Search results for: reconstruction algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3543

Search results for: reconstruction algorithm

3483 Optimal External Merge Sorting Algorithm with Smart Block Merging

Authors: Mir Hadi Seyedafsari, Iraj Hasanzadeh

Abstract:

Like other external sorting algorithms, the presented algorithm is a two step algorithm including internal and external steps. The first part of the algorithm is like the other similar algorithms but second part of that is including a new easy implementing method which has reduced the vast number of inputoutput operations saliently. As decreasing processor operating time does not have any effect on main algorithm speed, any improvement in it should be done through decreasing the number of input-output operations. This paper propose an easy algorithm for choose the correct record location of the final list. This decreases the time complexity and makes the algorithm faster.

Keywords: External sorting algorithm, internal sortingalgorithm, fast sorting, robust algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2190
3482 Analog Circuit Design using Genetic Algorithm: Modified

Authors: Amod P. Vaze

Abstract:

Genetic Algorithm has been used to solve wide range of optimization problems. Some researches conduct on applying Genetic Algorithm to analog circuit design automation. These researches show a better performance due to the nature of Genetic Algorithm. In this paper a modified Genetic Algorithm is applied for analog circuit design automation. The modifications are made to the topology of the circuit. These modifications will lead to a more computationally efficient algorithm.

Keywords: Genetic algorithm, analog circuits, design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2295
3481 River Flow Prediction Using Nonlinear Prediction Method

Authors: N. H. Adenan, M. S. M. Noorani

Abstract:

River flow prediction is an essential to ensure proper management of water resources can be optimally distribute water to consumers. This study presents an analysis and prediction by using nonlinear prediction method involving monthly river flow data in Tanjung Tualang from 1976 to 2006. Nonlinear prediction method involves the reconstruction of phase space and local linear approximation approach. The phase space reconstruction involves the reconstruction of one-dimensional (the observed 287 months of data) in a multidimensional phase space to reveal the dynamics of the system. Revenue of phase space reconstruction is used to predict the next 72 months. A comparison of prediction performance based on correlation coefficient (CC) and root mean square error (RMSE) have been employed to compare prediction performance for nonlinear prediction method, ARIMA and SVM. Prediction performance comparisons show the prediction results using nonlinear prediction method is better than ARIMA and SVM. Therefore, the result of this study could be used to develop an efficient water management system to optimize the allocation water resources.

Keywords: River flow, nonlinear prediction method, phase space, local linear approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2368
3480 Application of Hybrid Genetic Algorithm Based on Simulated Annealing in Function Optimization

Authors: Panpan Xu, Shulin Sui, Zongjie Du

Abstract:

Genetic algorithm is widely used in optimization problems for its excellent global search capabilities and highly parallel processing capabilities; but, it converges prematurely and has a poor local optimization capability in actual operation. Simulated annealing algorithm can avoid the search process falling into local optimum. A hybrid genetic algorithm based on simulated annealing is designed by combining the advantages of genetic algorithm and simulated annealing algorithm. The numerical experiment represents the hybrid genetic algorithm can be applied to solve the function optimization problems efficiently.

Keywords: Genetic algorithm, Simulated annealing, Hybrid genetic algorithm, Function optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2553
3479 Convergence Analysis of an Alternative Gradient Algorithm for Non-Negative Matrix Factorization

Authors: Chenxue Yang, Mao Ye, Zijian Liu, Tao Li, Jiao Bao

Abstract:

Non-negative matrix factorization (NMF) is a useful computational method to find basis information of multivariate nonnegative data. A popular approach to solve the NMF problem is the multiplicative update (MU) algorithm. But, it has some defects. So the columnwisely alternating gradient (cAG) algorithm was proposed. In this paper, we analyze convergence of the cAG algorithm and show advantages over the MU algorithm. The stability of the equilibrium point is used to prove the convergence of the cAG algorithm. A classic model is used to obtain the equilibrium point and the invariant sets are constructed to guarantee the integrity of the stability. Finally, the convergence conditions of the cAG algorithm are obtained, which help reducing the evaluation time and is confirmed in the experiments. By using the same method, the MU algorithm has zero divisor and is convergent at zero has been verified. In addition, the convergence conditions of the MU algorithm at zero are similar to that of the cAG algorithm at non-zero. However, it is meaningless to discuss the convergence at zero, which is not always the result that we want for NMF. Thus, we theoretically illustrate the advantages of the cAG algorithm.

