Search results for: renewable energy deployment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3062

Search results for: renewable energy deployment

3002 Implementation of Feed-in Tariffs into Multi-Energy Systems

Authors: M. Schulze, P. Crespo Del Granado

Abstract:

This paper considers the influence of promotion instruments for renewable energy sources (RES) on a multi-energy modeling framework. In Europe, so called Feed-in Tariffs are successfully used as incentive structures to increase the amount of energy produced by RES. Because of the stochastic nature of large scale integration of distributed generation, many problems have occurred regarding the quality and stability of supply. Hence, a macroscopic model was developed in order to optimize the power supply of the local energy infrastructure, which includes electricity, natural gas, fuel oil and district heating as energy carriers. Unique features of the model are the integration of RES and the adoption of Feed-in Tariffs into one optimization stage. Sensitivity studies are carried out to examine the system behavior under changing profits for the feed-in of RES. With a setup of three energy exchanging regions and a multi-period optimization, the impact of costs and profits are determined.

Keywords: Distributed generation, optimization methods, power system modeling, renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
3001 Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks

Authors: Fazıl Gökgöz, Fahrettin Filiz

Abstract:

Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches.

Keywords: Deep learning, long-short-term memory, energy, renewable energy load forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596
3000 Perspective and Challenge of Tidal Power in Bangladesh

Authors: Md. Alamgir Hossain, Md. Zakir Hossain, Md. Atiqur Rahman

Abstract:

Tidal power can play a vital role in integrating as new source of renewable energy to the off-grid power connection in isolated areas, namely Sandwip, in Bangladesh. It can reduce the present energy crisis and improve the social, environmental and economic perspective of Bangladesh. Tidal energy is becoming popular around the world due to its own facilities. The development of any country largely depends on energy sector improvement. Lack of energy sector is because of hampering progress of any country development, and the energy sector will be stable by only depend on sustainable energy sources. Renewable energy having environmental friendly is the only sustainable solution of secure energy system. Bangladesh has a huge potential of tidal power at different locations, but effective measures on this issue have not been considered sincerely. This paper summarizes the current energy scenario, and Bangladesh can produce power approximately 53.19 MW across the country to reduce the growing energy demand utilizing tidal energy as well as it is shown that Sandwip is highly potential place to produce tidal power, which is estimated approximately 16.49 MW by investing only US $10.37 million. Besides this, cost management for tidal power plant has been also discussed.

Keywords: Sustainable energy, tidal power, cost analysis, power demand, gas crisis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3543
2999 Impact of Solar Energy Based Power Grid for Future Prospective of Pakistan

Authors: Muhammd Usman Sardar, Mazhar Hussain Baloch, Muhammad Shahbaz Ahmad, Zahir Javed Paracha

Abstract:

Shortfall of electrical energy in Pakistan is a challenge adversely affecting its industrial output and social growth. As elsewhere, Pakistan derives its electrical energy from a number of conventional sources. The exhaustion of petroleum and conventional resources, the rising costs coupled with extremely adverse climatic effects are taking its toll especially on the under-developed countries like Pakistan. As alternate, renewable energy sources like hydropower, solar, wind, even bio-energy and a mix of some or all of them could provide a credible alternative to the conventional energy resources that would not only be cleaner but sustainable as well. As a model, solar energy-based power grid for the near future has been attempted to offset the energy shortfalls as a mix with our existing sustainable natural energy resources. An assessment of solar energy potential for electricity generation is being presented for fulfilling the energy demands with higher level of reliability and sustainability. This model is based on the premise that solar energy potential of Pakistan is not only reliable but also sustainable. This research estimates the present & future approaching renewable energy resource specially the impact of solar energy based power grid for mitigating energy shortage in Pakistan.

