Search results for: reconfigurable machine tool
2753 Symmetrical Analysis of a Six-Phase Induction Machine Under Fault Conditions
Authors: E. K.Appiah, G. M'boungui, A. A. Jimoh, J. L. Munda, A.S.O. Ogunjuyigbe
Abstract:
The operational behavior of a six-phase squirrel cage induction machine with faulted stator terminals is presented in this paper. The study is carried out using the derived mathematical model of the machine in the arbitrary reference frame. Tests are conducted on a 1 kW experimental machine. Steady-state and dynamic performance are analyzed for the machine unloaded and loaded conditions. The results shows that with one of the stator phases experiencing either an open- circuit or short circuit fault the machine still produces starting torque, albeit the running performance is significantly derated.Keywords: Performance, fault conditions, six-phase induction machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28292752 Benefits from a SMED Application in a Punching Machine
Authors: Eric Costa, Sara Bragança, Rui Sousa, Anabela Alves
Abstract:
This paper presents an application of the Single-Minute Exchange of Die (SMED) methodology to a turret punching machine in an elevators company, in Portugal. The work was developed during five months, in the ambit of a master thesis in Industrial Engineering and Management. The Lean Production tool SMED was applied to reduce setup times in order to improve the production flexibility of the machine. The main results obtained were a reduction of 64% in setup time (from 15.1 to 5.4min), 50% in work-in-process amount (from 12.8 to 6.4 days) and 99% in the distance traveled by the operator during the internal period (from 136.7 to 1.7m). These improvements correspond to gains of about €7,315.38 per year.
Keywords: Lean production, setup process, SMED.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40832751 Design Optimization of a Double Stator Cup- Rotor Machine
Authors: E. Diryak, P. Lefley, L. Petkovska, G. Cvetkovski
Abstract:
This paper presents the optimum design for a double stator, cup rotor machine; a novel type of BLDC PM Machine. The optimization approach is divided into two stages: the first stage is calculating the machine configuration using Matlab, and the second stage is the optimization of the machine using Finite Element Modeling (FEM). Under the design specifications, the machine model will be selected from three pole numbers, namely, 8, 10 and 12 with an appropriate slot number. A double stator brushless DC permanent magnet machine is designed to achieve low cogging torque; high electromagnetic torque and low ripple torque.Keywords: Permanent magnet machine, low- cogging torque, low- ripple torque, high- electromagnetic torque, design optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21662750 Solving Machine Loading Problem in Flexible Manufacturing Systems Using Particle Swarm Optimization
Authors: S. G. Ponnambalam, Low Seng Kiat
Abstract:
In this paper, a particle swarm optimization (PSO) algorithm is proposed to solve machine loading problem in flexible manufacturing system (FMS), with bicriterion objectives of minimizing system unbalance and maximizing system throughput in the occurrence of technological constraints such as available machining time and tool slots. A mathematical model is used to select machines, assign operations and the required tools. The performance of the PSO is tested by using 10 sample dataset and the results are compared with the heuristics reported in the literature. The results support that the proposed PSO is comparable with the algorithms reported in the literature.Keywords: Machine loading problem, FMS, Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21202749 Analysis of Production Loss on a Linear Walking Worker Line
Authors: Qian Wang, Sylvain Lassalle, Antony R. Mileham, Geraint W. Owen
Abstract:
This paper mathematically analyses the varying magnitude of production loss, which may occur due to idle time (inprocess waiting time and traveling time) on a linear walking worker assembly line. Within this flexible and reconfigurable assembly system, each worker travels down the line carrying out each assembly task at each station; and each worker accomplishes the assembly of a unit from start to finish and then travels back to the first station to start the assembly of a new product. This strategy of system design attempts to combine the flexibility of the U-shaped moving worker assembly cell with the efficiency of the conventional fixed worker assembly line. The paper aims to evaluate the effect of idle time that may offset the labor efficiency of each walking worker providing an insight into the mechanism of such a flexible and reconfigurable assembly system.Keywords: Production lines, manufacturing systems, assemblysystems, walking workers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18962748 Development of Machinable Ellipses by NURBS Curves
Authors: Yuan L. Lai, Jian H. Chen, Jui P. Hung
Abstract:
Owning to the high-speed feed rate and ultra spindle speed have been used in modern machine tools, the tool-path generation plays a key role in the successful application of a High-Speed Machining (HSM) system. Because of its importance in both high-speed machining and tool-path generation, approximating a contour by NURBS format is a potential function in CAD/CAM/CNC systems. It is much more convenient to represent an ellipse by parametric form than to connect points laboriously determined in a CNC system. A new approximating method based on optimum processes and NURBS curves of any degree to the ellipses is presented in this study. Such operations can be the foundation of tool-radius compensation interpolator of NURBS curves in CNC system. All operating processes for a CAD tool is presented and demonstrated by practical models.Keywords: Ellipse, Approximation, NURBS, Optimum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22982747 Development of a Simple laser-based 2D Compensating System for the Contouring Accuracy of Machine Tools
