Search results for: Principal component analysis
9281 Normalization Discriminant Independent Component Analysis
Authors: Liew Yee Ping, Pang Ying Han, Lau Siong Hoe, Ooi Shih Yin, Housam Khalifa Bashier Babiker
Abstract:
In face recognition, feature extraction techniques attempts to search for appropriate representation of the data. However, when the feature dimension is larger than the samples size, it brings performance degradation. Hence, we propose a method called Normalization Discriminant Independent Component Analysis (NDICA). The input data will be regularized to obtain the most reliable features from the data and processed using Independent Component Analysis (ICA). The proposed method is evaluated on three face databases, Olivetti Research Ltd (ORL), Face Recognition Technology (FERET) and Face Recognition Grand Challenge (FRGC). NDICA showed it effectiveness compared with other unsupervised and supervised techniques.
Keywords: Face recognition, small sample size, regularization, independent component analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19549280 Dynamical Analysis of Circadian Gene Expression
Authors: Carla Layana Luis Diambra
Abstract:
Microarrays technique allows the simultaneous measurements of the expression levels of thousands of mRNAs. By mining this data one can identify the dynamics of the gene expression time series. By recourse of principal component analysis, we uncover the circadian rhythmic patterns underlying the gene expression profiles from Cyanobacterium Synechocystis. We applied PCA to reduce the dimensionality of the data set. Examination of the components also provides insight into the underlying factors measured in the experiments. Our results suggest that all rhythmic content of data can be reduced to three main components.
Keywords: circadian rhythms, clustering, gene expression, PCA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15919279 Issues in Spectral Source Separation Techniques for Plant-wide Oscillation Detection and Diagnosis
Authors: A.K. Tangirala, S. Babji
Abstract:
In the last few years, three multivariate spectral analysis techniques namely, Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Non-negative Matrix Factorization (NMF) have emerged as effective tools for oscillation detection and isolation. While the first method is used in determining the number of oscillatory sources, the latter two methods are used to identify source signatures by formulating the detection problem as a source identification problem in the spectral domain. In this paper, we present a critical drawback of the underlying linear (mixing) model which strongly limits the ability of the associated source separation methods to determine the number of sources and/or identify the physical source signatures. It is shown that the assumed mixing model is only valid if each unit of the process gives equal weighting (all-pass filter) to all oscillatory components in its inputs. This is in contrast to the fact that each unit, in general, acts as a filter with non-uniform frequency response. Thus, the model can only facilitate correct identification of a source with a single frequency component, which is again unrealistic. To overcome this deficiency, an iterative post-processing algorithm that correctly identifies the physical source(s) is developed. An additional issue with the existing methods is that they lack a procedure to pre-screen non-oscillatory/noisy measurements which obscure the identification of oscillatory sources. In this regard, a pre-screening procedure is prescribed based on the notion of sparseness index to eliminate the noisy and non-oscillatory measurements from the data set used for analysis.Keywords: non-negative matrix factorization, PCA, source separation, plant-wide diagnosis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15339278 Estimation of Component Reusability through Reusability Metrics
Authors: Aditya Pratap Singh, Pradeep Tomar
Abstract:
Software reusability is an essential characteristic of Component-Based Software (CBS). The component reusability is an important assess for the effective reuse of components in CBS. The attributes of reusability proposed by various researchers are studied and four of them are identified as potential factors affecting reusability. This paper proposes metric for reusability estimation of black-box software component along with metrics for Interface Complexity, Understandability, Customizability and Reliability. An experiment is performed for estimation of reusability through a case study on a sample web application using a real world component.