Keywords: Powergrid network, solar photovoltaic (SPV) setups, solar power generation, solar energy technology (SET).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3450
2998 CO2 Abatement by Methanol Production from Flue-Gas in Methanol Plant

Authors: A. K. Sayah, Sh. Hosseinabadi, M. Farazar

Abstract:

This study investigates CO2 mitigation by methanol synthesis from flue gas CO2 and H2 generation through water electrolysis. Electrolytic hydrogen generation is viable provided that the required electrical power is supplied from renewable energy resources; whereby power generation from renewable resources is yet commercial challenging. This approach contribute to zero-emission, moreover it produce oxygen which could be used as feedstock for chemical process. At ZPC, however, oxygen would be utilized through partial oxidation of methane in autothermal reactor (ATR); this makes ease the difficulties of O2 delivery and marketing. On the other hand, onboard hydrogen storage and consumption; in methanol plant; make the project economically more competitive.

Keywords: Biomass, CO2 abatement, flue gas recovery, renewable energy, sustainable development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3593
2997 Wind Energy Status in Turkey

Authors: Mustafa Engin Başoğlu, Bekir Çakir

Abstract:

Since large part of electricity is generated by using fossil based resources, energy is an important agenda for countries. In this context, renewable energy sources are alternative to conventional sources due to the depletion of fossil resources, increasing awareness of climate change and global warming concerns. Solar, wind and hydropower energy are the main renewable energy sources. Among of them, since installed capacity of wind power has increased approximately eight times between 2008 - November of 2014, wind energy is a promising source for Turkey. Furthermore, signing of Kyoto Protocol can be accepted as a milestone for Turkey's energy policy. Turkish Government has announced Vision 2023 (energy targets by 2023) in 2010-2014 Strategic Plan prepared by Ministry of Energy and Natural Resources (MENR). Energy targets in this plan can be summarized as follows: Share of renewable energy sources in electricity generation is 30% of total electricity generation by 2023. Installed capacity of wind energy will be 20 GW by 2023. Other renewable energy sources such as solar, hydropower and geothermal are encouraged with new incentive mechanisms. Dependence on foreign energy is reduced for sustainability and energy security. On the other hand, since Turkey is surrounded by three coastal areas, wind energy potential is convenient for wind power application. As of November of 2014, total installed capacity of wind power plants is 3.51 GW and a lot of wind power plants are under construction with capacity 1.16 GW. Turkish government also encourages the locally manufactured equipments. In this context, one of the projects funded by private sector, universities and TUBİTAK names as MILRES is an important project aimed to promote the use wind energy in electricity generation. Within this project, wind turbine with 500 kW power has been produced and will be installed at the beginning of the 2015. After that, by using the experience obtained from the first phase of the project, a wind turbine with 2.5 MW power will be manufactured in an industrial scale.

Keywords: Wind energy, wind speed, Vision 2023, MILRES (national wind energy system), wind energy potential, Turkey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3271
2996 Correlating Site-Specific Meteorological Data and Power Availability for Small-Scale, Multi-Source Renewable Energy Systems

Authors: James D. Clark, Bernard H. Stark

Abstract:

The paper presents a modelling methodology for small scale multi-source renewable energy systems. Using historical site-specific weather data, the relationships of cost, availability and energy form are visualised as a function of the sizing of photovoltaic arrays, wind turbines, and battery capacity. The specific dependency of each site on its own particular weather patterns show that unique solutions exist for each site. It is shown that in certain cases the capital component cost can be halved if the desired theoretical demand availability is reduced from 100% to 99%.

Keywords: Energy Analysis, Forecasting, Distributed powergeneration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377
2995 Use of Magnesium as a Renewable Energy Source

Authors: Rafayel K. Kostanyan

Abstract:

The opportunities of use of metallic magnesium as a generator of hydrogen gas, as well as thermal and electric energy is presented in the paper. Various schemes of magnesium application are discussed and power characteristics of corresponding devices are presented. Economic estimation of hydrogen price obtained by different methods is made, including the use of magnesium as a source of hydrogen for transportation in comparison with gasoline. Details and prospects of our new inexpensive technology of magnesium production from magnesium hydroxide and magnesium bearing rocks (which are available worldwide and in Armenia) are analyzed. It is estimated the threshold cost of Mg production at which application of this metal in power engineering is economically justified.