Authors: Wen-Yuh Jywe, Bor-Jeng Lin, Jing-Chung Shen, Jeng-Dao Lee, Hsueh-Liang Huang, Ming-Chen Cho
Abstract:
The dynamical contouring error is a critical element for the accuracy of machine tools. The contouring error is defined as the difference between the processing actual path and commanded path, which is implemented by following the command curves from feeding driving system in machine tools. The contouring error is resulted from various factors, such as the external loads, friction, inertia moment, feed rate, speed control, servo control, and etc. Thus, the study proposes a 2D compensating system for the contouring accuracy of machine tools. Optical method is adopted by using stable frequency laser diode and the high precision position sensor detector (PSD) to performno-contact measurement. Results show the related accuracy of position sensor detector (PSD) of 2D contouring accuracy compensating system was ±1.5 μm for a calculated range of ±3 mm, and improvement accuracy is over 80% at high-speed feed rate.
Keywords: Position sensor detector, laser diode, contouring accuracy, machine tool.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17962746 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models
Authors: [email protected]
Abstract:
Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data need a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM), ensemble learning with hyper parameters optimization, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.
Keywords: Machine learning, Deep learning, cancer prediction, breast cancer, LSTM, Score-Level Fusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4022745 Design of Reconfigurable Parasitic Antenna for Single RF Chain MIMO Systems
Authors: C. Arunachalaperumal, B. Chandru, J. M. Mathana
Abstract:
In recent years parasitic antenna play major role in MIMO systems because of their gain and spectral efficiency. In this paper, single RF chain MIMO transmitter is designed using reconfigurable parasitic antenna. The Spatial Modulation (SM) is a recently proposed scheme in MIMO scenario which activates only one antenna at a time. The SM entirely avoids ICI and IAS, and only requires a single RF chain at the transmitter. This would switch ON a single transmit-antenna for data transmission while all the other antennas are kept silent. The purpose of the parasitic elements is to change the radiation pattern of the radio waves which is emitted from the driven element and directing them in one direction and hence introduces transmit diversity. Diode is connect between the patch and ground by changing its state (ON and OFF) the parasitic element act as reflector and director and also capable of steering azimuth and elevation angle. This can be achieved by changing the input impedance of each parasitic element through single RF chain. The switching of diode would select the single parasitic antenna for spatial modulation. This antenna is expected to achieve maximum gain with desired efficiency.
Keywords: MIMO system, single RF chain, Parasitic Antenna.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20752744 Comparative Analysis of Machine Learning Tools: A Review
Authors: S. Sarumathi, M. Vaishnavi, S. Geetha, P. Ranjetha
Abstract:
Machine learning is a new and exciting area of artificial intelligence nowadays. Machine learning is the most valuable, time, supervised, and cost-effective approach. It is not a narrow learning approach; it also includes a wide range of methods and techniques that can be applied to a wide range of complex realworld problems and time domains. Biological image classification, adaptive testing, computer vision, natural language processing, object detection, cancer detection, face recognition, handwriting recognition, speech recognition, and many other applications of machine learning are widely used in research, industry, and government. Every day, more data are generated, and conventional machine learning techniques are becoming obsolete as users move to distributed and real-time operations. By providing fundamental knowledge of machine learning tools and research opportunities in the field, the aim of this article is to serve as both a comprehensive overview and a guide. A diverse set of machine learning resources is demonstrated and contrasted with the key features in this survey.Keywords: Artificial intelligence, machine learning, deep learning, machine learning algorithms, machine learning tools.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18482743 Injury Prediction for Soccer Players Using Machine Learning
Authors: Amiel Satvedi, Richard Pyne
Abstract:
Injuries in professional sports occur on a regular basis. Some may be minor while others can cause huge impact on a player’s career and earning potential. In soccer, there is a high risk of players picking up injuries during game time. This research work seeks to help soccer players reduce the risk of getting injured by predicting the likelihood of injury while playing in the near future and then providing recommendations for intervention. The injury prediction tool will use a soccer player’s number of minutes played on the field, number of appearances, distance covered and performance data for the current and previous seasons as variables to conduct statistical analysis and provide injury predictive results using a machine learning linear regression model.