Keywords: Component-based software, component reusability, customizability, interface complexity, reliability, understandability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30589277 Evolutionary Eigenspace Learning using CCIPCA and IPCA for Face Recognition
Authors: Ghazy M.R. Assassa, Mona F. M. Mursi, Hatim A. Aboalsamh
Abstract:
Traditional principal components analysis (PCA) techniques for face recognition are based on batch-mode training using a pre-available image set. Real world applications require that the training set be dynamic of evolving nature where within the framework of continuous learning, new training images are continuously added to the original set; this would trigger a costly continuous re-computation of the eigen space representation via repeating an entire batch-based training that includes the old and new images. Incremental PCA methods allow adding new images and updating the PCA representation. In this paper, two incremental PCA approaches, CCIPCA and IPCA, are examined and compared. Besides, different learning and testing strategies are proposed and applied to the two algorithms. The results suggest that batch PCA is inferior to both incremental approaches, and that all CCIPCAs are practically equivalent.Keywords: Candid covariance-free incremental principal components analysis (CCIPCA), face recognition, incremental principal components analysis (IPCA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18219276 Effect of Fault Depth on Near-Fault Peak Ground Velocity
Authors: Yanyan Yu, Haiping Ding, Pengjun Chen, Yiou Sun
Abstract:
Fault depth is an important parameter to be determined in ground motion simulation, and peak ground velocity (PGV) demonstrates good application prospect. Using numerical simulation method, the variations of distribution and peak value of near-fault PGV with different fault depth were studied in detail, and the reason of some phenomena were discussed. The simulation results show that the distribution characteristics of PGV of fault-parallel (FP) component and fault-normal (FN) component are distinctly different; the value of PGV FN component is much larger than that of FP component. With the increase of fault depth, the distribution region of the FN component strong PGV moves forward along the rupture direction, while the strong PGV zone of FP component becomes gradually far away from the fault trace along the direction perpendicular to the strike. However, no matter FN component or FP component, the strong PGV distribution area and its value are both quickly reduced with increased fault depth. The results above suggest that the fault depth have significant effect on both FN component and FP component of near-fault PGV.Keywords: Fault depth, near-fault, PGV, numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7829275 Fuzzy Modeling Tool for Creating a Component Model of Information System
Authors: Bogdan Walek, Jiri Bartos, Cyril Klimes, Jaroslav Prochazka, Pavel Smolka, Juraj Masar, Martin Pesl
Abstract:
This paper focuses on creating a component model of information system under uncertainty. The paper identifies problem in current approach of component modeling and proposes fuzzy tool, which will work with vague customer requirements and propose components of the resulting component model. The proposed tool is verified on specific information system and results are shown in paper. After finding suitable sub-components of the resulting component model, the component model is visualised by tool.
Keywords: Component, component model, fuzzy, fuzzy rules, fuzzy sets, information system, modelling, tool.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16439274 A Critical Survey of Reusability Aspects for Component-Based Systems
Authors: Arun Sharma, Rajesh Kumar, P. S. Grover
Abstract:
The last decade has shown that object-oriented concept by itself is not that powerful to cope with the rapidly changing requirements of ongoing applications. Component-based systems achieve flexibility by clearly separating the stable parts of systems (i.e. the components) from the specification of their composition. In order to realize the reuse of components effectively in CBSD, it is required to measure the reusability of components. However, due to the black-box nature of components where the source code of these components are not available, it is difficult to use conventional metrics in Component-based Development as these metrics require analysis of source codes. In this paper, we survey few existing component-based reusability metrics. These metrics give a border view of component-s understandability, adaptability, and portability. It also describes the analysis, in terms of quality factors related to reusability, contained in an approach that aids significantly in assessing existing components for reusability.Keywords: Components, Customizability, Reusability, and Observability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24689273 Analysis of Palm Perspiration Effect with SVM for Diabetes in People
Authors: Hamdi Melih Saraoğlu, Muhlis Yıldırım, Abdurrahman Özbeyaz, Feyzullah Temurtas
Abstract:
In this research, the diabetes conditions of people (healthy, prediabete and diabete) were tried to be identified with noninvasive palm perspiration measurements. Data clusters gathered from 200 subjects were used (1.Individual Attributes Cluster and 2. Palm Perspiration Attributes Cluster). To decrase the dimensions of these data clusters, Principal Component Analysis Method was used. Data clusters, prepared in that way, were classified with Support Vector Machines. Classifications with highest success were 82% for Glucose parameters and 84% for HbA1c parametres.
