Search results for: air pollution prediction.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1491

Search results for: air pollution prediction.

1431 Recurrent Radial Basis Function Network for Failure Time Series Prediction

Authors: Ryad Zemouri, Paul Ciprian Patic

Abstract:

An adaptive software reliability prediction model using evolutionary connectionist approach based on Recurrent Radial Basis Function architecture is proposed. Based on the currently available software failure time data, Fuzzy Min-Max algorithm is used to globally optimize the number of the k Gaussian nodes. The corresponding optimized neural network architecture is iteratively and dynamically reconfigured in real-time as new actual failure time data arrives. The performance of our proposed approach has been tested using sixteen real-time software failure data. Numerical results show that our proposed approach is robust across different software projects, and has a better performance with respect to next-steppredictability compared to existing neural network model for failure time prediction.

Keywords: Neural network, Prediction error, Recurrent RadialBasis Function Network, Reliability prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818
1430 An Enhanced Artificial Neural Network for Air Temperature Prediction

Authors: Brian A. Smith, Ronald W. McClendon, Gerrit Hoogenboom

Abstract:

The mitigation of crop loss due to damaging freezes requires accurate air temperature prediction models. An improved model for temperature prediction in Georgia was developed by including information on seasonality and modifying parameters of an existing artificial neural network model. Alternative models were compared by instantiating and training multiple networks for each model. The inclusion of up to 24 hours of prior weather information and inputs reflecting the day of year were among improvements that reduced average four-hour prediction error by 0.18°C compared to the prior model. Results strongly suggest model developers should instantiate and train multiple networks with different initial weights to establish appropriate model parameters.

Keywords: Time-series forecasting, weather modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865
1429 Convergence Analysis of a Prediction based Adaptive Equalizer for IIR Channels

Authors: Miloje S. Radenkovic, Tamal Bose

Abstract:

This paper presents the convergence analysis of a prediction based blind equalizer for IIR channels. Predictor parameters are estimated by using the recursive least squares algorithm. It is shown that the prediction error converges almost surely (a.s.) toward a scalar multiple of the unknown input symbol sequence. It is also proved that the convergence rate of the parameter estimation error is of the same order as that in the iterated logarithm law.

Keywords: Adaptive blind equalizer, Recursive leastsquares, Adaptive Filtering, Convergence analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453
1428 Impact of Faults in Different Software Systems: A Survey

Authors: Neeraj Mohan, Parvinder S. Sandhu, Hardeep Singh

Abstract:

Software maintenance is extremely important activity in software development life cycle. It involves a lot of human efforts, cost and time. Software maintenance may be further subdivided into different activities such as fault prediction, fault detection, fault prevention, fault correction etc. This topic has gained substantial attention due to sophisticated and complex applications, commercial hardware, clustered architecture and artificial intelligence. In this paper we surveyed the work done in the field of software maintenance. Software fault prediction has been studied in context of fault prone modules, self healing systems, developer information, maintenance models etc. Still a lot of things like modeling and weightage of impact of different kind of faults in the various types of software systems need to be explored in the field of fault severity.

Keywords: Fault prediction, Software Maintenance, Automated Fault Prediction, and Failure Mode Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078
1427 Using High Performance Computing for Online Flood Monitoring and Prediction

Authors: Stepan Kuchar, Martin Golasowski, Radim Vavrik, Michal Podhoranyi, Boris Sir, Jan Martinovic

Abstract:

The main goal of this article is to describe the online flood monitoring and prediction system Floreon+ primarily developed for the Moravian-Silesian region in the Czech Republic and the basic process it uses for running automatic rainfall-runoff and hydrodynamic simulations along with their calibration and uncertainty modeling. It takes a long time to execute such process sequentially, which is not acceptable in the online scenario, so the use of a high performance computing environment is proposed for all parts of the process to shorten their duration. Finally, a case study on the Ostravice River catchment is presented that shows actual durations and their gain from the parallel implementation.

