Search results for: Iterative Cellular Image Processing Algorithm (ICIPA)
5793 New Iterative Algorithm for Improving Depth Resolution in Ionic Analysis: Effect of Iterations Number
Authors: N. Dahraoui, M. Boulakroune, D. Benatia
Abstract:
In this paper, the improvement by deconvolution of the depth resolution in Secondary Ion Mass Spectrometry (SIMS) analysis is considered. Indeed, we have developed a new Tikhonov- Miller deconvolution algorithm where a priori model of the solution is included. This is a denoisy and pre-deconvoluted signal obtained from: firstly, by the application of wavelet shrinkage algorithm, secondly by the introduction of the obtained denoisy signal in an iterative deconvolution algorithm. In particular, we have focused the light on the effect of the iterations number on the evolution of the deconvoluted signals. The SIMS profiles are multilayers of Boron in Silicon matrix.
Keywords: DRF, in-depth resolution, multiresolution deconvolution, SIMS, wavelet shrinkage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22245792 A Phenomic Algorithm for Reconstruction of Gene Networks
Authors: Rio G. L. D'Souza, K. Chandra Sekaran, A. Kandasamy
Abstract:
The goal of Gene Expression Analysis is to understand the processes that underlie the regulatory networks and pathways controlling inter-cellular and intra-cellular activities. In recent times microarray datasets are extensively used for this purpose. The scope of such analysis has broadened in recent times towards reconstruction of gene networks and other holistic approaches of Systems Biology. Evolutionary methods are proving to be successful in such problems and a number of such methods have been proposed. However all these methods are based on processing of genotypic information. Towards this end, there is a need to develop evolutionary methods that address phenotypic interactions together with genotypic interactions. We present a novel evolutionary approach, called Phenomic algorithm, wherein the focus is on phenotypic interaction. We use the expression profiles of genes to model the interactions between them at the phenotypic level. We apply this algorithm to the yeast sporulation dataset and show that the algorithm can identify gene networks with relative ease.
Keywords: Evolutionary computing, gene expression analysis, gene networks, microarray data analysis, phenomic algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19295791 Image Enhancement Algorithm of Photoacoustic Tomography Using Active Contour Filtering
Authors: Prasannakumar Palaniappan, Dong Ho Shin, Chul Gyu Song
Abstract:
The photoacoustic images are obtained from a custom developed linear array photoacoustic tomography system. The biological specimens are imitated by conducting phantom tests in order to retrieve a fully functional photoacoustic image. The acquired image undergoes the active region based contour filtering to remove the noise and accurately segment the object area for further processing. The universal back projection method is used as the image reconstruction algorithm. The active contour filtering is analyzed by evaluating the signal to noise ratio and comparing it with the other filtering methods.
Keywords: Contour filtering, linear array, photoacoustic tomography, universal back projection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18415790 Disparity Estimation for Objects of Interest
Authors: Yen San Yong, Hock Woon Hon
Abstract:
An algorithm for estimating the disparity of objects of interest is proposed. This algorithm uses image shifting and overlapping area to estimate the disparity value; thereby depth of the objects of interest can be obtained. The algorithm is able to perform at different levels of accuracy. However, as the accuracy increases the processing speed decreases. The algorithm is tested with static stereo images and sequence of stereo images. The experimental results are presented in this paper.Keywords: stereo vision, binocular parallax
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12335789 A Novel Receiver Algorithm for Coherent Underwater Acoustic Communications
Authors: Liang Zhao, Jianhua Ge
Abstract:
In this paper, we proposed a novel receiver algorithm for coherent underwater acoustic communications. The proposed receiver is composed of three parts: (1) Doppler tracking and correction, (2) Time reversal channel estimation and combining, and (3) Joint iterative equalization and decoding (JIED). To reduce computational complexity and optimize the equalization algorithm, Time reversal (TR) channel estimation and combining is adopted to simplify multi-channel adaptive decision feedback equalizer (ADFE) into single channel ADFE without reducing the system performance. Simultaneously, the turbo theory is adopted to form joint iterative ADFE and convolutional decoder (JIED). In JIED scheme, the ADFE and decoder exchange soft information in an iterative manner, which can enhance the equalizer performance using decoding gain. The simulation results show that the proposed algorithm can reduce computational complexity and improve the performance of equalizer. Therefore, the performance of coherent underwater acoustic communications can be improved greatly.Keywords: Underwater acoustic communication, Time reversal (TR) combining, joint iterative equalization and decoding (JIED)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17295788 A Genetic Algorithm for Clustering on Image Data
Authors: Qin Ding, Jim Gasvoda
Abstract:
Clustering is the process of subdividing an input data set into a desired number of subgroups so that members of the same subgroup are similar and members of different subgroups have diverse properties. Many heuristic algorithms have been applied to the clustering problem, which is known to be NP Hard. Genetic algorithms have been used in a wide variety of fields to perform clustering, however, the technique normally has a long running time in terms of input set size. This paper proposes an efficient genetic algorithm for clustering on very large data sets, especially on image data sets. The genetic algorithm uses the most time efficient techniques along with preprocessing of the input data set. We test our algorithm on both artificial and real image data sets, both of which are of large size. The experimental results show that our algorithm outperforms the k-means algorithm in terms of running time as well as the quality of the clustering.