Keywords: Injury predictor, soccer injury prevention, machine learning in soccer, big data in soccer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17472742 A Flute Tracking System for Monitoring the Wear of Cutting Tools in Milling Operations
Authors: Hatim Laalej, Salvador Sumohano-Verdeja, Thomas McLeay
Abstract:
Monitoring of tool wear in milling operations is essential for achieving the desired dimensional accuracy and surface finish of a machined workpiece. Although there are numerous statistical models and artificial intelligence techniques available for monitoring the wear of cutting tools, these techniques cannot pin point which cutting edge of the tool, or which insert in the case of indexable tooling, is worn or broken. Currently, the task of monitoring the wear on the tool cutting edges is carried out by the operator who performs a manual inspection, causing undesirable stoppages of machine tools and consequently resulting in costs incurred from lost productivity. The present study is concerned with the development of a flute tracking system to segment signals related to each physical flute of a cutter with three flutes used in an end milling operation. The purpose of the system is to monitor the cutting condition for individual flutes separately in order to determine their progressive wear rates and to predict imminent tool failure. The results of this study clearly show that signals associated with each flute can be effectively segmented using the proposed flute tracking system. Furthermore, the results illustrate that by segmenting the sensor signal by flutes it is possible to investigate the wear in each physical cutting edge of the cutting tool. These findings are significant in that they facilitate the online condition monitoring of a cutting tool for each specific flute without the need for operators/engineers to perform manual inspections of the tool.
Keywords: Tool condition monitoring, tool wear prediction, milling operation, flute tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16612741 Weka Based Desktop Data Mining as Web Service
Authors: Sujala.D.Shetty, S.Vadivel, Sakshi Vaghella
Abstract:
Data mining is the process of sifting through large volumes of data, analyzing data from different perspectives and summarizing it into useful information. One of the widely used desktop applications for data mining is the Weka tool which is nothing but a collection of machine learning algorithms implemented in Java and open sourced under the General Public License (GPL). A web service is a software system designed to support interoperable machine to machine interaction over a network using SOAP messages. Unlike a desktop application, a web service is easy to upgrade, deliver and access and does not occupy any memory on the system. Keeping in mind the advantages of a web service over a desktop application, in this paper we are demonstrating how this Java based desktop data mining application can be implemented as a web service to support data mining across the internet.Keywords: desktop application, Weka mining, web service
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40812740 A Fuzzy Logic Based Model to Predict Surface Roughness of A Machined Surface in Glass Milling Operation Using CBN Grinding Tool
Authors: Ahmed A. D. Sarhan, M. Sayuti, M. Hamdi
Abstract:
Nowadays, the demand for high product quality focuses extensive attention to the quality of machined surface. The (CNC) milling machine facilities provides a wide variety of parameters set-up, making the machining process on the glass excellent in manufacturing complicated special products compared to other machining processes. However, the application of grinding process on the CNC milling machine could be an ideal solution to improve the product quality, but adopting the right machining parameters is required. In glass milling operation, several machining parameters are considered to be significant in affecting surface roughness. These parameters include the lubrication pressure, spindle speed, feed rate and depth of cut. In this research work, a fuzzy logic model is offered to predict the surface roughness of a machined surface in glass milling operation using CBN grinding tool. Four membership functions are allocated to be connected with each input of the model. The predicted results achieved via fuzzy logic model are compared to the experimental result. The result demonstrated settlement between the fuzzy model and experimental results with the 93.103% accuracy.Keywords: CNC-machine, Glass milling, Grinding, Surface roughness, Cutting force, Fuzzy logic model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26602739 Decision Tree Based Scheduling for Flexible Job Shops with Multiple Process Plans
