Search results for: evolutionary computing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 891

Search results for: evolutionary computing

831 Eco-Innovation as a New Sustainable Development Strategy: Case Studies

Authors: Orhan Çoban, Nuryağdı Rozıyev, Fehmi Karasioğlu

Abstract:

Sustainable development is one of the most debated issues, recently. In terms of providing more livable Earth continuity, while Production activities are going on, on the other hand protecting the environment has importance. As a strategy for sustainable development, eco-innovation is the application of innovations to reduce environmental burdens. Endeavors to understand ecoinnovation processes have been affected from environmental economics and innovation economics from neoclassical economics, and evolutionary economics other than neoclassical economics. In the light of case study analyses, this study aims to display activities in this field through case studies after explaining the theoretical framework of eco-innovations. This study consists of five sections including introduction and conclusion. In the second part of the study identifications of the concepts related with eco-innovation are described and eco-innovations are classified. Third section considers neoclassical and evolutionary approaches from neoclassical economics and evolutionary economics, respectively. Fourth section gives the case studies of successful eco-innovations. Last section is the conclusion part and offers suggestions for future eco-innovation research according to the theoretical framework and the case studies.

Keywords: Sustainable Development, Innovation, Ecoinnovation, Neoclassical Approach, Evolutionary Approach, Case Studies

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2049
830 Multi-Objective Evolutionary Computation Based Feature Selection Applied to Behaviour Assessment of Children

Authors: F. Jiménez, R. Jódar, M. Martín, G. Sánchez, G. Sciavicco

Abstract:

Abstract—Attribute or feature selection is one of the basic strategies to improve the performances of data classification tasks, and, at the same time, to reduce the complexity of classifiers, and it is a particularly fundamental one when the number of attributes is relatively high. Its application to unsupervised classification is restricted to a limited number of experiments in the literature. Evolutionary computation has already proven itself to be a very effective choice to consistently reduce the number of attributes towards a better classification rate and a simpler semantic interpretation of the inferred classifiers. We present a feature selection wrapper model composed by a multi-objective evolutionary algorithm, the clustering method Expectation-Maximization (EM), and the classifier C4.5 for the unsupervised classification of data extracted from a psychological test named BASC-II (Behavior Assessment System for Children - II ed.) with two objectives: Maximizing the likelihood of the clustering model and maximizing the accuracy of the obtained classifier. We present a methodology to integrate feature selection for unsupervised classification, model evaluation, decision making (to choose the most satisfactory model according to a a posteriori process in a multi-objective context), and testing. We compare the performance of the classifier obtained by the multi-objective evolutionary algorithms ENORA and NSGA-II, and the best solution is then validated by the psychologists that collected the data.

Keywords: Feature selection, multi-objective evolutionary computation, unsupervised classification, behavior assessment system for children.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447
829 Flow Modeling and Runner Design Optimization in Turgo Water Turbines

Authors: John S. Anagnostopoulos, Dimitrios E. Papantonis

Abstract:

The incorporation of computational fluid dynamics in the design of modern hydraulic turbines appears to be necessary in order to improve their efficiency and cost-effectiveness beyond the traditional design practices. A numerical optimization methodology is developed and applied in the present work to a Turgo water turbine. The fluid is simulated by a Lagrangian mesh-free approach that can provide detailed information on the energy transfer and enhance the understanding of the complex, unsteady flow field, at very small computing cost. The runner blades are initially shaped according to hydrodynamics theory, and parameterized using Bezier polynomials and interpolation techniques. The use of a limited number of free design variables allows for various modifications of the standard blade shape, while stochastic optimization using evolutionary algorithms is implemented to find the best blade that maximizes the attainable hydraulic efficiency of the runner. The obtained optimal runner design achieves considerably higher efficiency than the standard one, and its numerically predicted performance is comparable to a real Turgo turbine, verifying the reliability and the prospects of the new methodology.