Keywords: Palm perspiration, Diabetes, Support Vector Machine, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19469272 Diagnosis of Ovarian Cancer with Proteomic Patterns in Serum using Independent Component Analysis and Neural Networks
Authors: Simone C. F. Neves, Lúcio F. A. Campos, Ewaldo Santana, Ginalber L. O. Serra, Allan K. Barros
Abstract:
We propose a method for discrimination and classification of ovarian with benign, malignant and normal tissue using independent component analysis and neural networks. The method was tested for a proteomic patters set from A database, and radial basis functions neural networks. The best performance was obtained with probabilistic neural networks, resulting I 99% success rate, with 98% of specificity e 100% of sensitivity.Keywords: Cancer ovarian, Proteomic patterns in serum, independent component analysis and neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18309271 Exergy Analysis of a Cogeneration Plant
Authors: Derya Burcu Ozkan, Onur Kiziler, Duriye Bilge
Abstract:
Cogeneration may be defined as a system which contains electricity production and regain of the thermo value of exhaust gases simultaneously. The examination is based on the data-s of an active cogeneration plant. This study, it is aimed to determine which component of the system should be revised first to raise the efficiency and decrease the loss of exergy. For this purpose, second law analysis of thermodynamics is applied to each component due to consider the effects of environmental conditions and take the quality of energy into consideration as well as the quantity of it. The exergy balance equations are produced and exergy loss is calculated for each component. 44,44 % loss of exergy in heat exchanger, 29,59 % in combustion chamber, 18,68 % in steam boiler, 5,25 % in gas turbine and 2,03 % in compressor is calculated.Keywords: Cogeneration, Exergy loss, Second law analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25179270 An Approach for Blind Source Separation using the Sliding DFT and Time Domain Independent Component Analysis
Authors: Koji Yamanouchi, Masaru Fujieda, Takahiro Murakami, Yoshihisa Ishida
Abstract:
''Cocktail party problem'' is well known as one of the human auditory abilities. We can recognize the specific sound that we want to listen by this ability even if a lot of undesirable sounds or noises are mixed. Blind source separation (BSS) based on independent component analysis (ICA) is one of the methods by which we can separate only a special signal from their mixed signals with simple hypothesis. In this paper, we propose an online approach for blind source separation using the sliding DFT and the time domain independent component analysis. The proposed method can reduce calculation complexity in comparison with conventional methods, and can be applied to parallel processing by using digital signal processors (DSPs) and so on. We evaluate this method and show its availability.Keywords: Cocktail party problem, blind Source Separation(BSS), independent component analysis, sliding DFT, onlineprocessing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16379269 3D Face Recognition Using Modified PCA Methods
Authors: Omid Gervei, Ahmad Ayatollahi, Navid Gervei
Abstract:
In this paper we present an approach for 3D face recognition based on extracting principal components of range images by utilizing modified PCA methods namely 2DPCA and bidirectional 2DPCA also known as (2D) 2 PCA.A preprocessing stage was implemented on the images to smooth them using median and Gaussian filtering. In the normalization stage we locate the nose tip to lay it at the center of images then crop each image to a standard size of 100*100. In the face recognition stage we extract the principal component of each image using both 2DPCA and (2D) 2 PCA. Finally, we use Euclidean distance to measure the minimum distance between a given test image to the training images in the database. We also compare the result of using both methods. The best result achieved by experiments on a public face database shows that 83.3 percent is the rate of face recognition for a random facial expression.Keywords: 3D face recognition, 2DPCA, (2D) 2 PCA, Rangeimage
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30669268 Theoretical Considerations for Software Component Metrics
Authors: V. Lakshmi Narasimhan, Bayu Hendradjaya
Abstract:
We have defined two suites of metrics, which cover static and dynamic aspects of component assembly. The static metrics measure complexity and criticality of component assembly, wherein complexity is measured using Component Packing Density and Component Interaction Density metrics. Further, four criticality conditions namely, Link, Bridge, Inheritance and Size criticalities have been identified and quantified. The complexity and criticality metrics are combined to form a Triangular Metric, which can be used to classify the type and nature of applications. Dynamic metrics are collected during the runtime of a complete application. Dynamic metrics are useful to identify super-component and to evaluate the degree of utilisation of various components. In this paper both static and dynamic metrics are evaluated using Weyuker-s set of properties. The result shows that the metrics provide a valid means to measure issues in component assembly. We relate our metrics suite with McCall-s Quality Model and illustrate their impact on product quality and to the management of component-based product development.Keywords: Component Assembly, Component Based SoftwareEngineering, CORBA Component Model, Software ComponentMetrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22809267 Knowledge Management Factors Affecting the Level of Commitment
Authors: Abbas Keramati, Abtin Boostani, Mohammad Jamal Sadeghi
Abstract:
This paper examines the influence of knowledge management factors on organizational commitment for employees in the oil and gas drilling industry of Iran. We determine what knowledge factors have the greatest impact on the personnel loyalty and commitment to the organization using collected data from a survey of over 300 full-time personnel working in three large companies active in oil and gas drilling industry of Iran. To specify the effect of knowledge factors in the organizational commitment of the personnel in the studied organizations, the Principal Component Analysis (PCA) is used. Findings of our study show that the factors such as knowledge and expertise, in-service training, the knowledge value and the application of individuals’ knowledge in the organization as the factor “learning and perception of personnel from the value of knowledge within the organization” has the greatest impact on the organizational commitment. After this factor, “existence of knowledge and knowledge sharing environment in the organization”; “existence of potential knowledge exchanging in the organization”; and “organizational knowledge level” factors have the most impact on the organizational commitment of personnel, respectively.
Keywords: Knowledge management, organizational commitment, loyalty, drilling industry, principle component analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8769266 Multi-view Description of Real-Time Systems- Architecture
Authors: A. Bessam, M. T. Kimour
Abstract:
Real-time embedded systems should benefit from component-based software engineering to handle complexity and deal with dependability. In these systems, applications should not only be logically correct but also behave within time windows. However, in the current component based software engineering approaches, a few of component models handles time properties in a manner that allows efficient analysis and checking at the architectural level. In this paper, we present a meta-model for component-based software description that integrates timing issues. To achieve a complete functional model of software components, our meta-model focuses on four functional aspects: interface, static behavior, dynamic behavior, and interaction protocol. With each aspect we have explicitly associated a time model. Such a time model can be used to check a component-s design against certain properties and to compute the timing properties of component assemblies.Keywords: Real-time systems, Software architecture, software component, dependability, time properties, ADL, metamodeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16359265 Hydrodynamic Analysis of Reservoir Due to Vertical Component of Earthquake Using an Analytical Solution
Authors: M. Pasbani Khiavi, M. A. Ghorbani
Abstract:
This paper presents an analytical solution to get a reliable estimation of the hydrodynamic pressure on gravity dams induced by vertical component earthquake when solving the fluid and dam interaction problem. Presented analytical technique is presented for calculation of earthquake-induced hydrodynamic pressure in the reservoir of gravity dams allowing for water compressibility and wave absorption at the reservoir bottom. This new analytical solution can take into account the effect of bottom material on seismic response of gravity dams. It is concluded that because the vertical component of ground motion causes significant hydrodynamic forces in the horizontal direction on a vertical upstream face, responses to the vertical component of ground motion are of special importance in analysis of concrete gravity dams subjected to earthquakes.
