to collect good quality, consistent and practical data on hospital emergencies to improve emergency services in hospitals, especially in the case of epidemics or pandemics.
Keywords: Data collection, survey, database, data analysis, hospital emergencies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6677234 Data Transformation Services (DTS): Creating Data Mart by Consolidating Multi-Source Enterprise Operational Data
Authors: J. D. D. Daniel, K. N. Goh, S. M. Yusop
Abstract:
Trends in business intelligence, e-commerce and remote access make it necessary and practical to store data in different ways on multiple systems with different operating systems. As business evolve and grow, they require efficient computerized solution to perform data update and to access data from diverse enterprise business applications. The objective of this paper is to demonstrate the capability of DTS [1] as a database solution for automatic data transfer and update in solving business problem. This DTS package is developed for the sales of variety of plants and eventually expanded into commercial supply and landscaping business. Dimension data modeling is used in DTS package to extract, transform and load data from heterogeneous database systems such as MySQL, Microsoft Access and Oracle that consolidates into a Data Mart residing in SQL Server. Hence, the data transfer from various databases is scheduled to run automatically every quarter of the year to review the efficient sales analysis. Therefore, DTS is absolutely an attractive solution for automatic data transfer and update which meeting today-s business needs.Keywords: Data Transformation Services (DTS), ObjectLinking and Embedding Database (OLEDB), Data Mart, OnlineAnalytical Processing (OLAP), Online Transactional Processing(OLTP).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20397233 Visual-Graphical Methods for Exploring Longitudinal Data
Authors: H. W. Ker
Abstract:
Longitudinal data typically have the characteristics of changes over time, nonlinear growth patterns, between-subjects variability, and the within errors exhibiting heteroscedasticity and dependence. The data exploration is more complicated than that of cross-sectional data. The purpose of this paper is to organize/integrate of various visual-graphical techniques to explore longitudinal data. From the application of the proposed methods, investigators can answer the research questions include characterizing or describing the growth patterns at both group and individual level, identifying the time points where important changes occur and unusual subjects, selecting suitable statistical models, and suggesting possible within-error variance.Keywords: Data exploration, exploratory analysis, HLMs/LMEs, longitudinal data, visual-graphical methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2095