Keywords: Turgo turbine, Lagrangian flow modeling, Surface parameterization, Design optimization, Evolutionary algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4057
828 Energy Efficient Resource Allocation and Scheduling in Cloud Computing Platform

Authors: Shuen-Tai Wang, Ying-Chuan Chen, Yu-Ching Lin

Abstract:

There has been renewal of interest in the relation between Green IT and cloud computing in recent years. Cloud computing has to be a highly elastic environment which provides stable services to users. The growing use of cloud computing facilities has caused marked energy consumption, putting negative pressure on electricity cost of computing center or data center. Each year more and more network devices, storages and computers are purchased and put to use, but it is not just the number of computers that is driving energy consumption upward. We could foresee that the power consumption of cloud computing facilities will double, triple, or even more in the next decade. This paper aims at resource allocation and scheduling technologies that are short of or have not well developed yet to reduce energy utilization in cloud computing platform. In particular, our approach relies on recalling services dynamically onto appropriate amount of the machines according to user’s requirement and temporarily shutting down the machines after finish in order to conserve energy. We present initial work on integration of resource and power management system that focuses on reducing power consumption such that they suffice for meeting the minimizing quality of service required by the cloud computing platform.

Keywords: Cloud computing, energy utilization, power consumption, resource allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442
827 OSGi in Cloud Environments

Authors: Irina Astrova, Arne Koschel, Björn Siekmann, Mark Starrach, Christopher Tebbe, StefanWolf, Marc Schaaf

Abstract:

This paper deals with the combination of OSGi and cloud computing. Both technologies are mainly placed in the field of distributed computing. Therefore, it is discussed how different approaches from different institutions work. In addition, the approaches are compared to each other.

Keywords: Cloud computing, OSGi, distributed environments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2511
826 An Efficient Technique for EMI Mitigation in Fluorescent Lamps using Frequency Modulation and Evolutionary Programming

Authors: V.Sekar, T.G.Palanivelu, B.Revathi

Abstract:

Electromagnetic interference (EMI) is one of the serious problems in most electrical and electronic appliances including fluorescent lamps. The electronic ballast used to regulate the power flow through the lamp is the major cause for EMI. The interference is because of the high frequency switching operation of the ballast. Formerly, some EMI mitigation techniques were in practice, but they were not satisfactory because of the hardware complexity in the circuit design, increased parasitic components and power consumption and so on. The majority of the researchers have their spotlight only on EMI mitigation without considering the other constraints such as cost, effective operation of the equipment etc. In this paper, we propose a technique for EMI mitigation in fluorescent lamps by integrating Frequency Modulation and Evolutionary Programming. By the Frequency Modulation technique, the switching at a single central frequency is extended to a range of frequencies, and so, the power is distributed throughout the range of frequencies leading to EMI mitigation. But in order to meet the operating frequency of the ballast and the operating power of the fluorescent lamps, an optimal modulation index is necessary for Frequency Modulation. The optimal modulation index is determined using Evolutionary Programming. Thereby, the proposed technique mitigates the EMI to a satisfactory level without disturbing the operation of the fluorescent lamp.

Keywords: Ballast, Electromagnetic interference (EMI), EMImitigation, Evolutionary programming (EP), Fluorescent lamp, Frequency Modulation (FM), Modulation index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2272
825 Analysis and Simulation of TM Fields in Waveguides with Arbitrary Cross-Section Shapes by Means of Evolutionary Equations of Time-Domain Electromagnetic Theory

Authors: Ömer Aktaş, Olga A. Suvorova, Oleg Tretyakov

Abstract:

The boundary value problem on non-canonical and arbitrary shaped contour is solved with a numerically effective method called Analytical Regularization Method (ARM) to calculate propagation parameters. As a result of regularization, the equation of first kind is reduced to the infinite system of the linear algebraic equations of the second kind in the space of L2. This equation can be solved numerically for desired accuracy by using truncation method. The parameters as cut-off wavenumber and cut-off frequency are used in waveguide evolutionary equations of electromagnetic theory in time-domain to illustrate the real-valued TM fields with lossy and lossless media.