Keywords: Clustering, data mining, genetic algorithm, image data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20565787 An Image Processing Based Approach for Assessing Wheelchair Cushions
Authors: B. Farahani, R. Fadil, A. Aboonabi, B. Hoffmann, J. Loscheider, K. Tavakolian, S. Arzanpour
Abstract:
Wheelchair users spend long hours in a sitting position, and selecting the right cushion is highly critical in preventing pressure ulcers in that demographic. Pressure Mapping Systems (PMS) are typically used in clinical settings by therapists to identify the sitting profile and pressure points in the sitting area to select the cushion that fits the best for the users. A PMS is a flexible mat composed of arrays of distributed networks of pressure sensors. The output of the PMS systems is a color-coded image that shows the intensity of the pressure concentration. Therapists use the PMS images to compare different cushions fit for each user. This process is highly subjective and requires good visual memory for the best outcome. This paper aims to develop an image processing technique to analyze the images of PMS and provide an objective measure to assess the cushions based on their pressure distribution mappings. In this paper, we first reviewed the skeletal anatomy of the human sitting area and its relation to the PMS image. This knowledge is then used to identify the important features that must be considered in image processing. We then developed an algorithm based on those features to analyze the images and rank them according to their fit to the user's needs.
Keywords: cushion, image processing, pressure mapping system, wheelchair
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7035786 Iterative Solutions to Some Linear Matrix Equations
Authors: Jiashang Jiang, Hao Liu, Yongxin Yuan
Abstract:
In this paper the gradient based iterative algorithms are presented to solve the following four types linear matrix equations: (a) AXB = F; (b) AXB = F, CXD = G; (c) AXB = F s. t. X = XT ; (d) AXB+CYD = F, where X and Y are unknown matrices, A,B,C,D, F,G are the given constant matrices. It is proved that if the equation considered has a solution, then the unique minimum norm solution can be obtained by choosing a special kind of initial matrices. The numerical results show that the proposed method is reliable and attractive.
Keywords: Matrix equation, iterative algorithm, parameter estimation, minimum norm solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18675785 Breast Skin-Line Estimation and Breast Segmentation in Mammograms using Fast-Marching Method
Authors: Roshan Dharshana Yapa, Koichi Harada
Abstract:
Breast skin-line estimation and breast segmentation is an important pre-process in mammogram image processing and computer-aided diagnosis of breast cancer. Limiting the area to be processed into a specific target region in an image would increase the accuracy and efficiency of processing algorithms. In this paper we are presenting a new algorithm for estimating skin-line and breast segmentation using fast marching algorithm. Fast marching is a partial-differential equation based numerical technique to track evolution of interfaces. We have introduced some modifications to the traditional fast marching method, specifically to improve the accuracy of skin-line estimation and breast tissue segmentation. Proposed modifications ensure that the evolving front stops near the desired boundary. We have evaluated the performance of the algorithm by using 100 mammogram images taken from mini-MIAS database. The results obtained from the experimental evaluation indicate that this algorithm explains 98.6% of the ground truth breast region and accuracy of the segmentation is 99.1%. Also this algorithm is capable of partially-extracting nipple when it is available in the profile.