Keywords: Flood prediction process, High performance computing, Online flood prediction system, Parallelization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2329
1426 An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing ECG Based on ResNet and Bi-LSTM

Authors: Yang Zhang, Jian He

Abstract:

Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper presents sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for CHD prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network.

Keywords: Bi-LSTM, CHD, coronary heart disease, ECG, electrocardiogram, ResNet, sliding window.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 334
1425 Assessment of Microbial Pollution of the Dental Chairs Water System (Pseudomonas aeruginosa) in the City of Tripoli, Libya

Authors: Abdulsalam. I. Rafida, Ehae. Abo-Jnha, Kald. Tainah

Abstract:

This study mainly aims at assessing the level of microbial pollution of the water used in the chair system in dental clinics. For this purpose 36 samples have been randomly collected from a number of dental surgeries in the city of Tripoli in Libya. However, 32 of the samples have tested positive to microbial pollution including 13 of the samples, which have tested positives to Pseudomonas aeruginosa. Based on the results of the test a further investigation of the biofilms incorporated within the dental chair system has been conducted. The laboratory tests of biofilms with similar design to those found in dental chairs have proved that bacterial pollution takes place through saliva of the patients who use the chairs, and that this saliva is rich with nutrients which provides a suitable breeding ground for all types of bacteria.

Keywords: Pseudomonas aeruginosa, Biofilm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
1424 Yield Prediction Using Support Vectors Based Under-Sampling in Semiconductor Process

Authors: Sae-Rom Pak, Seung Hwan Park, Jeong Ho Cho, Daewoong An, Cheong-Sool Park, Jun Seok Kim, Jun-Geol Baek

Abstract:

It is important to predict yield in semiconductor test process in order to increase yield. In this study, yield prediction means finding out defective die, wafer or lot effectively. Semiconductor test process consists of some test steps and each test includes various test items. In other world, test data has a big and complicated characteristic. It also is disproportionably distributed as the number of data belonging to FAIL class is extremely low. For yield prediction, general data mining techniques have a limitation without any data preprocessing due to eigen properties of test data. Therefore, this study proposes an under-sampling method using support vector machine (SVM) to eliminate an imbalanced characteristic. For evaluating a performance, randomly under-sampling method is compared with the proposed method using actual semiconductor test data. As a result, sampling method using SVM is effective in generating robust model for yield prediction.

Keywords: Yield Prediction, Semiconductor Test Process, Support Vector Machine, Under Sampling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2397
1423 Performance Prediction of Multi-Agent Based Simulation Applications on the Grid

Authors: Dawit Mengistu, Lars Lundberg, Paul Davidsson

Abstract:

A major requirement for Grid application developers is ensuring performance and scalability of their applications. Predicting the performance of an application demands understanding its specific features. This paper discusses performance modeling and prediction of multi-agent based simulation (MABS) applications on the Grid. An experiment conducted using a synthetic MABS workload explains the key features to be included in the performance model. The results obtained from the experiment show that the prediction model developed for the synthetic workload can be used as a guideline to understand to estimate the performance characteristics of real world simulation applications.

Keywords: Grid computing, Performance modeling, Performance prediction, Multi-agent simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447
1422 A New Fast Intra Prediction Mode Decision Algorithm for H.264/AVC Encoders

Authors: A. Elyousfi, A. Tamtaoui, E. Bouyakhf

Abstract:

The H.264/AVC video coding standard contains a number of advanced features. Ones of the new features introduced in this standard is the multiple intramode prediction. Its function exploits directional spatial correlation with adjacent block for intra prediction. With this new features, intra coding of H.264/AVC offers a considerably higher improvement in coding efficiency compared to other compression standard, but computational complexity is increased significantly when brut force rate distortion optimization (RDO) algorithm is used. In this paper, we propose a new fast intra prediction mode decision method for the complexity reduction of H.264 video coding. for luma intra prediction, the proposed method consists of two step: in the first step, we make the RDO for four mode of intra 4x4 block, based the distribution of RDO cost of those modes and the idea that the fort correlation with adjacent mode, we select the best mode of intra 4x4 block. In the second step, we based the fact that the dominating direction of a smaller block is similar to that of bigger block, the candidate modes of 8x8 blocks and 16x16 macroblocks are determined. So, in case of chroma intra prediction, the variance of the chroma pixel values is much smaller than that of luma ones, since our proposed uses only the mode DC. Experimental results show that the new fast intra mode decision algorithm increases the speed of intra coding significantly with negligible loss of PSNR.