Keywords: Dam, Reservoir, Analytical solution, Vertical component, Earthquake
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17509264 Certain Data Dimension Reduction Techniques for application with ANN based MCS for Study of High Energy Shower
Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta
Abstract:
Cosmic showers, from their places of origin in space, after entering earth generate secondary particles called Extensive Air Shower (EAS). Detection and analysis of EAS and similar High Energy Particle Showers involve a plethora of experimental setups with certain constraints for which soft-computational tools like Artificial Neural Network (ANN)s can be adopted. The optimality of ANN classifiers can be enhanced further by the use of Multiple Classifier System (MCS) and certain data - dimension reduction techniques. This work describes the performance of certain data dimension reduction techniques like Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Self Organizing Map (SOM) approximators for application with an MCS formed using Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN) and Probabilistic Neural Network (PNN). The data inputs are obtained from an array of detectors placed in a circular arrangement resembling a practical detector grid which have a higher dimension and greater correlation among themselves. The PCA, ICA and SOM blocks reduce the correlation and generate a form suitable for real time practical applications for prediction of primary energy and location of EAS from density values captured using detectors in a circular grid.Keywords: EAS, Shower, Core, ANN, Location.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16089263 Free Fatty Acid Assessment of Crude Palm Oil Using a Non-Destructive Approach
Authors: Siti Nurhidayah Naqiah Abdull Rani, Herlina Abdul Rahim, Rashidah Ghazali, Noramli Abdul Razak
Abstract:
Near infrared (NIR) spectroscopy has always been of great interest in the food and agriculture industries. The development of prediction models has facilitated the estimation process in recent years. In this study, 110 crude palm oil (CPO) samples were used to build a free fatty acid (FFA) prediction model. 60% of the collected data were used for training purposes and the remaining 40% used for testing. The visible peaks on the NIR spectrum were at 1725 nm and 1760 nm, indicating the existence of the first overtone of C-H bands. Principal component regression (PCR) was applied to the data in order to build this mathematical prediction model. The optimal number of principal components was 10. The results showed R2=0.7147 for the training set and R2=0.6404 for the testing set.
Keywords: Palm oil, fatty acid, NIRS, regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43709262 Using PFA in Feature Analysis and Selection for H.264 Adaptation
Authors: Nora A. Naguib, Ahmed E. Hussein, Hesham A. Keshk, Mohamed I. El-Adawy
Abstract:
Classification of video sequences based on their contents is a vital process for adaptation techniques. It helps decide which adaptation technique best fits the resource reduction requested by the client. In this paper we used the principal feature analysis algorithm to select a reduced subset of video features. The main idea is to select only one feature from each class based on the similarities between the features within that class. Our results showed that using this feature reduction technique the source video features can be completely omitted from future classification of video sequences.
Keywords: Adaptation, feature selection, H.264, Principal Feature Analysis (PFA)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16069261 Performance Assessment and Optimization of the After-Sale Networks
Authors: H. Izadbakhsh, M.Hour Ali, A. Amirkhani, A. Montazeri, M. Saberi
Abstract:
The after–sales activities are nowadays acknowledged as a relevant source of revenue, profit and competitive advantage in most manufacturing industries. Top and middle management, therefore, should focus on the definition of a structured business performance measurement system for the after-sales business. The paper aims at filling this gap, and presents an integrated methodology for the after-sales network performance measurement, and provides an empirical application to automotive case companies and their official service network. This is the first study that presents an integrated multivariate approach for total assessment and improvement of after-sale services.Keywords: Data Envelopment Analysis (DEA), Principal Component Analysis (PCA), Automotive companies, After-sale services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18849260 Kurtosis, Renyi's Entropy and Independent Component Scalp Maps for the Automatic Artifact Rejection from EEG Data
Authors: Antonino Greco, Nadia Mammone, Francesco Carlo Morabito, Mario Versaci
Abstract:
The goal of this work is to improve the efficiency and the reliability of the automatic artifact rejection, in particular from the Electroencephalographic (EEG) recordings. Artifact rejection is a key topic in signal processing. The artifacts are unwelcome signals that may occur during the signal acquisition and that may alter the analysis of the signals themselves. A technique for the automatic artifact rejection, based on the Independent Component Analysis (ICA) for the artifact extraction and on some high order statistics such as kurtosis and Shannon-s entropy, was proposed some years ago in literature. In this paper we enhance this technique introducing the Renyi-s entropy. The performance of our method was tested exploiting the Independent Component scalp maps and it was compared to the performance of the method in literature and it showed to outperform it.