Keywords: Mammogram, fast marching method, mathematical morphology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26795784 Hybrid Genetic-Simulated Annealing Approach for Fractal Image Compression
Authors: Y.Chakrapani, K.Soundera Rajan
Abstract:
In this paper a hybrid technique of Genetic Algorithm and Simulated Annealing (HGASA) is applied for Fractal Image Compression (FIC). With the help of this hybrid evolutionary algorithm effort is made to reduce the search complexity of matching between range block and domain block. The concept of Simulated Annealing (SA) is incorporated into Genetic Algorithm (GA) in order to avoid pre-mature convergence of the strings. One of the image compression techniques in the spatial domain is Fractal Image Compression but the main drawback of FIC is that it involves more computational time due to global search. In order to improve the computational time along with acceptable quality of the decoded image, HGASA technique has been proposed. Experimental results show that the proposed HGASA is a better method than GA in terms of PSNR for Fractal image Compression.Keywords: Fractal Image Compression, Genetic Algorithm, HGASA, Simulated Annealing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16675783 Image Ranking to Assist Object Labeling for Training Detection Models
Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman
Abstract:
Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.Keywords: Computer vision, deep learning, object detection, semiconductor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8345782 Robust Semi-Blind Digital Image Watermarking Technique in DT-CWT Domain
Authors: Samira Mabtoul, Elhassan Ibn Elhaj, Driss Aboutajdine
Abstract:
In this paper a new robust digital image watermarking algorithm based on the Complex Wavelet Transform is proposed. This technique embeds different parts of a watermark into different blocks of an image under the complex wavelet domain. To increase security of the method, two chaotic maps are employed, one map is used to determine the blocks of the host image for watermark embedding, and another map is used to encrypt the watermark image. Simulation results are presented to demonstrate the effectiveness of the proposed algorithm.Keywords: Image watermarking, Chaotic map, DT-CWT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16945781 Investigating Polynomial Interpolation Functions for Zooming Low Resolution Digital Medical Images
Authors: Maninder Pal
Abstract:
Medical digital images usually have low resolution because of nature of their acquisition. Therefore, this paper focuses on zooming these images to obtain better level of information, required for the purpose of medical diagnosis. For this purpose, a strategy for selecting pixels in zooming operation is proposed. It is based on the principle of analog clock and utilizes a combination of point and neighborhood image processing. In this approach, the hour hand of clock covers the portion of image to be processed. For alignment, the center of clock points at middle pixel of the selected portion of image. The minute hand is longer in length, and is used to gain information about pixels of the surrounding area. This area is called neighborhood pixels region. This information is used to zoom the selected portion of the image. The proposed algorithm is implemented and its performance is evaluated for many medical images obtained from various sources such as X-ray, Computerized Tomography (CT) scan and Magnetic Resonance Imaging (MRI). However, for illustration and simplicity, the results obtained from a CT scanned image of head is presented. The performance of algorithm is evaluated in comparison to various traditional algorithms in terms of Peak signal-to-noise ratio (PSNR), maximum error, SSIM index, mutual information and processing time. From the results, the proposed algorithm is found to give better performance than traditional algorithms.
Keywords: Zooming, interpolation, medical images, resolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15785780 New Wavelet-Based Superresolution Algorithm for Speckle Reduction in SAR Images
Authors: Mario Mastriani
Abstract:
This paper describes a novel projection algorithm, the Projection Onto Span Algorithm (POSA) for wavelet-based superresolution and removing speckle (in wavelet domain) of unknown variance from Synthetic Aperture Radar (SAR) images. Although the POSA is good as a new superresolution algorithm for image enhancement, image metrology and biometric identification, here one will use it like a tool of despeckling, being the first time that an algorithm of super-resolution is used for despeckling of SAR images. Specifically, the speckled SAR image is decomposed into wavelet subbands; POSA is applied to the high subbands, and reconstruct a SAR image from the modified detail coefficients. Experimental results demonstrate that the new method compares favorably to several other despeckling methods on test SAR images.