Keywords: Non-negative matrix factorizations, convergence, cAG algorithm, equilibrium point, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
3478 Genetic Mining: Using Genetic Algorithm for Topic based on Concept Distribution

Authors: S. M. Khalessizadeh, R. Zaefarian, S.H. Nasseri, E. Ardil

Abstract:

Today, Genetic Algorithm has been used to solve wide range of optimization problems. Some researches conduct on applying Genetic Algorithm to text classification, summarization and information retrieval system in text mining process. This researches show a better performance due to the nature of Genetic Algorithm. In this paper a new algorithm for using Genetic Algorithm in concept weighting and topic identification, based on concept standard deviation will be explored.

Keywords: Genetic Algorithm, Text Mining, Term Weighting, Concept Extraction, Concept Distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3715
3477 Monthly River Flow Prediction Using a Nonlinear Prediction Method

Authors: N. H. Adenan, M. S. M. Noorani

Abstract:

River flow prediction is an essential tool to ensure proper management of water resources and the optimal distribution of water to consumers. This study presents an analysis and prediction by using nonlinear prediction method with monthly river flow data for Tanjung Tualang from 1976 to 2006. Nonlinear prediction method involves the reconstruction of phase space and local linear approximation approach. The reconstruction of phase space involves the reconstruction of one-dimension (the observed 287 months of data) in a multidimensional phase space to reveal the dynamics of the system. The revenue of phase space reconstruction is used to predict the next 72 months. A comparison of prediction performance based on correlation coefficient (CC) and root mean square error (RMSE) was employed to compare prediction performance for the nonlinear prediction method, ARIMA and SVM. Prediction performance comparisons show that the prediction results using the nonlinear prediction method are better than ARIMA and SVM. Therefore, the results of this study could be used to develop an efficient water management system to optimize the allocation of water resources.

Keywords: River flow, nonlinear prediction method, phase space, local linear approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963
3476 Application of ESA in the CAVE Mode Authentication

Authors: Keonwoo Kim, Dowon Hong, Kyoil Chung

Abstract:

This paper proposes the authentication method using ESA algorithm instead of using CAVE algorithm in the CDMA mobile communication systems including IS-95 and CDMA2000 1x. And, we analyze to apply ESA mechanism on behalf of CAVE mechanism without the change of message format and air interface in the existing CDMA systems. If ESA algorithm can be used as the substitution of CAVE algorithm, security strength of authentication algorithm is intensified without protocol change. An algorithm replacement proposed in this paper is not to change an authentication mechanism, but to configure input of ESA algorithm and to produce output. Therefore, our proposal can be the compatible to the existing systems.

Keywords: ESA, CAVE, CDMA, authentication, mobilecommunication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
3475 Partially Knowing of Least Support Orthogonal Matching Pursuit (PKLS-OMP) for Recovering Signal

Authors: Israa Sh. Tawfic, Sema Koc Kayhan

Abstract:

Given a large sparse signal, great wishes are to reconstruct the signal precisely and accurately from lease number of measurements as possible as it could. Although this seems possible by theory, the difficulty is in built an algorithm to perform the accuracy and efficiency of reconstructing. This paper proposes a new proved method to reconstruct sparse signal depend on using new method called Least Support Matching Pursuit (LS-OMP) merge it with the theory of Partial Knowing Support (PSK) given new method called Partially Knowing of Least Support Orthogonal Matching Pursuit (PKLS-OMP). The new methods depend on the greedy algorithm to compute the support which depends on the number of iterations. So to make it faster, the PKLS-OMP adds the idea of partial knowing support of its algorithm. It shows the efficiency, simplicity, and accuracy to get back the original signal if the sampling matrix satisfies the Restricted Isometry Property (RIP). Simulation results also show that it outperforms many algorithms especially for compressible signals.

Keywords: Compressed sensing, Lest Support Orthogonal Matching Pursuit, Partial Knowing Support, Restricted isometry property, signal reconstruction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2233
3474 A New Algorithm to Stereo Correspondence Using Rank Transform and Morphology Based On Genetic Algorithm

Authors: Razagh Hafezi, Ahmad Keshavarz, Vida Moshfegh

Abstract:

This paper presents a novel algorithm of stereo correspondence with rank transform. In this algorithm we used the genetic algorithm to achieve the accurate disparity map. Genetic algorithms are efficient search methods based on principles of population genetic, i.e. mating, chromosome crossover, gene mutation, and natural selection. Finally morphology is employed to remove the errors and discontinuities.