Keywords: Arbitrary cross section waveguide, analytical regularization method, evolutionary equations of electromagnetic theory of time-domain, TM field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674
824 Evolutionary Distance in the Yeast Genome

Authors: Somayyeh Azizi, Saeed Kaboli, Atsushi Yagi

Abstract:

Whole genome duplication (WGD) increased the number of yeast Saccharomyces cerevisiae chromosomes from 8 to 16. In spite of retention the number of chromosomes in the genome of this organism after WGD to date, chromosomal rearrangement events have caused an evolutionary distance between current genome and its ancestor. Studies under evolutionary-based approaches on eukaryotic genomes have shown that the rearrangement distance is an approximable problem. In the case of S. cerevisiae, we describe that rearrangement distance is accessible by using dedoubled adjacency graph drawn for 55 large paired chromosomal regions originated from WGD. Then, we provide a program extracted from a C program database to draw a dedoubled genome adjacency graph for S. cerevisiae. From a bioinformatical perspective, using the duplicated blocks of current genome in S. cerevisiae, we infer that genomic organization of eukaryotes has the potential to provide valuable detailed information about their ancestrygenome.

Keywords: Whole-genome duplication, Evolution, Double-cutand- join operation, Yeast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
823 Efficient Utilization of Commodity Computers in Academic Institutes: A Cloud Computing Approach

Authors: Jasraj Meena, Malay Kumar, Manu Vardhan

Abstract:

Cloud computing is a new technology in industry and academia. The technology has grown and matured in last half decade and proven their significant role in changing environment of IT infrastructure where cloud services and resources are offered over the network. Cloud technology enables users to use services and resources without being concerned about the technical implications of technology. There are substantial research work has been performed for the usage of cloud computing in educational institutes and majority of them provides cloud services over high-end blade servers or other high-end CPUs. However, this paper proposes a new stack called “CiCKAStack” which provide cloud services over unutilized computing resources, named as commodity computers. “CiCKAStack” provides IaaS and PaaS using underlying commodity computers. This will not only increasing the utilization of existing computing resources but also provide organize file system, on demand computing resource and design and development environment.

Keywords: Commodity Computers, Cloud Computing, KVM, Cloudstack, Appscale.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016
822 Network Based High Performance Computing

Authors: Karanjeet Singh Kahlon, Gurvinder Singh, Arjan Singh

Abstract:

In the past few years there is a change in the view of high performance applications and parallel computing. Initially such applications were targeted towards dedicated parallel machines. Recently trend is changing towards building meta-applications composed of several modules that exploit heterogeneous platforms and employ hybrid forms of parallelism. The aim of this paper is to propose a model of virtual parallel computing. Virtual parallel computing system provides a flexible object oriented software framework that makes it easy for programmers to write various parallel applications.

Keywords: Applet, Efficiency, Java, LAN

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
821 A Maximum Parsimony Model to Reconstruct Phylogenetic Network in Honey Bee Evolution

Authors: Usha Chouhan, K. R. Pardasani

Abstract:

Phylogenies ; The evolutionary histories of groups of species are one of the most widely used tools throughout the life sciences, as well as objects of research with in systematic, evolutionary biology. In every phylogenetic analysis reconstruction produces trees. These trees represent the evolutionary histories of many groups of organisms, bacteria due to horizontal gene transfer and plants due to process of hybridization. The process of gene transfer in bacteria and hybridization in plants lead to reticulate networks, therefore, the methods of constructing trees fail in constructing reticulate networks. In this paper a model has been employed to reconstruct phylogenetic network in honey bee. This network represents reticulate evolution in honey bee. The maximum parsimony approach has been used to obtain this reticulate network.