Keywords: Projection, speckle, superresolution, synthetic aperture radar, thresholding, wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16225779 Low Resolution Single Neural Network Based Face Recognition
Authors: Jahan Zeb, Muhammad Younus Javed, Usman Qayyum
Abstract:
This research paper deals with the implementation of face recognition using neural network (recognition classifier) on low-resolution images. The proposed system contains two parts, preprocessing and face classification. The preprocessing part converts original images into blurry image using average filter and equalizes the histogram of those image (lighting normalization). The bi-cubic interpolation function is applied onto equalized image to get resized image. The resized image is actually low-resolution image providing faster processing for training and testing. The preprocessed image becomes the input to neural network classifier, which uses back-propagation algorithm to recognize the familiar faces. The crux of proposed algorithm is its beauty to use single neural network as classifier, which produces straightforward approach towards face recognition. The single neural network consists of three layers with Log sigmoid, Hyperbolic tangent sigmoid and Linear transfer function respectively. The training function, which is incorporated in our work, is Gradient descent with momentum (adaptive learning rate) back propagation. The proposed algorithm was trained on ORL (Olivetti Research Laboratory) database with 5 training images. The empirical results provide the accuracy of 94.50%, 93.00% and 90.25% for 20, 30 and 40 subjects respectively, with time delay of 0.0934 sec per image.Keywords: Average filtering, Bicubic Interpolation, Neurons, vectorization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17545778 Effects of Data Correlation in a Sparse-View Compressive Sensing Based Image Reconstruction
Authors: Sajid Abbas, Joon Pyo Hong, Jung-Ryun Lee, Seungryong Cho
Abstract:
Computed tomography and laminography are heavily investigated in a compressive sensing based image reconstruction framework to reduce the dose to the patients as well as to the radiosensitive devices such as multilayer microelectronic circuit boards. Nowadays researchers are actively working on optimizing the compressive sensing based iterative image reconstruction algorithm to obtain better quality images. However, the effects of the sampled data’s properties on reconstructed the image’s quality, particularly in an insufficient sampled data conditions have not been explored in computed laminography. In this paper, we investigated the effects of two data properties i.e. sampling density and data incoherence on the reconstructed image obtained by conventional computed laminography and a recently proposed method called spherical sinusoidal scanning scheme. We have found that in a compressive sensing based image reconstruction framework, the image quality mainly depends upon the data incoherence when the data is uniformly sampled.
Keywords: Computed tomography, Computed laminography, Compressive sending, Low-dose.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16745777 A Nonoblivious Image Watermarking System Based on Singular Value Decomposition and Texture Segmentation
Authors: Soroosh Rezazadeh, Mehran Yazdi
Abstract:
In this paper, a robust digital image watermarking scheme for copyright protection applications using the singular value decomposition (SVD) is proposed. In this scheme, an entropy masking model has been applied on the host image for the texture segmentation. Moreover, the local luminance and textures of the host image are considered for watermark embedding procedure to increase the robustness of the watermarking scheme. In contrast to all existing SVD-based watermarking systems that have been designed to embed visual watermarks, our system uses a pseudo-random sequence as a watermark. We have tested the performance of our method using a wide variety of image processing attacks on different test images. A comparison is made between the results of our proposed algorithm with those of a wavelet-based method to demonstrate the superior performance of our algorithm.Keywords: Watermarking, copyright protection, singular value decomposition, entropy masking, texture segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17685776 A Stereo Image Processing System for Visually Impaired
Authors: G. Balakrishnan, G. Sainarayanan, R. Nagarajan, Sazali Yaacob
Abstract:
This paper presents a review on vision aided systems and proposes an approach for visual rehabilitation using stereo vision technology. The proposed system utilizes stereo vision, image processing methodology and a sonification procedure to support blind navigation. The developed system includes a wearable computer, stereo cameras as vision sensor and stereo earphones, all moulded in a helmet. The image of the scene infront of visually handicapped is captured by the vision sensors. The captured images are processed to enhance the important features in the scene in front, for navigation assistance. The image processing is designed as model of human vision by identifying the obstacles and their depth information. The processed image is mapped on to musical stereo sound for the blind-s understanding of the scene infront. The developed method has been tested in the indoor and outdoor environments and the proposed image processing methodology is found to be effective for object identification.Keywords: Blind navigation, stereo vision, image processing, object preference, music tones.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41195775 An Improved C-Means Model for MRI Segmentation
Authors: Ying Shen, Weihua Zhu
Abstract:
Medical images are important to help identifying different diseases, for example, Magnetic resonance imaging (MRI) can be used to investigate the brain, spinal cord, bones, joints, breasts, blood vessels, and heart. Image segmentation, in medical image analysis, is usually the first step to find out some characteristics with similar color, intensity or texture so that the diagnosis could be further carried out based on these features. This paper introduces an improved C-means model to segment the MRI images. The model is based on information entropy to evaluate the segmentation results by achieving global optimization. Several contributions are significant. Firstly, Genetic Algorithm (GA) is used for achieving global optimization in this model where fuzzy C-means clustering algorithm (FCMA) is not capable of doing that. Secondly, the information entropy after segmentation is used for measuring the effectiveness of MRI image processing. Experimental results show the outperformance of the proposed model by comparing with traditional approaches.