Keywords: genetic algorithm, morphology, rank transform, stereo correspondence

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2175
3473 A Genetic Based Algorithm to Generate Random Simple Polygons Using a New Polygon Merge Algorithm

Authors: Ali Nourollah, Mohsen Movahedinejad

Abstract:

In this paper a new algorithm to generate random simple polygons from a given set of points in a two dimensional plane is designed. The proposed algorithm uses a genetic algorithm to generate polygons with few vertices. A new merge algorithm is presented which converts any two polygons into a simple polygon. This algorithm at first changes two polygons into a polygonal chain and then the polygonal chain is converted into a simple polygon. The process of converting a polygonal chain into a simple polygon is based on the removal of intersecting edges. The experiments results show that the proposed algorithm has the ability to generate a great number of different simple polygons and has better performance in comparison to celebrated algorithms such as space partitioning and steady growth.

Keywords: Divide and conquer, genetic algorithm, merge polygons, Random simple polygon generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3291
3472 A Constrained Clustering Algorithm for the Classification of Industrial Ores

Authors: Luciano Nieddu, Giuseppe Manfredi

Abstract:

In this paper a Pattern Recognition algorithm based on a constrained version of the k-means clustering algorithm will be presented. The proposed algorithm is a non parametric supervised statistical pattern recognition algorithm, i.e. it works under very mild assumptions on the dataset. The performance of the algorithm will be tested, togheter with a feature extraction technique that captures the information on the closed two-dimensional contour of an image, on images of industrial mineral ores.

Keywords: K-means, Industrial ores classification, Invariant Features, Supervised Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
3471 The Efficiency of Cytochrome Oxidase Subunit 1 Gene (cox1) in Reconstruction of Phylogenetic Relations among Some Crustacean Species

Authors: Yasser M. Saad, Heba El-Sebaie Abd El-Sadek

Abstract:

Some Metapenaeus monoceros cox1 gene fragments were isolated, purified, sequenced, and comparatively analyzed with some other Crustacean Cox1 gene sequences (obtained from National Center for Biotechnology Information). This work was designed for testing the efficiency of this system in reconstruction of phylogenetic relations among some Crustacean species belonging to four genera (Metapenaeus, Artemia, Daphnia and Calanus). The single nucleotide polymorphism and haplotype diversity were calculated for all estimated mt-DNA fragments. The genetic distance values were 0.292, 0.015, 0.151, and 0.09 within Metapenaeus species, Calanus species, Artemia species, and Daphnia species, respectively. The reconstructed phylogenetic tree is clustered into some unique clades. Cytochrome oxidase subunit 1 gene (cox1) was a powerful system in reconstruction of phylogenetic relations among evaluated crustacean species.

Keywords: Crustacean, Genetics, cox1, phylogeny.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1301
3470 A Multi-Modal Virtual Walkthrough of the Virtual Past and Present Based on Panoramic View, Crowd Simulation and Acoustic Heritage on Mobile Platform

Authors: Lim Chen Kim, Tan Kian Lam, Chan Yi Chee

Abstract:

This research presents a multi-modal simulation in the reconstruction of the past and the construction of present in digital cultural heritage on mobile platform. In bringing the present life, the virtual environment is generated through a presented scheme for rapid and efficient construction of 360° panoramic view. Then, acoustical heritage model and crowd model are presented and improvised into the 360° panoramic view. For the reconstruction of past life, the crowd is simulated and rendered in an old trading port. However, the keystone of this research is in a virtual walkthrough that shows the virtual present life in 2D and virtual past life in 3D, both in an environment of virtual heritage sites in George Town through mobile device. Firstly, the 2D crowd is modelled and simulated using OpenGL ES 1.1 on mobile platform. The 2D crowd is used to portray the present life in 360° panoramic view of a virtual heritage environment based on the extension of Newtonian Laws. Secondly, the 2D crowd is animated and rendered into 3D with improved variety and incorporated into the virtual past life using Unity3D Game Engine. The behaviours of the 3D models are then simulated based on the enhancement of the classical model of Boid algorithm. Finally, a demonstration system is developed and integrated with the models, techniques and algorithms of this research. The virtual walkthrough is demonstrated to a group of respondents and is evaluated through the user-centred evaluation by navigating around the demonstration system. The results of the evaluation based on the questionnaires have shown that the presented virtual walkthrough has been successfully deployed through a multi-modal simulation and such a virtual walkthrough would be particularly useful in a virtual tour and virtual museum applications.