Keywords: Magnesium, power generation, production, renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014
2994 An Analysis of Institutional Environments on Corporate Social Responsibility Practices in Nigerian Renewable Energy Firms

Authors: Bolanle Deborah Motilewa, E. K. Rowland Worlu, Gbenga Mayowa Agboola, Ayodele Maxwell Olokundun

Abstract:

Several studies have proposed a one-size fit all approach to Corporate Social Responsibility (CSR) practices, such that CSR as it applies to developed countries is adapted to developing countries, ignoring the differing institutional environments (such as the regulative, economic, social and political environments), which affects the profitability and practices of businesses operating in them. CSR as it applies to filling institutional gaps in developing countries, was categorized into four themes: environmental protection, product and service innovation, social innovation and local cluster development. Based on the four themes, the study employed a qualitative research approach through the use of interviews and review of available publications to study the influence of institutional environments on CSR practices engaged in by three renewable energy firms operating in Nigeria. Over the course of three 60-minutes sessions with the top management and selected workers of the firms, four propositions were made: regulatory environment influences environmental protection practice of Nigerian renewable firms, economic environment influences product and service innovation practice of Nigerian renewable energy firms, the social environment impacts on social innovation in Nigerian renewable energy firms, and political environment affects local cluster development practice of Nigerian renewable energy firms. It was also observed that beyond institutional environments, the international exposure of an organization’s managers reflected in their approach to CSR. This finding on the influence of international exposure on CSR practices creates an area for further study. Insights from this paper are set to help policy makers in developing countries, CSR managers, and future researchers.

Keywords: Corporate social responsibility, institutional environment, renewable energy firms, developing countries, international exposure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429
2993 Genetic Algorithm Optimization of the Economical, Ecological and Self-Consumption Impact of the Energy Production of a Single Building

Authors: Ludovic Favre, Thibaut M. Schafer, Jean-Luc Robyr, Elena-Lavinia Niederhäuser

Abstract:

This paper presents an optimization method based on genetic algorithm for the energy management inside buildings developed in the frame of the project Smart Living Lab (SLL) in Fribourg (Switzerland). This algorithm optimizes the interaction between renewable energy production, storage systems and energy consumers. In comparison with standard algorithms, the innovative aspect of this project is the extension of the smart regulation over three simultaneous criteria: the energy self-consumption, the decrease of greenhouse gas emissions and operating costs. The genetic algorithm approach was chosen due to the large quantity of optimization variables and the non-linearity of the optimization function. The optimization process includes also real time data of the building as well as weather forecast and users habits. This information is used by a physical model of the building energy resources to predict the future energy production and needs, to select the best energetic strategy, to combine production or storage of energy in order to guarantee the demand of electrical and thermal energy. The principle of operation of the algorithm as well as typical output example of the algorithm is presented.

Keywords: Building’s energy, control system, energy management, modelling, genetic optimization algorithm, renewable energy, greenhouse gases, energy storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 792
2992 Impact of Reflectors on Solar Energy Systems

Authors: J. Rizk, M. H. Nagrial

Abstract:

The paper aims to show that implementing different types of reflectors in solar energy systems, will dramatically improve energy production by means of concentrating and intensifying more sunlight onto a solar cell. The Solar Intensifier unit is designed to increase efficiency and performance of a set of solar panels. The unit was fabricated and tested. The experimental results show good improvement in the performance of the solar energy system.

Keywords: Renewable Energy, Power optimization, Solar Energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3264
2991 Intelligent System and Renewable Energy: A Farming Platform in Precision Agriculture

Authors: Ryan B. Escorial, Elmer A. Maravillas, Chris Jordan G. Aliac

Abstract:

This study presents a small-scale water pumping system utilizing a fuzzy logic inference system attached to a renewable energy source. The fuzzy logic controller was designed and simulated in MATLAB fuzzy logic toolbox to examine the properties and characteristics of the input and output variables. The result of the simulation was implemented in a microcontroller, together with sensors, modules, and photovoltaic cells. The study used a grand rapid variety of lettuce, organic substrates, and foliar for observation of the capability of the device to irrigate crops. Two plant boxes intended for manual and automated irrigation were prepared with each box having 48 heads of lettuce. The observation of the system took 22-31 days, which is one harvest period of the crop. Results showed a 22.55% increase in agricultural productivity compared to manual irrigation. Aside from reducing human effort, and time, the smart irrigation system could help lessen some of the shortcomings of manual irrigations. It could facilitate the economical utilization of water, reducing consumption by 25%. The use of renewable energy could also help farmers reduce the cost of production by minimizing the use of diesel and gasoline.