Keywords: Magnetic Resonance Image, C-means model, image segmentation, information entropy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9235774 Image Dehazing Using Dark Channel Prior and Fast Guided Filter in Daubechies Lifting Wavelet Transform Domain
Authors: Harpreet Kaur, Sudipta Majumdar
Abstract:
In this paper a method for image dehazing is proposed in lifting wavelet transform domain. Lifting Daubechies (D4) wavelet has been used to obtain the approximate image and detail images. As the haze is contained in low frequency part, only the approximate image is used for further processing. This region is processed by dehazing algorithm based on dark channel prior (DCP). The dehazed approximate image is then recombined with the detail images using inverse lifting wavelet transform. Implementation of lifting wavelet transform has the advantage of auxiliary memory saving, fast implementation and simplicity. Also, the proposed method deals with near white scene problem, blue horizon issue and localized light sources in a way to enhance image quality and makes the algorithm robust. Simulation results present improvement in terms of visual quality, parameters such as root mean square (RMS) contrast, structural similarity index (SSIM), entropy and execution time.
Keywords: Dark channel prior, image dehazing, lifting wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11285773 Salient Points Reduction for Content-Based Image Retrieval
Authors: Yao-Hong Tsai
Abstract:
Salient points are frequently used to represent local properties of the image in content-based image retrieval. In this paper, we present a reduction algorithm that extracts the local most salient points such that they not only give a satisfying representation of an image, but also make the image retrieval process efficiently. This algorithm recursively reduces the continuous point set by their corresponding saliency values under a top-down approach. The resulting salient points are evaluated with an image retrieval system using Hausdoff distance. In this experiment, it shows that our method is robust and the extracted salient points provide better retrieval performance comparing with other point detectors.Keywords: Barnard detector, Content-based image retrieval, Points reduction, Salient point.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14715772 Loop Back Connected Component Labeling Algorithm and Its Implementation in Detecting Face
Authors: A. Rakhmadi, M. S. M. Rahim, A. Bade, H. Haron, I. M. Amin
Abstract:
In this study, a Loop Back Algorithm for component connected labeling for detecting objects in a digital image is presented. The approach is using loop back connected component labeling algorithm that helps the system to distinguish the object detected according to their label. Deferent than whole window scanning technique, this technique reduces the searching time for locating the object by focusing on the suspected object based on certain features defined. In this study, the approach was also implemented for a face detection system. Face detection system is becoming interesting research since there are many devices or systems that require detecting the face for certain purposes. The input can be from still image or videos, therefore the sub process of this system has to be simple, efficient and accurate to give a good result.Keywords: Image processing, connected components labeling, face detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23045771 Graph Cuts Segmentation Approach Using a Patch-Based Similarity Measure Applied for Interactive CT Lung Image Segmentation
Authors: Aicha Majda, Abdelhamid El Hassani
Abstract:
Lung CT image segmentation is a prerequisite in lung CT image analysis. Most of the conventional methods need a post-processing to deal with the abnormal lung CT scans such as lung nodules or other lesions. The simplest similarity measure in the standard Graph Cuts Algorithm consists of directly comparing the pixel values of the two neighboring regions, which is not accurate because this kind of metrics is extremely sensitive to minor transformations such as noise or other artifacts problems. In this work, we propose an improved version of the standard graph cuts algorithm based on the Patch-Based similarity metric. The boundary penalty term in the graph cut algorithm is defined Based on Patch-Based similarity measurement instead of the simple intensity measurement in the standard method. The weights between each pixel and its neighboring pixels are Based on the obtained new term. The graph is then created using theses weights between its nodes. Finally, the segmentation is completed with the minimum cut/Max-Flow algorithm. Experimental results show that the proposed method is very accurate and efficient, and can directly provide explicit lung regions without any post-processing operations compared to the standard method.Keywords: Graph cuts, lung CT scan, lung parenchyma segmentation, patch based similarity metric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7495770 An Image Segmentation Algorithm for Gradient Target Based on Mean-Shift and Dictionary Learning