Keywords: Boid algorithm, crowd simulation, mobile platform, Newtonian laws, virtual heritage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1502
3469 Recognition and Reconstruction of Partially Occluded Objects

Authors: Michela Lecca, Stefano Messelodi

Abstract:

A new automatic system for the recognition and re¬construction of resealed and/or rotated partially occluded objects is presented. The objects to be recognized are described by 2D views and each view is occluded by several half-planes. The whole object views and their visible parts (linear cuts) are then stored in a database. To establish if a region R of an input image represents an object possibly occluded, the system generates a set of linear cuts of R and compare them with the elements in the database. Each linear cut of R is associated to the most similar database linear cut. R is recognized as an instance of the object 0 if the majority of the linear cuts of R are associated to a linear cut of views of 0. In the case of recognition, the system reconstructs the occluded part of R and determines the scale factor and the orientation in the image plane of the recognized object view. The system has been tested on two different datasets of objects, showing good performance both in terms of recognition and reconstruction accuracy.

Keywords: Occluded Object Recognition, Shape Reconstruction, Automatic Self-Adaptive Systems, Linear Cut.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1286
3468 An Innovative Fuzzy Decision Making Based Genetic Algorithm

Authors: M. A. Sharbafi, M. Shakiba Herfeh, Caro Lucas, A. Mohammadi Nejad

Abstract:

Several researchers have proposed methods about combination of Genetic Algorithm (GA) and Fuzzy Logic (the use of GA to obtain fuzzy rules and application of fuzzy logic in optimization of GA). In this paper, we suggest a new method in which fuzzy decision making is used to improve the performance of genetic algorithm. In the suggested method, we determine the alleles that enhance the fitness of chromosomes and try to insert them to the next generation. In this algorithm we try to present an innovative vaccination in the process of reproduction in genetic algorithm, with considering the trade off between exploration and exploitation.

Keywords: Genetic Algorithm, Fuzzy Decision Making.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612
3467 FILMS based ANC System – Evaluation and Practical Implementation

Authors: Branislav Vuksanović, Dragana Nikolić

Abstract:

This paper describes the implementation and testing of a multichannel active noise control system (ANCS) based on the filtered-inverse LMS (FILMS) algorithm. The FILMS algorithm is derived from the well-known filtered-x LMS (FXLMS) algorithm with the aim to improve the rate of convergence of the multichannel FXLMS algorithm and to reduce its computational load. Laboratory setup and techniques used to implement this system efficiently are described in this paper. Experiments performed in order to test the performance of the FILMS algorithm are discussed and the obtained results presented.

Keywords: Active noise control, adaptive filters, inverse filters, LMS algorithm, FILMS algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
3466 Simulation of Tracking Time Delay Algorithm using Mathcad Package

Authors: Mahmud Hesain ALdwaik, Omar Hsiain Eldwaik

Abstract:

This paper deals with tracking and estimating time delay between two signals. The simulation of this algorithm accomplished by using Mathcad package is carried out. The algorithm we will present adaptively controls and tracking the delay, so as to minimize the mean square of this error. Thus the algorithm in this case has task not only of seeking the minimum point of error but also of tracking the change of position, leading to a significant improving of performance. The flowchart of the algorithm is presented as well as several tests of different cases are carried out.

Keywords: Tracking time delay, Algorithm simulation, Mathcad, MSE

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056
3465 A New Algorithm for Cluster Initialization

Authors: Moth'd Belal. Al-Daoud

Abstract:

Clustering is a very well known technique in data mining. One of the most widely used clustering techniques is the k-means algorithm. Solutions obtained from this technique are dependent on the initialization of cluster centers. In this article we propose a new algorithm to initialize the clusters. The proposed algorithm is based on finding a set of medians extracted from a dimension with maximum variance. The algorithm has been applied to different data sets and good results are obtained.

Keywords: clustering, k-means, data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2105
3464 Improving the Performance of Back-Propagation Training Algorithm by Using ANN

Authors: Vishnu Pratap Singh Kirar

Abstract:

Artificial Neural Network (ANN) can be trained using back propagation (BP). It is the most widely used algorithm for supervised learning with multi-layered feed-forward networks. Efficient learning by the BP algorithm is required for many practical applications. The BP algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a twoterm algorithm consisting of a learning rate (LR) and a momentum factor (MF). The major drawbacks of the two-term BP learning algorithm are the problems of local minima and slow convergence speeds, which limit the scope for real-time applications. Recently the addition of an extra term, called a proportional factor (PF), to the two-term BP algorithm was proposed. The third increases the speed of the BP algorithm. However, the PF term also reduces the convergence of the BP algorithm, and criteria for evaluating convergence are required to facilitate the application of the three terms BP algorithm. Although these two seem to be closely related, as described later, we summarize various improvements to overcome the drawbacks. Here we compare the different methods of convergence of the new three-term BP algorithm.