Keywords: Fuzzy logic controller, intelligent system, precision agriculture, renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2299
2990 Use of Biomass as Co-Fuel in Briquetting of Low-Rank Coal: Strengthen the Energy Supply and Save the Environment

Authors: Mahidin, Yanna Syamsuddin, Samsul Rizal

Abstract:

In order to fulfill world energy demand, several efforts have been done to look for new and renewable energy candidates to substitute oil and gas. Biomass is one of new and renewable energy sources, which is abundant in Indonesia. Palm kernel shell is a kind of biomass discharge from palm oil industries as a waste. On the other hand, Jatropha curcas that is easy to grow in Indonesia is also a typical energy source either for bio-diesel or biomass. In this study, biomass was used as co-fuel in briquetting of low-rank coal to suppress the release of emission (such as CO, NOx and SOx) during coal combustion. Desulfurizer, CaO-base, was also added to ensure the SOx capture is effectively occurred. Ratio of coal to palm kernel shell (w/w) in the bio-briquette were 50:50, 60:40, 70:30, 80:20 and 90:10, while ratio of calcium to sulfur (Ca/S) in mole/mole were 1:1; 1.25:1; 1.5:1; 1.75:1 and 2:1. The bio-briquette then subjected to physical characterization and combustion test. The results show that the maximum weight loss in the durability measurement was ±6%. In addition, the highest stove efficiency for each desulfurizer was observed at the coal/PKS ratio of 90:10 and Ca/S ratio of 1:1 (except for the scallop shell desulfurizer that appeared at two Ca/S ratios; 1.25:1 and 1.5:1, respectively), i.e. 13.8% for the lime; 15.86% for the oyster shell; 14.54% for the scallop shell and 15.84% for the green mussel shell desulfurizers.

Keywords: Biomass, low-rank coal, bio-briquette, new and renewable energy, palm kernel shell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2677
2989 Techno-Economic Analysis Framework for Wave Energy Conversion Schemes under South African Conditions: Modeling and Simulations

Authors: Siyanda S. Biyela, Willie A. Cronje

Abstract:

This paper presents a desktop study of comparing two different wave energy to electricity technologies (WECs) using a techno-economic approach. This techno-economic approach forms basis of a framework for rapid comparison of current and future technologies. The approach also seeks to assist in investment and strategic decision making expediting future deployment of wave energy harvesting in South Africa.

Keywords: Cost of energy, tool, wave energy converter, WEC-Sim.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1211
2988 Challenges and Opportunities in Nuclear Energy: Promising Option in Turkey?

Authors: I. Mahariq, I. Arpacı

Abstract:

Dramatic growth in the population requires a parallel increase in the total installed capacity of electricity. Diversity, independency of resources and global warming call for installing renewable and nuclear energy plants. Several types of energy plants exist in Turkey; however, nuclear energy with its several attractive features is not utilized at all. This study presents the available energy resources in Turkey and reviews major challenges and opportunities in nuclear energy. At the end of this paper, some conclusions are stated.

Keywords: Nuclear, energy resources, challenges, opportunities, Turkey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
2987 Consensus on Climate Change Adaptation among Government and Populace

Authors: Tsung-Hsien Yu, Ya-Hsuan Chou, Ming-Wei Chen, Chi-Ming Chen, Yi-Hsuan Li

Abstract:

Observations and long-term trends indicate that climate change impacts would be significant and affects Taiwan directly and severely. Taiwan engages not only in mitigation, but also in adaptation. However, there are cognitive gaps on adaptation between government and populace. Besides, a vision of zero-carbon and renewable energy 100% will be adopted in future. Therefore, the objectives of this article are to 1) hold a National Forum for knowing differences between the strategies of zero-carbon and renewable energy 100% and cognitions of general populace, and 2) plan a clear roadmap for the vision, strategy, and measures. In this forum, we set 5 group topics, 5 presumed themes, and issues mentioned review for concluding the critical issues. Finally, there are 4 strategies and 14 critical issues which correlate with the vision and strategy of government and the cognition of the general populace.