Keywords: Intra prediction, H264/AVC, video coding, encodercomplexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2504
1421 Uplink Throughput Prediction in Cellular Mobile Networks

Authors: Engin Eyceyurt, Josko Zec

Abstract:

The current and future cellular mobile communication networks generate enormous amounts of data. Networks have become extremely complex with extensive space of parameters, features and counters. These networks are unmanageable with legacy methods and an enhanced design and optimization approach is necessary that is increasingly reliant on machine learning. This paper proposes that machine learning as a viable approach for uplink throughput prediction. LTE radio metric, such as Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Signal to Noise Ratio (SNR) are used to train models to estimate expected uplink throughput. The prediction accuracy with high determination coefficient of 91.2% is obtained from measurements collected with a simple smartphone application.

Keywords: Drive test, LTE, machine learning, uplink throughput prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 894
1420 Assessment of Pollution Reduction

Authors: Katarzyna Strzała-Osuch

Abstract:

Environmental investments, including ecological projects, relating to the protection of atmosphere are today a need. However, investing in the environment should be based on rational management rules. This comes across a problem of selecting a method to assess substances reduced during projects. Therefore, a method allowing for the assessment of decision rationality has to be found. The purpose of this article is to present and systematise pollution reduction assessment methods and illustrate theoretical analyses with empirical data. Empirical results confirm theoretical considerations, which proved that the only method for judging pollution reduction, free of apparent disadvantages, is the Eco 99-ratio method. To make decisions on environmental projects, financing institutions should take into account a rationality rule. Therefore the Eco 99-ratio method could be applied to make decisions relating to environmental investments in the area of air protection.

Keywords: Assessment of pollution reduction, costs of environmental protection, efficiency of environmental investments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1326
1419 The Relationship between Military Expenditure, Military Personnel, Economic Growth, and the Environment

Authors: El Harbi Sana, Ben Afia Neila

Abstract:

In this paper, we study the relationship between the military effort and pollution. A distinction is drawn between the direct and indirect impact of the military effort (military expenditure and military personnel) on pollution, which operates through the impact of military effort on per capita income and the resultant impact of income on pollution. Using the data of 121 countries covering the period 1980–2011, both the direct and indirect impacts of military effort on air pollution emissions are estimated. Our results show that the military effort is estimated to have a positive direct impact on per capita emissions. Indirect effects are found to be positive, the total effect of military effort on emissions is positive for all countries.

Keywords: Military expenditure, military personnel, income, emissions of CO2 and panel data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
1418 SNR Classification Using Multiple CNNs

Authors: Thinh Ngo, Paul Rad, Brian Kelley

Abstract:

Noise estimation is essential in today wireless systems for power control, adaptive modulation, interference suppression and quality of service. Deep learning (DL) has already been applied in the physical layer for modulation and signal classifications. Unacceptably low accuracy of less than 50% is found to undermine traditional application of DL classification for SNR prediction. In this paper, we use divide-and-conquer algorithm and classifier fusion method to simplify SNR classification and therefore enhances DL learning and prediction. Specifically, multiple CNNs are used for classification rather than a single CNN. Each CNN performs a binary classification of a single SNR with two labels: less than, greater than or equal. Together, multiple CNNs are combined to effectively classify over a range of SNR values from −20 ≤ SNR ≤ 32 dB.We use pre-trained CNNs to predict SNR over a wide range of joint channel parameters including multiple Doppler shifts (0, 60, 120 Hz), power-delay profiles, and signal-modulation types (QPSK,16QAM,64-QAM). The approach achieves individual SNR prediction accuracy of 92%, composite accuracy of 70% and prediction convergence one order of magnitude faster than that of traditional estimation.