Authors: H.-H. Doh, J.-M. Yu, Y.-J. Kwon, J.-H. Shin, H.-W. Kim, S.-H. Nam, D.-H. Lee
Abstract:
This paper suggests a decision tree based approach for flexible job shop scheduling with multiple process plans, i.e. each job can be processed through alternative operations, each of which can be processed on alternative machines. The main decision variables are: (a) selecting operation/machine pair; and (b) sequencing the jobs assigned to each machine. As an extension of the priority scheduling approach that selects the best priority rule combination after many simulation runs, this study suggests a decision tree based approach in which a decision tree is used to select a priority rule combination adequate for a specific system state and hence the burdens required for developing simulation models and carrying out simulation runs can be eliminated. The decision tree based scheduling approach consists of construction and scheduling modules. In the construction module, a decision tree is constructed using a four-stage algorithm, and in the scheduling module, a priority rule combination is selected using the decision tree. To show the performance of the decision tree based approach suggested in this study, a case study was done on a flexible job shop with reconfigurable manufacturing cells and a conventional job shop, and the results are reported by comparing it with individual priority rule combinations for the objectives of minimizing total flow time and total tardiness.
Keywords: Flexible job shop scheduling, Decision tree, Priority rules, Case study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33182738 Studying the Possibility to Weld AA1100 Aluminum Alloy by Friction Stir Spot Welding
Authors: Ahmad K. Jassim, Raheem Kh. Al-Subar
Abstract:
Friction stir welding is a modern and an environmentally friendly solid state joining process used to joint relatively lighter family of materials. Recently, friction stir spot welding has been used instead of resistance spot welding which has received considerable attention from the automotive industry. It is environmentally friendly process that eliminated heat and pollution. In this research, friction stir spot welding has been used to study the possibility to weld AA1100 aluminum alloy sheet with 3 mm thickness by overlapping the edges of sheet as lap joint. The process was done using a drilling machine instead of milling machine. Different tool rotational speeds of 760, 1065, 1445, and 2000 RPM have been applied with manual and automatic compression to study their effect on the quality of welded joints. Heat generation, pressure applied, and depth of tool penetration have been measured during the welding process. The result shows that there is a possibility to weld AA1100 sheets; however, there is some surface defect that happened due to insufficient condition of welding. Moreover, the relationship between rotational speed, pressure, heat generation and tool depth penetration was created.
Keywords: Friction, spot, stir, environmental, sustainable, AA1100 aluminum alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11452737 A Comparison of Single of Decision Tree, Decision Tree Forest and Group Method of Data Handling to Evaluate the Surface Roughness in Machining Process
Authors: S. Ghorbani, N. I. Polushin
Abstract:
The machinability of workpieces (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron) in turning operation has been carried out using different types of cutting tool (conventional, cutting tool with holes in toolholder and cutting tool filled up with composite material) under dry conditions on a turning machine at different stages of spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). Experimentation was performed as per Taguchi’s orthogonal array. To evaluate the relative importance of factors affecting surface roughness the single decision tree (SDT), Decision tree forest (DTF) and Group method of data handling (GMDH) were applied.