Keywords: Cognitive gap, world café, renewable energy, zero-carbon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
2986 Sensitivity of Small Disturbance Angle Stability to the System Parameters of Future Power Networks

Authors: Nima Farkhondeh Jahromi, George Papaefthymiou, Lou van der Sluis

Abstract:

The incorporation of renewable energy sources for the sustainable electricity production is undertaking a more prominent role in electric power systems. Thus, it will be an indispensable incident that the characteristics of future power networks, their prospective stability for instance, get influenced by the imposed features of sustainable energy sources. One of the distinctive attributes of the sustainable energy sources is exhibiting the stochastic behavior. This paper investigates the impacts of this stochastic behavior on the small disturbance rotor angle stability in the upcoming electric power networks. Considering the various types of renewable energy sources and the vast variety of system configurations, the sensitivity analysis can be an efficient breakthrough towards generalizing the effects of new energy sources on the concept of stability. In this paper, the definition of small disturbance angle stability for future power systems and the iterative-stochastic way of its analysis are presented. Also, the effects of system parameters on this type of stability are described by performing a sensitivity analysis for an electric power test system.

Keywords: Power systems stability, Renewable energy sources, Stochastic behavior, Small disturbance rotor angle stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078
2985 The Project of Three Photovoltaic Systems in an Italian Natural Park

Authors: M.Paroncini, F.Corvaro, G.Nardini, S.Pistolesi

Abstract:

The development of renewable energies - particularly energy from wind, water, solar power and biomass - is a central aim of the European Commission's energy policy. There are several reasons for this choice: renewable energies are sustainable, nonpolluting, widely available and clean. Increasing the share of renewable energy in the energy balance enhances sustainability. It also helps to improve the security of energy supply by reducing the Community's growing dependence on imported energy sources.In this paper it was studied the possibility to realize three photovoltaic systems in the Italian Natural Park “Gola della Rossa e di Frasassi". The first photovoltaic system is a grid-connected system for Services and Documentation Center of Castelletta with a nominal power of about 6 kWp. The second photovoltaic system is a grid-connected integrated system on the ticket office-s roof with a nominal power of about 4 kWp. The third project is set up by five grid-connected systems integrated on the roofs of the bungalows in Natural Park-s tourist camping with a nominal power of about 10 kWp. The electricity which is generated by all these plants is purchased according to the Italian program called “Conto Energia". Economical analysis and the amount of the avoided CO2 emissions are elaborated for these photovoltaic systems.

Keywords: CO2 emissions, conto energia, photovoltaic systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
2984 Integrated Modeling Approach for Energy Planning and Climate Change Mitigation Assessment in the State of Florida

Authors: Kuntal Thakkar, Chaouki Ghenai, Ahmed Hachicha

Abstract:

An integrated modeling approach was used in this study for energy planning and climate change mitigation assessment. The main objective of this study was to develop various green-house gas (GHG) mitigations scenarios in the energy demand and supply sectors for the state of Florida. The Long range energy alternative planning (LEAP) model was used in this study to examine the energy alternative and GHG emissions reduction scenarios for short and long term (2010-2050). One of the energy analysis and GHG mitigation scenarios was developed by taking into account the available renewable energy resources potential for power generation in the state of Florida. This will help to compare and analyze the GHG reduction measure against “Business As Usual” and ‘State of Florida Policy” scenarios. Two master scenarios: “Electrification” and “Energy efficiency and Lifestyle” were developed through combination of various mitigation scenarios: technological changes and energy efficiency and conservation. The results show a net reduction of the energy demand and GHG emissions by adopting these two energy scenarios compared to the business as usual.