Keywords: Classification, classifier fusion, CNN, Deep Learning, prediction, SNR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 720
1417 Solid Waste Pollution and the Importance of Environmental Planning in Managing and Preserving the Public Environment in Benghazi City and Its Surrounding Areas

Authors: Abdelsalam Omran Gebril Ali

Abstract:

Pollution and solid waste are the most important environmental problems plaguing the city of Benghazi as well as other cities and towns in Libya. These problems are caused by the lack of environmental planning and sound environmental management. Environmental planning is very important at present for the development of projects that preserve the environment; therefore, the planning process should be prioritized over the management process. Pollution caused by poor planning and environmental management exists not only in Benghazi but also in all other Libyan cities. This study was conducted through various field visits to several neighborhoods and areas within Benghazi as well as its neighboring regions. Follow-ups in these areas were conducted from March 2013 to October 2013 as documented by photographs. The existing methods of waste collection and means of transportation were investigated. Interviews were conducted with relevant authorities, including the Environment Public Authority in Benghazi and the Public Service Company of Benghazi. The objective of this study is to determine the causes of solid waste pollution in Benghazi City and its surrounding areas. Results show that solid waste pollution in Benghazi and its surrounding areas is the result of poor planning and environmental management, population growth, and the lack of hardware and equipment for the collection and transport of waste from the city to the landfill site. One of the most important recommendations in this study is the development of a complete and comprehensive plan that includes environmental planning and environmental management to reduce solid waste pollution.

Keywords: Solid waste, pollution, environmental planning, management, Benghazi, Libya.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6428
1416 Using Support Vector Machine for Prediction Dynamic Voltage Collapse in an Actual Power System

Authors: Muhammad Nizam, Azah Mohamed, Majid Al-Dabbagh, Aini Hussain

Abstract:

This paper presents dynamic voltage collapse prediction on an actual power system using support vector machines. Dynamic voltage collapse prediction is first determined based on the PTSI calculated from information in dynamic simulation output. Simulations were carried out on a practical 87 bus test system by considering load increase as the contingency. The data collected from the time domain simulation is then used as input to the SVM in which support vector regression is used as a predictor to determine the dynamic voltage collapse indices of the power system. To reduce training time and improve accuracy of the SVM, the Kernel function type and Kernel parameter are considered. To verify the effectiveness of the proposed SVM method, its performance is compared with the multi layer perceptron neural network (MLPNN). Studies show that the SVM gives faster and more accurate results for dynamic voltage collapse prediction compared with the MLPNN.

Keywords: Dynamic voltage collapse, prediction, artificial neural network, support vector machines

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
1415 Comparison of Different Neural Network Approaches for the Prediction of Kidney Dysfunction

Authors: Ali Hussian Ali AlTimemy, Fawzi M. Al Naima

Abstract:

This paper presents the prediction of kidney dysfunction using different neural network (NN) approaches. Self organization Maps (SOM), Probabilistic Neural Network (PNN) and Multi Layer Perceptron Neural Network (MLPNN) trained with Back Propagation Algorithm (BPA) are used in this study. Six hundred and sixty three sets of analytical laboratory tests have been collected from one of the private clinical laboratories in Baghdad. For each subject, Serum urea and Serum creatinin levels have been analyzed and tested by using clinical laboratory measurements. The collected urea and cretinine levels are then used as inputs to the three NN models in which the training process is done by different neural approaches. SOM which is a class of unsupervised network whereas PNN and BPNN are considered as class of supervised networks. These networks are used as a classifier to predict whether kidney is normal or it will have a dysfunction. The accuracy of prediction, sensitivity and specificity were found for each type of the proposed networks .We conclude that PNN gives faster and more accurate prediction of kidney dysfunction and it works as promising tool for predicting of routine kidney dysfunction from the clinical laboratory data.