Keywords: Hybridization, HGT, Reticulate networks, Recombination, Species, Parsimony.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
820 Discriminant Analysis as a Function of Predictive Learning to Select Evolutionary Algorithms in Intelligent Transportation System

Authors: Jorge A. Ruiz-Vanoye, Ocotlán Díaz-Parra, Alejandro Fuentes-Penna, Daniel Vélez-Díaz, Edith Olaco García

Abstract:

In this paper, we present the use of the discriminant analysis to select evolutionary algorithms that better solve instances of the vehicle routing problem with time windows. We use indicators as independent variables to obtain the classification criteria, and the best algorithm from the generic genetic algorithm (GA), random search (RS), steady-state genetic algorithm (SSGA), and sexual genetic algorithm (SXGA) as the dependent variable for the classification. The discriminant classification was trained with classic instances of the vehicle routing problem with time windows obtained from the Solomon benchmark. We obtained a classification of the discriminant analysis of 66.7%.

Keywords: Intelligent transportation systems, data-mining techniques, evolutionary algorithms, discriminant analysis, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
819 Evolutionary Design of Polynomial Controller

Authors: R. Matousek, S. Lang, P. Minar, P. Pivonka

Abstract:

In the control theory one attempts to find a controller that provides the best possible performance with respect to some given measures of performance. There are many sorts of controllers e.g. a typical PID controller, LQR controller, Fuzzy controller etc. In the paper will be introduced polynomial controller with novel tuning method which is based on the special pole placement encoding scheme and optimization by Genetic Algorithms (GA). The examples will show the performance of the novel designed polynomial controller with comparison to common PID controller.

Keywords: Evolutionary design, Genetic algorithms, PID controller, Pole placement, Polynomial controller

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2158
818 Dynamic Construction Site Layout Using Ant Colony Optimization

Authors: Y. Abdelrazig

Abstract:

Evolutionary optimization methods such as genetic algorithms have been used extensively for the construction site layout problem. More recently, ant colony optimization algorithms, which are evolutionary methods based on the foraging behavior of ants, have been successfully applied to benchmark combinatorial optimization problems. This paper proposes a formulation of the site layout problem in terms of a sequencing problem that is suitable for solution using an ant colony optimization algorithm. In the construction industry, site layout is a very important planning problem. The objective of site layout is to position temporary facilities both geographically and at the correct time such that the construction work can be performed satisfactorily with minimal costs and improved safety and working environment. During the last decade, evolutionary methods such as genetic algorithms have been used extensively for the construction site layout problem. This paper proposes an ant colony optimization model for construction site layout. A simple case study for a highway project is utilized to illustrate the application of the model.

Keywords: Construction site layout, optimization, ant colony.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3127
817 An E-learning System Architecture based on Cloud Computing

Authors: Md. Anwar Hossain Masud, Xiaodi Huang

Abstract:

The massive proliferation of affordable computers, Internet broadband connectivity and rich education content has created a global phenomenon in which information and communication technology (ICT) is being used to transform education. Therefore, there is a need to redesign the educational system to meet the needs better. The advent of computers with sophisticated software has made it possible to solve many complex problems very fast and at a lower cost. This paper introduces the characteristics of the current E-Learning and then analyses the concept of cloud computing and describes the architecture of cloud computing platform by combining the features of E-Learning. The authors have tried to introduce cloud computing to e-learning, build an e-learning cloud, and make an active research and exploration for it from the following aspects: architecture, construction method and external interface with the model.

Keywords: Architecture, Cloud Computing, E-learning, Information Technology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11072
816 Toward Community-Based Personal Cloud Computing

Authors: Weichang Du

Abstract:

This paper proposes a new of cloud computing for individual computer users to share applications in distributed communities, called community-based personal cloud computing (CPCC). The paper also presents a prototype design and implementation of CPCC. The users of CPCC are able to share their computing applications with other users of the community. Any member of the community is able to execute remote applications shared by other members. The remote applications behave in the same way as their local counterparts, allowing the user to enter input, receive output as well as providing the access to the local data of the user. CPCC provides a peer-to-peer (P2P) environment where each peer provides applications which can be used by the other peers that are connected CPCC.