Keywords: Decision Tree Forest, GMDH, surface roughness, taguchi method, turning process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9552736 Machine Morphisms and Simulation
Authors: Janis Buls
Abstract:
This paper examines the concept of simulation from a modelling viewpoint. How can one Mealy machine simulate the other one? We create formalism for simulation of Mealy machines. The injective s–morphism of the machine semigroups induces the simulation of machines [1]. We present the example of s–morphism such that it is not a homomorphism of semigroups. The story for the surjective s–morphisms is quite different. These are homomorphisms of semigroups but there exists the surjective s–morphism such that it does not induce the simulation.Keywords: Mealy machine, simulation, machine semigroup, injective s–morphism, surjective s–morphisms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15102735 Optimizing Machine Vision System Setup Accuracy by Six-Sigma DMAIC Approach
Authors: Joseph C. Chen
Abstract:
Machine vision system provides automatic inspection to reduce manufacturing costs considerably. However, only a few principles have been found to optimize machine vision system and help it function more accurately in industrial practice. Mostly, there were complicated and impractical design techniques to improve the accuracy of machine vision system. This paper discusses implementing the Six Sigma Define, Measure, Analyze, Improve, and Control (DMAIC) approach to optimize the setup parameters of machine vision system when it is used as a direct measurement technique. This research follows a case study showing how Six Sigma DMAIC methodology has been put into use.
Keywords: DMAIC, machine vision system, process capability, Taguchi parameter design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12522734 New Approach in Diagnostics Method for Milling Process using Envelope Analysis
Authors: C. Bisu, M. Zapciu, A. Gérard
Abstract:
This paper proposes a method to vibration analysis in order to on-line monitoring and predictive maintenance during the milling process. Adapting envelope method to diagnostics and the analysis for milling tool materials is an important contribution to the qualitative and quantitative characterization of milling capacity and a step by modeling the three-dimensional cutting process. An experimental protocol was designed and developed for the acquisition, processing and analyzing three-dimensional signal. The vibration envelope analysis is proposed to detect the cutting capacity of the tool with the optimization application of cutting parameters. The research is focused on Hilbert transform optimization to evaluate the dynamic behavior of the machine/ tool/workpiece.Keywords: diagnostics, envelope, milling, vibration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19352733 Unveiling the Mathematical Essence of Machine Learning: A Comprehensive Exploration
Authors: Randhir Singh Baghel
Abstract:
In this study, the fundamental ideas guiding the dynamic area of machine learning—where models thrive and algorithms change over time—are rooted in an innate mathematical link. This study explores the fundamental ideas that drive the development of intelligent systems, providing light on the mutually beneficial link between mathematics and machine learning.
Keywords: Machine Learning, deep learning, Neural Network, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652732 Combined Automatic Speech Recognition and Machine Translation in Business Correspondence Domain for English-Croatian
Authors: Sanja Seljan, Ivan Dunđer
Abstract:
The paper presents combined automatic speech recognition (ASR) of English and machine translation (MT) for English and Croatian and Croatian-English language pairs in the domain of business correspondence. The first part presents results of training the ASR commercial system on English data sets, enriched by error analysis. The second part presents results of machine translation performed by free online tool for English and Croatian and Croatian-English language pairs. Human evaluation in terms of usability is conducted and internal consistency calculated by Cronbach's alpha coefficient, enriched by error analysis. Automatic evaluation is performed by WER (Word Error Rate) and PER (Position-independent word Error Rate) metrics, followed by investigation of Pearson’s correlation with human evaluation.
Keywords: Automatic machine translation, integrated language technologies, quality evaluation, speech recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29122731 ILMI Approach for Robust Output Feedback Control of Induction Machine
Authors: Abdelwahed Echchatbi, Adil Rizki, Ali Haddi, Nabil Mrani, Noureddine Elalami
Abstract:
In this note, the robust static output feedback stabilisation of an induction machine is addressed. The machine is described by a non homogenous bilinear model with structural uncertainties, and the feedback gain is computed via an iterative LMI (ILMI) algorithm.Keywords: Induction machine, Static output feedback, robust stabilisation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18782730 The Effect of Tool Path Strategy on Surface and Dimension in High Speed Milling
Authors: A. Razavykia, A. Esmaeilzadeh, S. Iranmanesh
Abstract:
Many orthopedic implants like proximal humerus cases require lower surface roughness and almost immediate/short lead time surgery. Thus, rapid response from the manufacturer is very crucial. Tool path strategy of milling process has a direct influence on the surface roughness and lead time of medical implant. High-speed milling as promised process would improve the machined surface quality, but conventional or super-abrasive grinding still required which imposes some drawbacks such as additional costs and time. Currently, many CAD/CAM software offers some different tool path strategies to milling free form surfaces. Nevertheless, the users must identify how to choose the strategies according to cutting tool geometry, geometry complexity, and their effects on the machined surface. This study investigates the effect of different tool path strategies for milling a proximal humerus head during finishing operation on stainless steel 316L. Experiments have been performed using MAHO MH700 S vertical milling machine and four machining strategies, namely, spiral outward, spiral inward, and radial as well as zig-zag. In all cases, the obtained surfaces were analyzed in terms of roughness and dimension accuracy compared with those obtained by simulation. The findings provide evidence that surface roughness, dimensional accuracy, and machining time have been affected by the considered tool path strategy.Keywords: CAD/CAM software, milling, orthopedic implants, tool path strategy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9962729 Perception and Implementation of Machine Translation Applications by the Iranian English Translators
Authors: Abdul Amir Hazbavi
Abstract:
The present study is an attempt to provide a relatively comprehensive preview of the Iranian English translators’ perception on Machine Translation. Furthermore, the study tries to shed light on the status of implementation of Machine Translation among the Iranian English Translators. To reach the aforementioned objectives, the Localization Industry Standards Association’s questioner for measuring perceptions with regard to the adoption of a technology innovation was adapted and used to investigate the perception and implementation of Machine Translation applications by the Iranian English language translators. The participants of the study were 224 last-year undergraduate Iranian students of English translation at 10 universities across the country. The study revealed a very low level of adoption and a very high level of willingness to get familiar with and learn about Machine Translation, as well as a positive perception of and attitude toward Machine Translation by the Iranian English translators.
Keywords: Translation Technology, Machine Translation, Perception and Implementation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22852728 Improving the Frequency Response of a Circular Dual-Mode Resonator with a Reconfigurable Bandwidth
Authors: Muhammad Haitham Albahnassi, Adnan Malki, Shokri Almekdad
Abstract:
In this paper, a method for reconfiguring bandwidth in a circular dual-mode resonator is presented. The method concerns the optimized geometry of a structure that may be used to host the tuning elements, which are typically RF (Radio Frequency) switches. The tuning elements themselves, and their performance during tuning, are not the focus of this paper. The designed resonator is able to reconfigure its fractional bandwidth by adjusting the inter-coupling level between the degenerate modes, while at the same time improving its response by adjusting the external-coupling level and keeping the center frequency fixed. The inter-coupling level has been adjusted by changing the dimensions of the perturbation element, while the external-coupling level has been adjusted by changing one of the feeder dimensions. The design was arrived at via optimization. Agreeing simulation and measurement results of the designed and implemented filters showed good improvements in return loss values and the stability of the center frequency.Keywords: Dual-mode resonators, perturbation element, perturbation theory, reconfigurable filters, software defined radio (SDR), cognitine radio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6292727 Enhanced Automated Teller Machine Using Short Message Service Authentication Verification
Authors: Rasheed Gbenga Jimoh, Akinbowale Nathaniel Babatunde
Abstract:
The use of Automated Teller Machine (ATM) has become an important tool among commercial banks, customers of banks have come to depend on and trust the ATM conveniently meet their banking needs. Although the overwhelming advantages of ATM cannot be over-emphasized, its alarming fraud rate has become a bottleneck in it’s full adoption in Nigeria. This study examined the menace of ATM in the society another cost of running ATM services by banks in the country. The researcher developed a prototype of an enhanced Automated Teller Machine Authentication using Short Message Service (SMS) Verification. The developed prototype was tested by Ten (10) respondents who are users of ATM cards in the country and the data collected was analyzed using Statistical Package for Social Science (SPSS). Based on the results of the analysis, it is being envisaged that the developed prototype will go a long way in reducing the alarming rate of ATM fraud in Nigeria.