Keywords: Kidney Dysfunction, Prediction, SOM, PNN, BPNN, Urea and Creatinine levels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
1414 A Dynamic Model of Air Pollution, Health,and Population Growth Using System Dynamics: A Study on Tehran-Iran (With Computer Simulation by the Software Vensim)

Authors: Keyvan Shahgholian, Hamid Hajihosseini

Abstract:

The significance of environmental protection is wellknown in today's world. The execution of any program depends on sufficient knowledge and required familiarity with environment and its pollutants. Taking advantage of a systematic method, as a new science, in environmental planning can solve many problems. In this article, air pollution in Tehran and its relationship with health and population growth have been analyzed using dynamic systems. Firstly, by using casual loops, the relationship between the parameters effective on air pollution in Tehran were taken into consideration, then these casual loops were turned into flow diagrams [6], and finally, they were simulated using the software Vensim [16]in order to conclude what the effect of each parameter will be on air pollution in Tehran in the next 10 years, how changing of one or more parameters influences other parameters, and which parameter among all other parameters requires to be controlled more.

Keywords: Air pollutions, Simulation, System Dynamics, Tehran, Vensim.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4254
1413 Assessment of Water Pollution of Kowsar Dam Reservoir

Authors: Mohammad Mahdi Jabbari, Fardin Boustani

Abstract:

The reservoir of Kowsar dam supply water for different usages such as aquaculture farms , drinking, agricultural and industrial usages for some provinces in south of Iran. The Kowsar dam is located next to the city of Dehdashat in Kohgiluye and Boyerahmad province in southern Iran. There are some towns and villages on the Kowsar dam watersheds, which Dehdasht and Choram are the most important and populated twons in this area, which can to be sources of pollution for water reservoir of the Kowsar dam . This study was done to determine of water pollution of the Kowsar dam reservoir which is one of the most important water resources of Kohkiloye and Boyerahmad and Bushehr provinces in south-west Iran. In this study , water samples during 12 months were collected to examine Biochemical Oxygen Demand (BOD) and Dissolved Oxygen(DO) as a criterion for evaluation of water pollution of the reservoir. In summary ,the study has shown Maximum, average and minimum levels of BOD have observed 25.9 ,9.15 and 2.3 mg/L respectively and statistical parameters of data such as standard deviation , variance and skewness have calculated 7.88, 62 and 1.54 respectively. Finally the results were compared with Iranian national standards. Among the analyzed samples, as the maximum value of BOD (25.9 mg/L) was observed at the May 2010 , was within the maximum admissible limits by the Iranian standards.

Keywords: Kowsar dam, Biochemical Oxygen Demand, water pollution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2177
1412 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique

Authors: C. Manjula, Lilly Florence

Abstract:

Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.

Keywords: Decision tree, genetic algorithm, machine learning, software defect prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465
1411 Performance of a Turbofan Engine with Intercooling and Regeneration

Authors: J. Lebre, F. Brójo

Abstract:

Pollution emission levels of aircraft engines are a nowadays high concern. Any technological advance that could reduce emission levels is always welcome. In what concerns aircraft engines, a possible solution for this problem could be the use of regenerators and intercoolers. These components might reduce the specific fuel consumption, increase efficiency and specific thrust and consequently reduce the pollution levels of the engine. This is not a novel solution. These heat exchangers are already is use in stationary engines. For aircraft engines, the extra weight of the needed hardware could overcome the fuel saved. This work compares a conventional engine with configurations that use intercoolers and regenerators.

Keywords: Intercooler, pollution, regenerator, turbofan

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3557
1410 On the Prediction of Transmembrane Helical Segments in Membrane Proteins Based on Wavelet Transform

Authors: Yu Bin, Zhang Yan

Abstract:

The prediction of transmembrane helical segments (TMHs) in membrane proteins is an important field in the bioinformatics research. In this paper, a new method based on discrete wavelet transform (DWT) has been developed to predict the number and location of TMHs in membrane proteins. PDB coded as 1KQG was chosen as an example to describe the prediction of the number and location of TMHs in membrane proteins by using this method. To access the effect of the method, 80 proteins with known 3D-structure from Mptopo database are chosen at random as the test objects (including 325 TMHs), 308 of which can be predicted accurately, the average predicted accuracy is 96.3%. In addition, the above 80 membrane proteins are divided into 13 groups according to their function and type. In particular, the results of the prediction of TMHs of the 13 groups are satisfying.