Keywords: Integrated modeling, energy planning, climate change mitigation assessment, greenhouse gas emissions, renewable energy, energy efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
2983 Optimal Type and Installation Time of Wind Farm in a Power System, Considering Service Providers

Authors: M. H. Abedi, A. Jalilvand

Abstract:

The economic development benefits of wind energy may be the most tangible basis for the local and state officials’ interests. In addition to the direct salaries associated with building and operating wind projects, the wind energy industry provides indirect jobs and benefits. The optimal planning of a wind farm is one most important topic in renewable energy technology. Many methods have been implemented to optimize the cost and output benefit of wind farms, but the contribution of this paper is mentioning different types of service providers and also time of installation of wind turbines during planning horizon years. Genetic algorithm (GA) is used to optimize the problem. It is observed that an appropriate layout of wind farm can cause to minimize the different types of cost.

Keywords: Renewable energy, wind farm, optimization, planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1138
2982 Evaluation of Sustainable Business Model Innovation in Increasing the Penetration of Renewable Energy in the Ghana Power Sector

Authors: Victor Birikorang Danquah

Abstract:

Ghana's primary energy supply is heavily reliant on petroleum, biomass, and hydropower. Currently, Ghana gets its energy from hydropower (Akosombo and Bui), thermal power plants powered by crude oil, natural gas, and diesel, solar power, and imports from La Cote d'Ivoire. Until the early 2000s, large hydroelectric dams dominated Ghana's electricity generation. Due to the unreliable weather patterns, Ghana increased its reliance on thermal power. Thermal power contributes the highest percentage in terms of electricity generation in Ghana and is predominantly supplied by Independent Power Producers (IPPs). Ghana's electricity industry operates the corporate utility model as its business model. This model is typically 'vertically integrated', with a single corporation selling the majority of power generated by its generation assets to its retail business, which then sells the electricity to retail market consumers. The corporate utility model has a straightforward value proposition that is based on increasing the number of energy units sold. The unit volume business model drives the entire energy value chain to increase throughput, locking system users into unsustainable practices. This report uses the qualitative research approach to explore the electricity industry in Ghana. There is the need for increasing renewable energy such as wind and solar in the electricity generation. The research recommends two critical business models for the penetration of renewable energy in Ghana's power sector. The first model is the peer-to-peer electricity trading model which relies on a software platform to connect consumers and generators in order for them to trade energy directly with one another. The second model is about encouraging local energy generation, incentivizing optimal time-of-use behaviour, and allow any financial gains to be shared among the community members.

Keywords: business model innovation, electricity generation, renewable energy, solar energy, sustainability, wind energy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 855
2981 A Brief Review on Recent Trends in Alternative Sources of Energy

Authors: Divya S., Jibin Joseph

Abstract:

Alternative energy is any energy source that is an alternative to fossil fuel. These alternatives are intended to address concerns about such fossil fuels. Today, because of the variety of energy choices and differing goals of their advocates, defining some energy types as "alternative" is highly controversial. Most of the recent and existing alternative sources of energy are discussed below

Keywords: Athra Quinone Disulphonic Acid (AQDS), Renewable Methanol (RM), Solid Oxide Fuel Cell (SOFC), Maximum Power Point Tracking (MPPT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2553
2980 Design and Sensitivity Analysis of Photovoltaic/Thermal Solar Collector

Authors: H. M. Farghally, N. M. Ahmed, H. T. El-Madany, D. M. Atia, F. H. Fahmy

Abstract:

Energy is required in almost every aspect of human activities and development of any nation in the world. Increasing fossil fuel price, energy security and climate change have important bearings on sustainable development of any nation. The renewable energy technology is considered one of the drastic approaches which taken over the world to reduce the energy problem. The preservation of vegetables by freezing is one of the most important methods of retaining quality in agricultural products over long-term storage periods. Freezing factories show high demand of energy for both heat and electricity; the hybrid Photovoltaic/Thermal (PV/T) systems could be used in order to meet this requirement. This paper presents PV/T system design for freezing factory. Also, the complete mathematical modeling and MATLAB SIMULINK of PV/T collector is introduced. The sensitivity analysis for the manufacturing parameters of PV/T collector is carried out to study their effect on both thermal and electrical efficiency.