Authors: Yanwen Li, Shuguo Xie
Abstract:
In electromagnetic imaging, because of the diffraction limited system, the pixel values could change slowly near the edge of the image targets and they also change with the location in the same target. Using traditional digital image segmentation methods to segment electromagnetic gradient images could result in lots of errors because of this change in pixel values. To address this issue, this paper proposes a novel image segmentation and extraction algorithm based on Mean-Shift and dictionary learning. Firstly, the preliminary segmentation results from adaptive bandwidth Mean-Shift algorithm are expanded, merged and extracted. Then the overlap rate of the extracted image block is detected before determining a segmentation region with a single complete target. Last, the gradient edge of the extracted targets is recovered and reconstructed by using a dictionary-learning algorithm, while the final segmentation results are obtained which are very close to the gradient target in the original image. Both the experimental results and the simulated results show that the segmentation results are very accurate. The Dice coefficients are improved by 70% to 80% compared with the Mean-Shift only method.
Keywords: Gradient image, segmentation and extract, mean-shift algorithm, dictionary learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9745769 Cellular Automata Based Robust Watermarking Architecture towards the VLSI Realization
Authors: V. H. Mankar, T. S. Das, S. K. Sarkar
Abstract:
In this paper, we have proposed a novel blind watermarking architecture towards its hardware implementation in VLSI. In order to facilitate this hardware realization, cellular automata (CA) concept is introduced. The CA has been already accepted as an attractive structure for VLSI implementation because of its modularity, parallelism, high performance and reliability. The hardware realizable multiresolution spread spectrum watermarking techniques are very few in numbers in spite of their best ever resiliency against signal impairments. This is because of the computational cost and complexity associated with their different filter banks and lifting techniques. The concept of cellular automata theory in order to form a new transform domain technique i.e. Cellular Automata Transform (CAT) have been incorporated. Since CA provides spreading sequences having very low cross-correlation properties, the CA based pseudorandom sequence generator is considered in the present work. Considering the watermarking technique as a digital communication process, an error control coding (ECC) must be incorporated in the data hiding schemes. Besides the hardware implementation of entire CA based data hiding technique, the individual blocks of the algorithm using CA provide the best result than that of some other methods irrespective of the hardware and software technique. The Cellular Automata Transform, CA based PN sequence generator, and CA ECC are the requisite blocks that are developed not only to meet the reliable hardware requirements but also for the basic spread spectrum watermarking features. The proposed algorithm shows statistical invisibility and resiliency against various common signal-processing operations. This algorithmic design utilizes the existing allocated bandwidth in the data transmission channel in a more efficient manner.
Keywords: Cellular automata, watermarking, error control coding, PN sequence, VLSI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20745768 Noise Reduction in Image Sequences using an Effective Fuzzy Algorithm
Authors: Mahmoud Saeidi, Khadijeh Saeidi, Mahmoud Khaleghi
Abstract:
In this paper, we propose a novel spatiotemporal fuzzy based algorithm for noise filtering of image sequences. Our proposed algorithm uses adaptive weights based on a triangular membership functions. In this algorithm median filter is used to suppress noise. Experimental results show when the images are corrupted by highdensity Salt and Pepper noise, our fuzzy based algorithm for noise filtering of image sequences, are much more effective in suppressing noise and preserving edges than the previously reported algorithms such as [1-7]. Indeed, assigned weights to noisy pixels are very adaptive so that they well make use of correlation of pixels. On the other hand, the motion estimation methods are erroneous and in highdensity noise they may degrade the filter performance. Therefore, our proposed fuzzy algorithm doesn-t need any estimation of motion trajectory. The proposed algorithm admissibly removes noise without having any knowledge of Salt and Pepper noise density.Keywords: Image Sequences, Noise Reduction, fuzzy algorithm, triangular membership function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18845767 Image Adaptive Watermarking with Visual Model in Orthogonal Polynomials based Transformation Domain
Authors: Krishnamoorthi R., Sheba Kezia Malarchelvi P. D.