Keywords: discrete wavelet transform, hydrophobicity, membrane protein, transmembrane helical segments

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411
1409 Performance Analysis of Bluetooth Low Energy Mesh Routing Algorithm in Case of Disaster Prediction

Authors: Asmir Gogic, Aljo Mujcic, Sandra Ibric, Nermin Suljanovic

Abstract:

Ubiquity of natural disasters during last few decades have risen serious questions towards the prediction of such events and human safety. Every disaster regardless its proportion has a precursor which is manifested as a disruption of some environmental parameter such as temperature, humidity, pressure, vibrations and etc. In order to anticipate and monitor those changes, in this paper we propose an overall system for disaster prediction and monitoring, based on wireless sensor network (WSN). Furthermore, we introduce a modified and simplified WSN routing protocol built on the top of the trickle routing algorithm. Routing algorithm was deployed using the bluetooth low energy protocol in order to achieve low power consumption. Performance of the WSN network was analyzed using a real life system implementation. Estimates of the WSN parameters such as battery life time, network size and packet delay are determined. Based on the performance of the WSN network, proposed system can be utilized for disaster monitoring and prediction due to its low power profile and mesh routing feature.

Keywords: Bluetooth low energy, disaster prediction, mesh routing protocols, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2857
1408 Seasonal Based Pollution Performance of 11kV and 33kV Silicon Composite Insulators

Authors: N. Sumathi, R. Srinivasa Rao

Abstract:

This paper presents the experimental results of 11 kV and 33 kV silicon composite insulators under artificial salt and urea polluted conditions. The tests were carried out under different seasons like summer, winter, and monsoon. The artificial pollution is prepared by properly dissolving the salt and urea in the water. The prepared salt and urea pollutions are sprayed on the insulators and dried up for sufficiently large time. The process is continued until a uniform layer is formed on the surface of insulator. For each insulator rating, four samples were tested. The maximum leakage current and breakdown voltage were measured. From experimental data, performance of test specimen is evaluated by comparing breakdown voltage and leakage current during different seasons when exposed to salt and urea polluted conditions. From these results the performance of the insulators can be predicted when they are installed in industrial, agricultural, and coastal areas. The experimental tests were carried out in the High Voltage laboratory using two stage cascade transformer having the rating of 1000 kVA, 500 kV.

Keywords: Silicon composite insulators, Urea pollution, Leakage current, Breakdown voltage, salt pollution, artificial pollution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
1407 A Global Perspective on Urban Environmental Problems in Developing Countries: The Case of Turkey

Authors: Nükhet Konuk, N. Gamze Turan, Yüksel Ardalı

Abstract:

Cities play a vital role in the social fabric of countries and in national and regional economic growth worldwide; however, the environmental effects of such growth need to be assessed and managed better. The critical and most immediate problems faced by cities of developing countries are the health impacts of urban pollution that derive from inadequate water, sanitation, drainage and solid waste services, poor urban and industrial waste management, and air pollution. As globalization continues, earth's natural processes transform local problems into international issues. The aim of this study is to provide a broad overview of the pollution from urban wastes and emissions in Turkey which is a developing country. It is aimed to underline the significance of reorganizing the institutional tools in a worldwide perspective in order to generate coherent solutions to urban problems, and to enhance urban quality.

Keywords: Environmental pollution, developing countries, environmental degradation, urban environmental problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218
1406 Effect of Cement-kiln Dust Pollution on The Vegetation in The Western Mediterranean Desert of Egypt

Authors: Amal, M. Fakhry, M. M. Migahid

Abstract:

This study investigated the ecological effects of particulate pollution from a cement factory on the vegetation in the western Mediterranean coastal desert of Egypt. Variations in vegetation, soil chemical characters, and some responses of Atriplex halimus, as a dominant species in the study area, were investigated in some sites located in different directions from the cement factory between Burg El-Arab in the east and El-Hammam in the west. The results showed an obvious decrease in vegetation diversity, in response to cement-kiln dust pollution, that accompanied by a high dominance attributed to the high contribution of Atriplex halimus. Annual species were found to be more sensitive to cement dust pollution as they all failed to persist in highly disturbed sites. It is remarkable that cover and phytomass of Atriplex halimus were increased greatly in response to cement dust pollution, and this was accompanied by a reduction in the mature seeds and leaf-area of the plant. The few seeds of the affected individuals seemed to be more fertile and attained higher germination percentages and exhibited hardening against drought stress.