Keywords: applications, cloud computing, services, software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053
815 Experimental Parallel Architecture for Rendering 3D Model into MPEG-4 Format

Authors: Ajay Joshi, Surya Ismail

Abstract:

This paper will present the initial findings of a research into distributed computer rendering. The goal of the research is to create a distributed computer system capable of rendering a 3D model into an MPEG-4 stream. This paper outlines the initial design, software architecture and hardware setup for the system. Distributed computing means designing and implementing programs that run on two or more interconnected computing systems. Distributed computing is often used to speed up the rendering of graphical imaging. Distributed computing systems are used to generate images for movies, games and simulations. A topic of interest is the application of distributed computing to the MPEG-4 standard. During the course of the research, a distributed system will be created that can render a 3D model into an MPEG-4 stream. It is expected that applying distributed computing principals will speed up rendering, thus improving the usefulness and efficiency of the MPEG-4 standard

Keywords: Cluster, parallel architecture, rendering, MPEG-4.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462
814 Evolutionary Techniques Based Combined Artificial Neural Networks for Peak Load Forecasting

Authors: P. Subbaraj, V. Rajasekaran

Abstract:

This paper presents a new approach using Combined Artificial Neural Network (CANN) module for daily peak load forecasting. Five different computational techniques –Constrained method, Unconstrained method, Evolutionary Programming (EP), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA) – have been used to identify the CANN module for peak load forecasting. In this paper, a set of neural networks has been trained with different architecture and training parameters. The networks are trained and tested for the actual load data of Chennai city (India). A set of better trained conventional ANNs are selected to develop a CANN module using different algorithms instead of using one best conventional ANN. Obtained results using CANN module confirm its validity.

Keywords: Combined ANN, Evolutionary Programming, Particle Swarm Optimization, Genetic Algorithm and Peak load forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680
813 A Study on the Developing Method of the BIM (Building Information Modeling) Software Based On Cloud Computing Environment

Authors: Byung-Kon Kim

Abstract:

According as the Architecture, Engineering and Construction (AEC) Industry projects have grown more complex and larger, the number of utilization of BIM for 3D design and simulation is increasing significantly. Therefore, typical applications of BIM such as clash detection and alternative measures based on 3-dimenstional planning are expanded to process management, cost and quantity management, structural analysis, check for regulation, and various domains for virtual design and construction. Presently, commercial BIM software is operated on single-user environment, so initial cost is so high and the investment may be wasted frequently. Cloud computing that is a next-generation internet technology enables simple internet devices (such as PC, Tablet, Smart phone etc) to use services and resources of BIM software. In this paper, we suggested developing method of the BIM software based on cloud computing environment in order to expand utilization of BIM and reduce cost of BIM software. First, for the benchmarking, we surveyed successful case of BIM and cloud computing. And we analyzed needs and opportunities of BIM and cloud computing in AEC Industry. Finally, we suggested main functions of BIM software based on cloud computing environment and developed a simple prototype of cloud computing BIM software for basic BIM model viewing.

Keywords: Construction IT, BIM(Building Information Modeling), Cloud Computing, BIM Service Based Cloud Computing, Viewer Based BIM Server, 3D Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4101
812 Application of a New Hybrid Optimization Algorithm on Cluster Analysis

Authors: T. Niknam, M. Nayeripour, B.Bahmani Firouzi

Abstract:

Clustering techniques have received attention in many areas including engineering, medicine, biology and data mining. The purpose of clustering is to group together data points, which are close to one another. The K-means algorithm is one of the most widely used techniques for clustering. However, K-means has two shortcomings: dependency on the initial state and convergence to local optima and global solutions of large problems cannot found with reasonable amount of computation effort. In order to overcome local optima problem lots of studies done in clustering. This paper is presented an efficient hybrid evolutionary optimization algorithm based on combining Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO), called PSO-ACO, for optimally clustering N object into K clusters. The new PSO-ACO algorithm is tested on several data sets, and its performance is compared with those of ACO, PSO and K-means clustering. The simulation results show that the proposed evolutionary optimization algorithm is robust and suitable for handing data clustering.