Keywords: ATM, ATM Fraud, E-banking, Prototyping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21762726 A Risk Assessment Tool for the Contamination of Aflatoxins on Dried Figs based on Machine Learning Algorithms
Authors: Kottaridi Klimentia, Demopoulos Vasilis, Sidiropoulos Anastasios, Ihara Diego, Nikolaidis Vasileios, Antonopoulos Dimitrios
Abstract:
Aflatoxins are highly poisonous and carcinogenic compounds produced by species of the genus Aspergillus spp. that can infect a variety of agricultural foods, including dried figs. Biological and environmental factors, such as population, pathogenicity and aflatoxinogenic capacity of the strains, topography, soil and climate parameters of the fig orchards are believed to have a strong effect on aflatoxin levels. Existing methods for aflatoxin detection and measurement, such as high-performance liquid chromatography (HPLC), and enzyme-linked immunosorbent assay (ELISA), can provide accurate results, but the procedures are usually time-consuming, sample-destructive and expensive. Predicting aflatoxin levels prior to crop harvest is useful for minimizing the health and financial impact of a contaminated crop. Consequently, there is interest in developing a tool that predicts aflatoxin levels based on topography and soil analysis data of fig orchards. This paper describes the development of a risk assessment tool for the contamination of aflatoxin on dried figs, based on the location and altitude of the fig orchards, the population of the fungus Aspergillus spp. in the soil, and soil parameters such as pH, saturation percentage (SP), electrical conductivity (EC), organic matter, particle size analysis (sand, silt, clay), concentration of the exchangeable cations (Ca, Mg, K, Na), extractable P and trace of elements (B, Fe, Mn, Zn and Cu), by employing machine learning methods. In particular, our proposed method integrates three machine learning techniques i.e., dimensionality reduction on the original dataset (Principal Component Analysis), metric learning (Mahalanobis Metric for Clustering) and K-nearest Neighbors learning algorithm (KNN), into an enhanced model, with mean performance equal to 85% by terms of the Pearson Correlation Coefficient (PCC) between observed and predicted values.
Keywords: aflatoxins, Aspergillus spp., dried figs, k-nearest neighbors, machine learning, prediction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6482725 Friction Stir Welded Joint Aluminum Alloy H20-H20 with Different Type of Tools Mechanical Properties
Authors: Omid A. Zargar
Abstract:
In this project three type of tools, straight cylindrical, taper cylindrical and triangular tool all made of High speed steel (Wc-Co) used for the friction stir welding (FSW) aluminum alloy H20–H20 and the mechanical properties of the welded joint tested by tensile test and vicker hardness test. Besides, mentioned mechanical properties compared with each other to make conclusion. The result helped design of welding parameter optimization for different types of friction stir process like rotational speed, depth of welding, travel speed, type of material, type of joint, work piece dimension, joint dimension, tool material and tool geometry. Previous investigations in different types of materials work pieces; joint type, machining parameter and preheating temperature take placed. In this investigation 3 mentioned tool types that are popular in FSW tested and the results completed other aspects of the process. Hope this paper can open a new horizon in experimental investigation of mechanical properties for friction stir welded joint with other different type of tools like oval shape probe, paddle shape probe, three flat sided probe, and three sided re-entrant probe and other materials and alloys like titanium or steel in near future.
Keywords: Friction stir welding (FSW), tool, CNC milling machine, aluminum alloy H20, Vickers hardness test, tensile test, straight cylindrical tool, taper cylindrical tool, triangular tool.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28662724 Advance in Monitoring and Process Control of Surface Roughness
Authors: Somkiat Tangjitsitcharoen, Siripong Damrongthaveesak
Abstract:
This paper presents an advance in monitoring and process control of surface roughness in CNC machine for the turning and milling processes. An integration of the in-process monitoring and process control of the surface roughness is proposed and developed during the machining process by using the cutting force ratio. The previously developed surface roughness models for turning and milling processes of the author are adopted to predict the inprocess surface roughness, which consist of the cutting speed, the feed rate, the tool nose radius, the depth of cut, the rake angle, and the cutting force ratio. The cutting force ratios obtained from the turning and the milling are utilized to estimate the in-process surface roughness. The dynamometers are installed on the tool turret of CNC turning machine and the table of 5-axis machining center to monitor the cutting forces. The in-process control of the surface roughness has been developed and proposed to control the predicted surface roughness. It has been proved by the cutting tests that the proposed integration system of the in-process monitoring and the process control can be used to check the surface roughness during the cutting by utilizing the cutting force ratio.
Keywords: Turning, milling, monitoring, surface roughness, cutting force ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2126