Abstract:
In this paper, an image adaptive, invisible digital watermarking algorithm with Orthogonal Polynomials based Transformation (OPT) is proposed, for copyright protection of digital images. The proposed algorithm utilizes a visual model to determine the watermarking strength necessary to invisibly embed the watermark in the mid frequency AC coefficients of the cover image, chosen with a secret key. The visual model is designed to generate a Just Noticeable Distortion mask (JND) by analyzing the low level image characteristics such as textures, edges and luminance of the cover image in the orthogonal polynomials based transformation domain. Since the secret key is required for both embedding and extraction of watermark, it is not possible for an unauthorized user to extract the embedded watermark. The proposed scheme is robust to common image processing distortions like filtering, JPEG compression and additive noise. Experimental results show that the quality of OPT domain watermarked images is better than its DCT counterpart.Keywords: Orthogonal Polynomials based Transformation, Digital Watermarking, Copyright Protection, Visual model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17015766 Image Authenticity and Perceptual Optimization via Genetic Algorithm and a Dependence Neighborhood
Authors: Imran Usman, Asifullah Khan, Rafiullah Chamlawi, Abdul Majid
Abstract:
Information hiding for authenticating and verifying the content integrity of the multimedia has been exploited extensively in the last decade. We propose the idea of using genetic algorithm and non-deterministic dependence by involving the un-watermarkable coefficients for digital image authentication. Genetic algorithm is used to intelligently select coefficients for watermarking in a DCT based image authentication scheme, which implicitly watermark all the un-watermarkable coefficients also, in order to thwart different attacks. Experimental results show that such intelligent selection results in improvement of imperceptibility of the watermarked image, and implicit watermarking of all the coefficients improves security against attacks such as cover-up, vector quantization and transplantation.
Keywords: Digital watermarking, fragile watermarking, geneticalgorithm, Image authentication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15255765 Hit-or-Miss Transform as a Tool for Similar Shape Detection
Authors: Osama Mohamed Elrajubi, Idris El-Feghi, Mohamed Abu Baker Saghayer
Abstract:
This paper describes an identification of specific shapes within binary images using the morphological Hit-or-Miss Transform (HMT). Hit-or-Miss transform is a general binary morphological operation that can be used in searching of particular patterns of foreground and background pixels in an image. It is actually a basic operation of binary morphology since almost all other binary morphological operators are derived from it. The input of this method is a binary image and a structuring element (a template which will be searched in a binary image) while the output is another binary image. In this paper a modification of Hit-or-Miss transform has been proposed. The accuracy of algorithm is adjusted according to the similarity of the template and the sought template. The implementation of this method has been done by C language. The algorithm has been tested on several images and the results have shown that this new method can be used for similar shape detection.
Keywords: Hit-or/and-Miss Operator/Transform, HMT, binary morphological operation, shape detection, binary images processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51315764 Neural Network Based Approach for Face Detection cum Face Recognition
Authors: Kesari Verma, Aniruddha S. Thoke, Pritam Singh
Abstract:
Automatic face detection is a complex problem in image processing. Many methods exist to solve this problem such as template matching, Fisher Linear Discriminate, Neural Networks, SVM, and MRC. Success has been achieved with each method to varying degrees and complexities. In proposed algorithm we used upright, frontal faces for single gray scale images with decent resolution and under good lighting condition. In the field of face recognition technique the single face is matched with single face from the training dataset. The author proposed a neural network based face detection algorithm from the photographs as well as if any test data appears it check from the online scanned training dataset. Experimental result shows that the algorithm detected up to 95% accuracy for any image.Keywords: Face Detection, Face Recognition, NN Approach, PCA Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2304