Keywords: Ant Colony Optimization (ACO), Data clustering, Hybrid evolutionary optimization algorithm, K-means clustering, Particle Swarm Optimization (PSO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2199
811 A Multi-Objective Evolutionary Algorithm of Neural Network for Medical Diseases Problems

Authors: Sultan Noman Qasem

Abstract:

This paper presents an evolutionary algorithm for solving multi-objective optimization problems-based artificial neural network (ANN). The multi-objective evolutionary algorithm used in this study is genetic algorithm while ANN used is radial basis function network (RBFN). The proposed algorithm named memetic elitist Pareto non-dominated sorting genetic algorithm-based RBFN (MEPGAN). The proposed algorithm is implemented on medical diseases problems. The experimental results indicate that the proposed algorithm is viable, and provides an effective means to design multi-objective RBFNs with good generalization capability and compact network structure. This study shows that MEPGAN generates RBFNs coming with an appropriate balance between accuracy and simplicity, comparing to the other algorithms found in literature.

Keywords: Radial basis function network, Hybrid learning, Multi-objective optimization, Genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2253
810 Solving an Extended Resource Leveling Problem with Multiobjective Evolutionary Algorithms

Authors: Javier Roca, Etienne Pugnaghi, Gaëtan Libert

Abstract:

We introduce an extended resource leveling model that abstracts real life projects that consider specific work ranges for each resource. Contrary to traditional resource leveling problems this model considers scarce resources and multiple objectives: the minimization of the project makespan and the leveling of each resource usage over time. We formulate this model as a multiobjective optimization problem and we propose a multiobjective genetic algorithm-based solver to optimize it. This solver consists in a two-stage process: a main stage where we obtain non-dominated solutions for all the objectives, and a postprocessing stage where we seek to specifically improve the resource leveling of these solutions. We propose an intelligent encoding for the solver that allows including domain specific knowledge in the solving mechanism. The chosen encoding proves to be effective to solve leveling problems with scarce resources and multiple objectives. The outcome of the proposed solvers represent optimized trade-offs (alternatives) that can be later evaluated by a decision maker, this multi-solution approach represents an advantage over the traditional single solution approach. We compare the proposed solver with state-of-art resource leveling methods and we report competitive and performing results.

Keywords: Intelligent problem encoding, multiobjective decision making, evolutionary computing, RCPSP, resource leveling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4195
809 Cloud Computing Cryptography "State-of-the-Art"

Authors: Omer K. Jasim, Safia Abbas, El-Sayed M. El-Horbaty, Abdel-Badeeh M. Salem

Abstract:

Cloud computing technology is very useful in present day to day life, it uses the internet and the central remote servers to provide and maintain data as well as applications. Such applications in turn can be used by the end users via the cloud communications without any installation. Moreover, the end users’ data files can be accessed and manipulated from any other computer using the internet services. Despite the flexibility of data and application accessing and usage that cloud computing environments provide, there are many questions still coming up on how to gain a trusted environment that protect data and applications in clouds from hackers and intruders. This paper surveys the “keys generation and management” mechanism and encryption/decryption algorithms used in cloud computing environments, we proposed new security architecture for cloud computing environment that considers the various security gaps as much as possible. A new cryptographic environment that implements quantum mechanics in order to gain more trusted with less computation cloud communications is given.