Keywords: Artifact, EEG, Renyi's entropy, independent component analysis, kurtosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24309259 A New Implementation of PCA for Fast Face Detection
Authors: Hazem M. El-Bakry
Abstract:
Principal Component Analysis (PCA) has many different important applications especially in pattern detection such as face detection / recognition. Therefore, for real time applications, the response time is required to be as small as possible. In this paper, new implementation of PCA for fast face detection is presented. Such new implementation is designed based on cross correlation in the frequency domain between the input image and eigenvectors (weights). Simulation results show that the proposed implementation of PCA is faster than conventional one.Keywords: Fast Face Detection, PCA, Cross Correlation, Frequency Domain
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17969258 Independent Component Analysis to Mass Spectra of Aluminium Sulphate
Authors: M. Heikkinen, A. Sarpola, H. Hellman, J. Rämö, Y. Hiltunen
Abstract:
Independent component analysis (ICA) is a computational method for finding underlying signals or components from multivariate statistical data. The ICA method has been successfully applied in many fields, e.g. in vision research, brain imaging, geological signals and telecommunications. In this paper, we apply the ICA method to an analysis of mass spectra of oligomeric species emerged from aluminium sulphate. Mass spectra are typically complex, because they are linear combinations of spectra from different types of oligomeric species. The results show that ICA can decomposite the spectral components for useful information. This information is essential in developing coagulation phases of water treatment processes.
Keywords: Independent component analysis, massspectroscopy, water treatment, aluminium sulphate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23699257 Influence of Intermediate Principal Stress on Solution of Planar Stability Problems
Authors: M. Jahanandish, M. B. Zeydabadinejad
Abstract:
In this paper, von Mises and Drucker-Prager yield criteria, as typical ones that consider the effect of intermediate principal stress σ2, have been selected and employed for investigating the influence of σ2 on the solution of a typical stability problem. The bearing capacity factors have been calculated under plane strain condition (strip footing) and axisymmetric condition (circular footing) using the method of stress characteristics together with the criteria mentioned. Different levels of σ2 relative to the other two principal stresses have been considered. While a higher σ2 entry in yield criterion gives a higher bearing capacity; its entry in equilibrium equations (axisymmetric) causes substantial reduction.Keywords: Intermediate principal stress, plane strain, axisymmetric, yield criteria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19259256 Probe of Crack Initiate at the Toe of Concrete Gravity Dam using Numerical Analysis
Authors: M. S. Salimi, H. Kiamanesh, N. Hedayat
Abstract:
In this survey the process of crack propagation at the toe of concrete gravity dam is investigated by applying principals and criteria of linear elastic fracture mechanic. Simulating process of earthquake conditions for three models of dam with different geometrical condition, in empty reservoir under plain stress is calculated through special fracture mechanic software FRANNC2D [1] for determining fracture mechanic criteria. The outcomes showed that in spite of the primary expectations, the simultaneous existence of fillet in both toe and heel area (model 3), the rate of maximum principal stress has not been decreased; however, even the maximum principal stress has increased, so it caused stress intensity factors increase which is undesirable. On the other hand, the dam with heel fillet has shown the best attitude and it is because of items like decreasing the rates of maximum and minimum principal stresses and also is related to decreasing the rates of stress intensity factors for 1st & 2nd modes of the model.Keywords: Stress intensity factor, concrete gravity dam, numerical analysis, geometry of toe.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17389255 Chaotic Properties of Hemodynamic Responsein Functional Near Infrared Spectroscopic Measurement of Brain Activity
Authors: Ni Ni Soe , Masahiro Nakagawa
Abstract:
Functional near infrared spectroscopy (fNIRS) is a practical non-invasive optical technique to detect characteristic of hemoglobin density dynamics response during functional activation of the cerebral cortex. In this paper, fNIRS measurements were made in the area of motor cortex from C4 position according to international 10-20 system. Three subjects, aged 23 - 30 years, were participated in the experiment. The aim of this paper was to evaluate the effects of different motor activation tasks of the hemoglobin density dynamics of fNIRS signal. The chaotic concept based on deterministic dynamics is an important feature in biological signal analysis. This paper employs the chaotic properties which is a novel method of nonlinear analysis, to analyze and to quantify the chaotic property in the time series of the hemoglobin dynamics of the various motor imagery tasks of fNIRS signal. Usually, hemoglobin density in the human brain cortex is found to change slowly in time. An inevitable noise caused by various factors is to be included in a signal. So, principle component analysis method (PCA) is utilized to remove high frequency component. The phase pace is reconstructed and evaluated the Lyapunov spectrum, and Lyapunov dimensions. From the experimental results, it can be conclude that the signals measured by fNIRS are chaotic.Keywords: Chaos, hemoglobin, Lyapunov spectrum, motorimagery, near infrared spectroscopy (NIRS), principal componentanalysis (PCA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17269254 A Case Study on Appearance Based Feature Extraction Techniques and Their Susceptibility to Image Degradations for the Task of Face Recognition