Keywords: Renewable energy, Hybrid PV/T system, Sensitivity analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3894
2979 Development of a Mathematical Theoretical Model and Simulation of the Electromechanical System for Wave Energy Harvesting

Authors: P. Valdez, M. Pelissero, A. Haim, F. Muiño, F. Galia, R. Tula

Abstract:

As a result of the studies performed on the wave energy resource worldwide, a research project was set up to harvest wave energy for its conversion into electrical energy. Within this framework, a theoretical model of the electromechanical energy harvesting system, developed with MATLAB’s Simulink software, will be provided. This tool recreates the site conditions where the device will be installed and offers valuable information about the amount of energy that can be harnessed. This research provides a deeper understanding of the utilization of wave energy in order to improve the efficiency of a 1:1 scale prototype of the device.

Keywords: Electromechanical device, modeling, renewable energy, sea wave energy, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1174
2978 Risk Assessment Results in Biogas Production from Agriculture Biomass

Authors: Sandija Zeverte-Rivza, Irina Pilvere, Baiba Rivza

Abstract:

The use of renewable energy sources incl. biogas has become topical in accordance with the increasing demand for energy, decrease of fossil energy resources and the efforts to reduce greenhouse gas emissions as well as to increase energy independence from the territories where fossil energy resources are available.

As the technologies of biogas production from agricultural biomass develop, risk assessment and risk management become necessary for farms producing such a renewable energy. The need for risk assessments has become particularly topical when discussions on changing the biogas policy in the EU take place, which may influence the development of the sector in the future, as well as the operation of existing biogas facilities and their income level.

The current article describes results of the risk assessment for farms producing biomass from agriculture biomass in Latvia, the risk assessment system included 24 risks, that affect the whole biogas production process and the obtained results showed the high significance of political and production risks.

Keywords: Biogas production, risks, risk assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3265
2977 Study on the Addition of Solar Generating and Energy Storage Units to a Power Distribution System

Authors: T. Costa, D. Narvaez, K. Melo, M. Villalva

Abstract:

Installation of micro-generators based on renewable energy in power distribution system has increased in recent years, with the main renewable sources being solar and wind. Due to the intermittent nature of renewable energy sources, such micro-generators produce time-varying energy which does not correspond at certain times of the day to the peak energy consumption of end users. For this reason, the use of energy storage units next to the grid contributes to the proper leveling of the buses’ voltage level according to Brazilian energy quality standards. In this work, the effect of the addition of a photovoltaic solar generator and a store of energy in the busbar voltages of an electric system is analyzed. The consumption profile is defined as the average hourly use of appliances in a common residence, and the generation profile is defined as a function of the solar irradiation available in a locality. The power summation method is validated with analytical calculation and is used to calculate the modules and angles of the voltages in the buses of an electrical system based on the IEEE standard, at each hour of the day and with defined load and generation profiles. The results show that bus 5 presents the worst voltage level at the power consumption peaks and stabilizes at the appropriate range with the inclusion of the energy storage during the night time period. Solar generator maintains improvement of the voltage level during the period when it receives solar irradiation, having peaks of production during the 12 pm (without exceeding the appropriate maximum levels of tension).

Keywords: Energy storage, power distribution system, solar generator, voltage level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 828
2976 Survey on Energy Efficient Routing Protocols in Mobile Ad Hoc Networks

Authors: Swapnil Singh, Sanjoy Das

Abstract:

Mobile Ad-Hoc Network (MANET) is a network without infrastructure dynamically formed by autonomous system of mobile nodes that are connected via wireless links. Mobile nodes communicate with each other on the fly. In this network each node also acts as a router. The battery power and the bandwidth are very scarce resources in this network. The network lifetime and connectivity of nodes depend on battery power. Therefore, energy is a valuable constraint which should be efficiently used. In this paper we survey various energy efficient routing protocols. The energy efficient routing protocols are classified on the basis of approaches they use to minimize the energy consumption. The purpose of this paper is to facilitate the research work and combine the existing solution and to develop a more energy efficient routing mechanism.