Keywords: Cloud Computing, Cloud Encryption Model, Quantum Key Distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4094
808 Secure Bio Semantic Computing Scheme

Authors: Hiroshi Yamaguchi, Phillip C.-Y. Sheu, Ryo Fujita, Shigeo Tsujii

Abstract:

In this paper, the secure BioSemantic Scheme is presented to bridge biological/biomedical research problems and computational solutions via semantic computing. Due to the diversity of problems in various research fields, the semantic capability description language (SCDL) plays and important role as a common language and generic form for problem formalization. SCDL is expected the essential for future semantic and logical computing in Biosemantic field. We show several example to Biomedical problems in this paper. Moreover, in the coming age of cloud computing, the security problem is considered to be crucial issue and we presented a practical scheme to cope with this problem.

Keywords: Biomedical applications, private information retrieval (PIR), semantic capability description language (SCDL), semantic computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845
807 A New Self-Adaptive EP Approach for ANN Weights Training

Authors: Kristina Davoian, Wolfram-M. Lippe

Abstract:

Evolutionary Programming (EP) represents a methodology of Evolutionary Algorithms (EA) in which mutation is considered as a main reproduction operator. This paper presents a novel EP approach for Artificial Neural Networks (ANN) learning. The proposed strategy consists of two components: the self-adaptive, which contains phenotype information and the dynamic, which is described by genotype. Self-adaptation is achieved by the addition of a value, called the network weight, which depends on a total number of hidden layers and an average number of neurons in hidden layers. The dynamic component changes its value depending on the fitness of a chromosome, exposed to mutation. Thus, the mutation step size is controlled by two components, encapsulated in the algorithm, which adjust it according to the characteristics of a predefined ANN architecture and the fitness of a particular chromosome. The comparative analysis of the proposed approach and the classical EP (Gaussian mutation) showed, that that the significant acceleration of the evolution process is achieved by using both phenotype and genotype information in the mutation strategy.

Keywords: Artificial Neural Networks (ANN), Learning Theory, Evolutionary Programming (EP), Mutation, Self-Adaptation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828
806 Mobile Cloud Middleware: A New Service for Mobile Users

Authors: K. Akherfi, H. Harroud

Abstract:

Cloud computing (CC) and mobile cloud computing (MCC) have advanced rapidly the last few years. Today, MCC undergoes fast improvement and progress in terms of hardware (memory, embedded sensors, power consumption, touch screen, etc.) software (more and more sophisticated mobile applications) and transmission (higher data transmission rates achieved with different technologies such as 3Gs). This paper presents a review on the concept of CC and MCC. Then, it discusses what has been done regarding middleware in cloud and mobile cloud computing. Later, it shows the architecture of our proposed middleware along with its functionalities which will be provided to mobile clients in order to overcome the well known problems (such as low battery power, slow CPU speed and little memory…).

Keywords: Context-aware, cloud computing, middleware, mobile cloud.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3167
805 Solving Process Planning, Weighted Earliest Due Date Scheduling and Weighted Due Date Assignment Using Simulated Annealing and Evolutionary Strategies

Authors: Halil Ibrahim Demir, Abdullah Hulusi Kokcam, Fuat Simsir, Özer Uygun

Abstract:

Traditionally, three important manufacturing functions which are process planning, scheduling and due-date assignment are performed sequentially and separately. Although there are numerous works on the integration of process planning and scheduling and plenty of works focusing on scheduling with due date assignment, there are only a few works on integrated process planning, scheduling and due-date assignment. Although due-dates are determined without taking into account of weights of the customers in the literature, here weighted due-date assignment is employed to get better performance. Jobs are scheduled according to weighted earliest due date dispatching rule and due dates are determined according to some popular due date assignment methods by taking into account of the weights of each job. Simulated Annealing, Evolutionary Strategies, Random Search, hybrid of Random Search and Simulated Annealing, and hybrid of Random Search and Evolutionary Strategies, are applied as solution techniques. Three important manufacturing functions are integrated step-by-step and higher integration levels are found better. Search meta-heuristics are found to be very useful while improving performance measure.