Keywords: Neural Network, Backpropagation, Local Minima, Fast Convergence Rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3561
3463 A New Evolutionary Algorithm for Cluster Analysis

Authors: B.Bahmani Firouzi, T. Niknam, M. Nayeripour

Abstract:

Clustering is a very well known technique in data mining. One of the most widely used clustering techniques is the kmeans algorithm. Solutions obtained from this technique depend on the initialization of cluster centers and the final solution converges to local minima. In order to overcome K-means algorithm shortcomings, this paper proposes a hybrid evolutionary algorithm based on the combination of PSO, SA and K-means algorithms, called PSO-SA-K, which can find better cluster partition. The performance is evaluated through several benchmark data sets. The simulation results show that the proposed algorithm outperforms previous approaches, such as PSO, SA and K-means for partitional clustering problem.

Keywords: Data clustering, Hybrid evolutionary optimization algorithm, K-means algorithm, Simulated Annealing (SA), Particle Swarm Optimization (PSO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2280
3462 Scheduling Multiple Workflow Using De-De Dodging Algorithm and PBD Algorithm in Cloud: Detailed Study

Authors: B. Arun Kumar, T. Ravichandran

Abstract:

Workflow scheduling is an important part of cloud computing and based on different criteria it decides cost, execution time, and performances. A cloud workflow system is a platform service facilitating automation of distributed applications based on new cloud infrastructure. An aspect which differentiates cloud workflow system from others is market-oriented business model, an innovation which challenges conventional workflow scheduling strategies. Time and Cost optimization algorithm for scheduling Hybrid Clouds (TCHC) algorithm decides which resource should be chartered from public providers is combined with a new De-De algorithm considering that every instance of single and multiple workflows work without deadlocks. To offset this, two new concepts - De-De Dodging Algorithm and Priority Based Decisive Algorithm - combine with conventional deadlock avoidance issues by proposing one algorithm that maximizes active (not just allocated) resource use and reduces Makespan.

Keywords: Workflow Scheduling, cloud workflow, TCHC algorithm, De-De Dodging Algorithm, Priority Based Decisive Algorithm (PBD), Makespan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2797
3461 Adaptive Fuzzy Control on EDF Scheduling

Authors: Xiangbin Zhu

Abstract:

EDF (Early Deadline First) algorithm is a very important scheduling algorithm for real- time systems . The EDF algorithm assigns priorities to each job according to their absolute deadlines and has good performance when the real-time system is not overloaded. When the real-time system is overloaded, many misdeadlines will be produced. But these misdeadlines are not uniformly distributed, which usually focus on some tasks. In this paper, we present an adaptive fuzzy control scheduling based on EDF algorithm. The improved algorithm can have a rectangular distribution of misdeadline ratios among all real-time tasks when the system is overloaded. To evaluate the effectiveness of the improved algorithm, we have done extensive simulation studies. The simulation results show that the new algorithm is superior to the old algorithm.

Keywords: Fuzzy control, real-time systems, EDF, misdeadline ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
3460 A Comparative Study of GTC and PSP Algorithms for Mining Sequential Patterns Embedded in Database with Time Constraints

Authors: Safa Adi

Abstract:

This paper will consider the problem of sequential mining patterns embedded in a database by handling the time constraints as defined in the GSP algorithm (level wise algorithms). We will compare two previous approaches GTC and PSP, that resumes the general principles of GSP. Furthermore this paper will discuss PG-hybrid algorithm, that using PSP and GTC. The results show that PSP and GTC are more efficient than GSP. On the other hand, the GTC algorithm performs better than PSP. The PG-hybrid algorithm use PSP algorithm for the two first passes on the database, and GTC approach for the following scans. Experiments show that the hybrid approach is very efficient for short, frequent sequences.