Keywords: Atriplex halimus, Alpha diversity, Cement dustpollution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2849
1405 Intelligent Earthquake Prediction System Based On Neural Network

Authors: Emad Amar, Tawfik Khattab, Fatma Zada

Abstract:

Predicting earthquakes is an important issue in the study of geography. Accurate prediction of earthquakes can help people to take effective measures to minimize the loss of personal and economic damage, such as large casualties, destruction of buildings and broken of traffic, occurred within a few seconds. United States Geological Survey (USGS) science organization provides reliable scientific information about Earthquake Existed throughout history & the Preliminary database from the National Center Earthquake Information (NEIC) show some useful factors to predict an earthquake in a seismic area like Aleutian Arc in the U.S. state of Alaska. The main advantage of this prediction method that it does not require any assumption, it makes prediction according to the future evolution of the object's time series. The article compares between simulation data result from trained BP and RBF neural network versus actual output result from the system calculations. Therefore, this article focuses on analysis of data relating to real earthquakes. Evaluation results show better accuracy and higher speed by using radial basis functions (RBF) neural network.

Keywords: BP neural network, Prediction, RBF neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3218
1404 Evaluation of Indoor-Outdoor Particle Size Distribution in Tehran's Elementary Schools

Authors: F. Halek, A. Kavousi, F. Hassani

Abstract:

A simultaneous study on indoor and outdoor particulate matter concentrations was done in five elementary schools in central parts of Tehran, Iran. Three sizes of particles including PM10, PM2.5 and PM1.0 were measured in 13 classrooms within this schools during winter (January, February and March) 2009. A laserbased portable aerosol spectrometer Model Grimm-1.108, was used for the continuous measurement of particles. The average indoor concentration of PM10, PM2.5 and PM1.0 in studied schools were 274 μg/m3, 42 μg/m3 and 19 μg/m3 respectively; and average outdoor concentrations of PM10, PM2.5 and PM1.0 were evaluated to be 22 μg/m3, 38 μg/m3 and 140 μg/m3 respectively.

Keywords: Elementary school, Indoor pollution, particulate matter, PM10, PM2.5, PM1.0, outdoor pollution, Tehran air pollution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
1403 Classifying and Predicting Efficiencies Using Interval DEA Grid Setting

Authors: Yiannis G. Smirlis

Abstract:

The classification and the prediction of efficiencies in Data Envelopment Analysis (DEA) is an important issue, especially in large scale problems or when new units frequently enter the under-assessment set. In this paper, we contribute to the subject by proposing a grid structure based on interval segmentations of the range of values for the inputs and outputs. Such intervals combined, define hyper-rectangles that partition the space of the problem. This structure, exploited by Interval DEA models and a dominance relation, acts as a DEA pre-processor, enabling the classification and prediction of efficiency scores, without applying any DEA models.

Keywords: Data envelopment analysis, interval DEA, efficiency classification, efficiency prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 937
1402 The Multi-Layered Perceptrons Neural Networks for the Prediction of Daily Solar Radiation

Authors: Radouane Iqdour, Abdelouhab Zeroual

Abstract:

The Multi-Layered Perceptron (MLP) Neural networks have been very successful in a number of signal processing applications. In this work we have studied the possibilities and the met difficulties in the application of the MLP neural networks for the prediction of daily solar radiation data. We have used the Polack-Ribière algorithm for training the neural networks. A comparison, in term of the statistical indicators, with a linear model most used in literature, is also performed, and the obtained results show that the neural networks are more efficient and gave the best results.

Keywords: Daily solar radiation, Prediction, MLP neural networks, linear model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1327