Keywords: Delaunay Triangulation, deployment, energy efficiency, MANET.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3038
2975 Optimal Design of the Power Generation Network in California: Moving towards 100% Renewable Electricity by 2045

Authors: Wennan Long, Yuhao Nie, Yunan Li, Adam Brandt

Abstract:

To fight against climate change, California government issued the Senate Bill No. 100 (SB-100) in 2018 September, which aims at achieving a target of 100% renewable electricity by the end of 2045. A capacity expansion problem is solved in this case study using a binary quadratic programming model. The optimal locations and capacities of the potential renewable power plants (i.e., solar, wind, biomass, geothermal and hydropower), the phase-out schedule of existing fossil-based (nature gas) power plants and the transmission of electricity across the entire network are determined with the minimal total annualized cost measured by net present value (NPV). The results show that the renewable electricity contribution could increase to 85.9% by 2030 and reach 100% by 2035. Fossil-based power plants will be totally phased out around 2035 and solar and wind will finally become the most dominant renewable energy resource in California electricity mix.

Keywords: 100% renewable electricity, California, capacity expansion, binary quadratic programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731
2974 Biodiesel from Coconut Oil: A Renewable Alternative Fuel for Diesel Engine

Authors: Md A. Hossain, Shabab M. Chowdhury, Yamin Rekhu, Khandakar S. Faraz, Monzur Ul Islam

Abstract:

With the growth of modern civilization and industrialization in worldwide, the demand for energy is increasing day by day. Majority of the world-s energy needs are met through fossil fuels and natural gas. As a result the amount of fossil fuels is on diminishing from year to year. Since the fossil fuel is nonrenewable, so fuel price is gouging as a consequence of spiraling demand and diminishing supply. At present the power generation of our country is mainly depends on imported fossil fuels. To reduce the dependency on imported fuel, the use of renewable sources has become more popular. In Bangladesh coconut is widely growing tree. Especially in the southern part of the country a large area will be found where coconut tree is considered as natural asset. So, our endeavor was to use the coconut oil as a renewable and alternative fuel. This article shows the prospect of coconut oil as a renewable and alternative fuel of diesel fuel. Since diesel engine has a versatile uses including small electricity generation, an experimental set up is then made to study the performance of a small diesel engine using different blends of bio diesel converted from coconut oil. It is found that bio diesel has slightly different properties than diesel. With biodiesel the engine is capable of running without difficulty. Different blends of bio diesel (i.e. B80, B60, and B 50 etc.) have been used to avoid complicated modification of the engine or the fuel supply system. Finally, a comparison of engine performance for different blends of biodiesel has been carried out to determine the optimum blend for different operating conditions.

Keywords: Biodiesel, Bio-fuel, Renewable Energy, Transesterification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9759
2973 Experimental Study for the Development of a Wireless Communication System in a Solar Central Tower Facility

Authors: Victor H. Benitez, Ramon V. Armas-Flores, Jesus H. Pacheco-Ramirez

Abstract:

Systems transforming solar energy into electrical power have emerged as a viable source of clean, renewable energy. Solar power tower technology is a good example of this type of system, which consists of several mobile mirrors, called heliostats, which reflect the sun's radiation to the same point, located on top of a tower at the center of heliostat field, for collection or transformation into another type of energy. The so-called Hermosillo’s Solar Platform (Plataforma Solar de Hermosillo, PSH, in Spanish) is a facility constituted with several heliostats, its aim and scope is for research purposes. In this paper, the implementation of a wireless communication system based on intelligent nodes is proposed in order to allow the communication and control of the heliostats in PSH. Intelligent nodes transmit information from one point to another, and can perform other actions that allow them to adapt to the conditions and limitations of a field of heliostats, thus achieving effective communication system. After deployment of the nodes in the heliostats, tests were conducted to measure the effectiveness of the communication, and determine the feasibility of using the proposed technologies. The test results were always positive, exceeding expectations held for its operation in the field of heliostats. Therefore, it was possible to validate the efficiency of the wireless communication system to be implemented in PSH, allowing communication and control of the heliostats.

Keywords: Solar energy, heliostat, wireless communication, intelligent node.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667