Keywords: Database, GTC algorithm, PSP algorithm, sequential patterns, time constraints.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 700
3459 A Simple Adaptive Atomic Decomposition Voice Activity Detector Implemented by Matching Pursuit

Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic

Abstract:

A simple adaptive voice activity detector (VAD) is implemented using Gabor and gammatone atomic decomposition of speech for high Gaussian noise environments. Matching pursuit is used for atomic decomposition, and is shown to achieve optimal speech detection capability at high data compression rates for low signal to noise ratios. The most active dictionary elements found by matching pursuit are used for the signal reconstruction so that the algorithm adapts to the individual speakers dominant time-frequency characteristics. Speech has a high peak to average ratio enabling matching pursuit greedy heuristic of highest inner products to isolate high energy speech components in high noise environments. Gabor and gammatone atoms are both investigated with identical logarithmically spaced center frequencies, and similar bandwidths. The algorithm performs equally well for both Gabor and gammatone atoms with no significant statistical differences. The algorithm achieves 70% accuracy at a 0 dB SNR, 90% accuracy at a 5 dB SNR and 98% accuracy at a 20dB SNR using 30d B SNR as a reference for voice activity.

Keywords: Atomic Decomposition, Gabor, Gammatone, Matching Pursuit, Voice Activity Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
3458 An IM-COH Algorithm Neural Network Optimization with Cuckoo Search Algorithm for Time Series Samples

Authors: Wullapa Wongsinlatam

Abstract:

Back propagation algorithm (BP) is a widely used technique in artificial neural network and has been used as a tool for solving the time series problems, such as decreasing training time, maximizing the ability to fall into local minima, and optimizing sensitivity of the initial weights and bias. This paper proposes an improvement of a BP technique which is called IM-COH algorithm (IM-COH). By combining IM-COH algorithm with cuckoo search algorithm (CS), the result is cuckoo search improved control output hidden layer algorithm (CS-IM-COH). This new algorithm has a better ability in optimizing sensitivity of the initial weights and bias than the original BP algorithm. In this research, the algorithm of CS-IM-COH is compared with the original BP, the IM-COH, and the original BP with CS (CS-BP). Furthermore, the selected benchmarks, four time series samples, are shown in this research for illustration. The research shows that the CS-IM-COH algorithm give the best forecasting results compared with the selected samples.

Keywords: Artificial neural networks, back propagation algorithm, time series, local minima problem, metaheuristic optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1096
3457 A Method of Planar-Template- Based Camera Self-Calibration for Single-View

Authors: Yue Zhao, Chao Li

Abstract:

Camera calibration is an important step in 3D reconstruction. Camera calibration may be classified into two major types: traditional calibration and self-calibration. However, a calibration method in using a checkerboard is intermediate between traditional calibration and self-calibration. A self is proposed based on a square in this paper. Only a square in the planar template, the camera self-calibration can be completed through the single view. The proposed algorithm is that the virtual circle and straight line are established by a square on planar template, and circular points, vanishing points in straight lines and the relation between them are be used, in order to obtain the image of the absolute conic (IAC) and establish the camera intrinsic parameters. To make the calibration template is simpler, as compared with the Zhang Zhengyou-s method. Through real experiments and experiments, the experimental results show that this algorithm is feasible and available, and has a certain precision and robustness.

Keywords: Absolute conic, camera calibration, circle point, vanishing point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895
3456 Solving the Quadratic Assignment Problems by a Genetic Algorithm with a New Replacement Strategy

Authors: Yongzhong Wu, Ping Ji

Abstract:

This paper proposes a genetic algorithm based on a new replacement strategy to solve the quadratic assignment problems, which are NP-hard. The new replacement strategy aims to improve the performance of the genetic algorithm through well balancing the convergence of the searching process and the diversity of the population. In order to test the performance of the algorithm, the instances in QAPLIB, a quadratic assignment problem library, are tried and the results are compared with those reported in the literature. The performance of the genetic algorithm is promising. The significance is that this genetic algorithm is generic. It does not rely on problem-specific genetic operators, and may be easily applied to various types of combinatorial problems.

Keywords: Quadratic assignment problem, Genetic algorithm, Replacement strategy, QAPLIB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2750
3455 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model

Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin

Abstract:

Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.

Keywords: Anomaly detection, autoencoder, data centers, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 750
3454 Beta-spline Surface Fitting to Multi-slice Images

Authors: Normi Abdul Hadi, Arsmah Ibrahim, Fatimah Yahya, Jamaludin Md. Ali

Abstract:

Beta-spline is built on G2 continuity which guarantees smoothness of generated curves and surfaces using it. This curve is preferred to be used in object design rather than reconstruction. This study however, employs the Beta-spline in reconstructing a 3- dimensional G2 image of the Stanford Rabbit. The original data consists of multi-slice binary images of the rabbit. The result is then compared with related works using other techniques.

Keywords: Beta-spline, multi-slice image, rectangular surface, 3D reconstruction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885