Keywords: Evolutionary strategies, hybrid searches, process planning, simulated annealing, weighted due-date assignment, weighted scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1160
804 Evolution of Fuzzy Neural Networks Using an Evolution Strategy with Fuzzy Genotype Values

Authors: Hidehiko Okada

Abstract:

Evolution strategy (ES) is a well-known instance of evolutionary algorithms, and there have been many studies on ES. In this paper, the author proposes an extended ES for solving fuzzy-valued optimization problems. In the proposed ES, genotype values are not real numbers but fuzzy numbers. Evolutionary processes in the ES are extended so that it can handle genotype instances with fuzzy numbers. In this study, the proposed method is experimentally applied to the evolution of neural networks with fuzzy weights and biases. Results reveal that fuzzy neural networks evolved using the proposed ES with fuzzy genotype values can model hidden target fuzzy functions even though no training data are explicitly provided. Next, the proposed method is evaluated in terms of variations in specifying fuzzy numbers as genotype values. One of the mostly adopted fuzzy numbers is a symmetric triangular one that can be specified by its lower and upper bounds (LU) or its center and width (CW). Experimental results revealed that the LU model contributed better to the fuzzy ES than the CW model, which indicates that the LU model should be adopted in future applications of the proposed method.

Keywords: Evolutionary algorithm, evolution strategy, fuzzy number, feedforward neural network, neuroevolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
803 Faster FPGA Routing Solution using DNA Computing

Authors: Manpreet Singh, Parvinder Singh Sandhu, Manjinder Singh Kahlon

Abstract:

There are many classical algorithms for finding routing in FPGA. But Using DNA computing we can solve the routes efficiently and fast. The run time complexity of DNA algorithms is much less than other classical algorithms which are used for solving routing in FPGA. The research in DNA computing is in a primary level. High information density of DNA molecules and massive parallelism involved in the DNA reactions make DNA computing a powerful tool. It has been proved by many research accomplishments that any procedure that can be programmed in a silicon computer can be realized as a DNA computing procedure. In this paper we have proposed two tier approaches for the FPGA routing solution. First, geometric FPGA detailed routing task is solved by transforming it into a Boolean satisfiability equation with the property that any assignment of input variables that satisfies the equation specifies a valid routing. Satisfying assignment for particular route will result in a valid routing and absence of a satisfying assignment implies that the layout is un-routable. In second step, DNA search algorithm is applied on this Boolean equation for solving routing alternatives utilizing the properties of DNA computation. The simulated results are satisfactory and give the indication of applicability of DNA computing for solving the FPGA Routing problem.

Keywords: FPGA, Routing, DNA Computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
802 Optimal Choice and Location of Multi Type Facts Devices in Deregulated Electricity Market Using Evolutionary Programming Method

Authors: K. Balamurugan, R. Muralisachithanandam, V. Dharmalingam, R. Srikanth

Abstract:

This paper deals with the optimal choice and allocation of multi FACTS devices in Deregulated power system using Evolutionary Programming method. The objective is to achieve the power system economic generation allocation and dispatch in deregulated electricity market. Using the proposed method, the locations of the FACTS devices, their types and ratings are optimized simultaneously. Different kinds of FACTS devices are simulated in this study such as UPFC, TCSC, TCPST, and SVC. Simulation results validate the capability of this new approach in minimizing the overall system cost function, which includes the investment costs of the FACTS devices and the bid offers of the market participants. The proposed algorithm is an effective and practical method for the choice and allocation of FACTS devices in deregulated electricity market environment. The standard data of IEEE 14 Bus systems has been taken into account and simulated with aid of MAT-lab software and results were obtained.

Keywords: FACTS devices, Optimal allocation, Deregulated electricity market, Evolutionary programming, Mat Lab.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2320