Authors: Vitomir Struc, Nikola Pavesic
Abstract:
Over the past decades, automatic face recognition has become a highly active research area, mainly due to the countless application possibilities in both the private as well as the public sector. Numerous algorithms have been proposed in the literature to cope with the problem of face recognition, nevertheless, a group of methods commonly referred to as appearance based have emerged as the dominant solution to the face recognition problem. Many comparative studies concerned with the performance of appearance based methods have already been presented in the literature, not rarely with inconclusive and often with contradictory results. No consent has been reached within the scientific community regarding the relative ranking of the efficiency of appearance based methods for the face recognition task, let alone regarding their susceptibility to appearance changes induced by various environmental factors. To tackle these open issues, this paper assess the performance of the three dominant appearance based methods: principal component analysis, linear discriminant analysis and independent component analysis, and compares them on equal footing (i.e., with the same preprocessing procedure, with optimized parameters for the best possible performance, etc.) in face verification experiments on the publicly available XM2VTS database. In addition to the comparative analysis on the XM2VTS database, ten degraded versions of the database are also employed in the experiments to evaluate the susceptibility of the appearance based methods on various image degradations which can occur in "real-life" operating conditions. Our experimental results suggest that linear discriminant analysis ensures the most consistent verification rates across the tested databases.
Keywords: Biometrics, face recognition, appearance based methods, image degradations, the XM2VTS database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22839253 An Optimization Analysis on an Automotive Component with Fatigue Constraint Using HyperWorks Software for Environmental Sustainability
Authors: W. M. Wan Muhamad, E. Sujatmika, M.R. Idris, S.A. Syed Ahmad
Abstract:
A finite element analysis (FEA) computer software HyperWorks is utilized in re-designing an automotive component to reduce its mass. Reduction of components mass contributes towards environmental sustainability by saving world-s valuable metal resources and by reducing carbon emission through improved overall vehicle fuel efficiency. A shape optimization analysis was performed on a rear spindle component. Pre-processing and solving procedures were performed using HyperMesh and RADIOSS respectively. Shape variables were defined using HyperMorph. Then optimization solver OptiStruct was utilized with fatigue life set as a design constraint. Since Stress-Number of Cycle (S-N) theory deals with uni-axial stress, the Signed von Misses stress on the component was used for looking up damage on S-N curve, and Gerber criterion for mean stress corrections. The optimization analysis resulted in mass reduction of 24% of the original mass. The study proved that the adopted approach has high potential use for environmental sustainability.
Keywords: Environmental Sustainability, Shape Optimization, Fatigue, Rear Spindle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42919252 Empirical Analysis of Private Listed Companies- Debt Financing and Business Performance in Jiangsu Province
Authors: Chengxuan Geng, Haitao E, Yijie Jiang
Abstract:
According to the theory of capital structure, this paper uses principal component analysis and linear regression analysis to study the relationship between the debt characteristics of the private listed companies in Jiangsu Province and their business performance. The results show that the average debt ratio of the 29 private listed companies selected from the sample is lower. And it is found that for the sample whose debt ratio is lower than 80%, its debt ratio is negatively related to corporate performance, while for the sample whose debt ratio is beyond 80%, the relationship of debt financing and enterprise performance shows the different trends. The conclusions reflect the drawbacks may exist that the debt ratio is relatively low and having not take full advantage of debt governance effect of the private listed companies in Jiangsu Province.
Keywords: private listed companies, debt financing, business performance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543