Search results for: Hydrothermal Power Systemsand Genetic Algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4794

Search results for: Hydrothermal Power Systemsand Genetic Algorithms

4734 Applying Genetic Algorithms for Inventory Lot-Sizing Problem with Supplier Selection under Storage Space

Authors: Vichai Rungreunganaun, Chirawat Woarawichai

Abstract:

The objective of this research is to calculate the optimal inventory lot-sizing for each supplier and minimize the total inventory cost which includes joint purchase cost of the products, transaction cost for the suppliers, and holding cost for remaining inventory. Genetic algorithms (GAs) are applied to the multi-product and multi-period inventory lot-sizing problems with supplier selection under storage space. Also a maximum storage space for the decision maker in each period is considered. The decision maker needs to determine what products to order in what quantities with which suppliers in which periods. It is assumed that demand of multiple products is known over a planning horizon. The problem is formulated as a mixed integer programming and is solved with the GAs. The detailed computation results are presented.

Keywords: Genetic Algorithms, Inventory lot-sizing, Supplier selection, Storage space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2153
4733 Multiuser Detection in CDMA Fast Fading Multipath Channel using Heuristic Genetic Algorithms

Authors: Muhammad Naeem, Syed Ismail Shah, Habibullah Jamal

Abstract:

In this paper, a simple heuristic genetic algorithm is used for Multistage Multiuser detection in fast fading environments. Multipath channels, multiple access interference (MAI) and near far effect cause the performance of the conventional detector to degrade. Heuristic Genetic algorithms, a rapidly growing area of artificial intelligence, uses evolutionary programming for initial search, which not only helps to converge the solution towards near optimal performance efficiently but also at a very low complexity as compared with optimal detector. This holds true for Additive White Gaussian Noise (AWGN) and multipath fading channels. Experimental results are presented to show the superior performance of the proposed techque over the existing methods.

Keywords: Genetic Algorithm (GA), Multiple AccessInterference (MAI), Multistage Detectors (MSD), SuccessiveInterference Cancellation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048
4732 Heuristic Continuous-time Associative Memories

Authors: Truong Quang Dang Khoa, Masahiro Nakagawa

Abstract:

In this paper, a novel associative memory model will be proposed and applied to memory retrievals based on the conventional continuous time model. The conventional model presents memory capacity is very low and retrieval process easily converges to an equilibrium state which is very different from the stored patterns. Genetic Algorithms is well-known with the capability of global optimal search escaping local optimum on progress to reach a global optimum. Based on the well-known idea of Genetic Algorithms, this work proposes a heuristic rule to make a mutation when the state of the network is trapped in a spurious memory. The proposal heuristic associative memory show the stored capacity does not depend on the number of stored patterns and the retrieval ability is up to ~ 1.

Keywords: Artificial Intelligent, Soft Computing, NeuralNetworks, Genetic Algorithms, Hopfield Neural Networks, andAssociative Memories.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1403
4731 Reducing Power in Error Correcting Code using Genetic Algorithm

Authors: Heesung Lee, Joonkyung Sung, Euntai Kim

Abstract:

This paper proposes a method which reduces power consumption in single-error correcting, double error-detecting checker circuits that perform memory error correction code. Power is minimized with little or no impact on area and delay, using the degrees of freedom in selecting the parity check matrix of the error correcting codes. The genetic algorithm is employed to solve the non linear power optimization problem. The method is applied to two commonly used SEC-DED codes: standard Hamming and odd column weight Hsiao codes. Experiments were performed to show the performance of the proposed method.

Keywords: Error correcting codes, genetic algorithm, non-linearpower optimization, Hamming code, Hsiao code.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2186
4730 Fuzzy PID based PSS Design Using Genetic Algorithm

Authors: Ermanu A. Hakim, Adi Soeprijanto, Mauridhi H.P

Abstract:

This paper presents PSS (Power system stabilizer) design based on optimal fuzzy PID (OFPID). OFPID based PSS design is considered for single-machine power systems. The main motivation for this design is to stabilize or to control low-frequency oscillation on power systems. Firstly, describing the linear PID control then to combine this PID control with fuzzy logic control mechanism. Finally, Fuzzy PID parameters (Kp. Kd, KI, Kupd, Kui) are tuned by Genetic Algorthm (GA) to reach optimal global stability. The effectiveness of the proposed PSS in increasing the damping of system electromechanical oscillation is demonstrated in a one-machine-infinite-bus system

Keywords: Fuzzy PID, Genetic Algorithm, power system stabilizer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749
4729 Using Genetic Algorithm to Improve Information Retrieval Systems

Authors: Ahmed A. A. Radwan, Bahgat A. Abdel Latef, Abdel Mgeid A. Ali, Osman A. Sadek

Abstract:

This study investigates the use of genetic algorithms in information retrieval. The method is shown to be applicable to three well-known documents collections, where more relevant documents are presented to users in the genetic modification. In this paper we present a new fitness function for approximate information retrieval which is very fast and very flexible, than cosine similarity fitness function.

Keywords: Cosine similarity, Fitness function, Genetic Algorithm, Information Retrieval, Query learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2756
4728 Optimal Design of Substation Grounding Grid Based on Genetic Algorithm Technique

Authors: Ahmed Z. Gabr, Ahmed A. Helal, Hussein E. Said

Abstract:

With the incessant increase of power systems capacity and voltage grade, the safety of grounding grid becomes more and more prominent. In this paper, the designing substation grounding grid is presented by means of genetic algorithm (GA). This approach purposes to control the grounding cost of the power system with the aid of controlling grounding rod number and conductor lengths under the same safety limitations. The proposed technique is used for the design of the substation grounding grid in Khalda Petroleum Company “El-Qasr” power plant and the design was simulated by using CYMGRD software for results verification. The result of the design is highly complying with IEEE 80-2000 standard requirements.

Keywords: Genetic algorithm, optimum grounding grid design, power system analysis, power system protection, single layer model, substation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2806
4727 Parameters Extraction for Pseudomorphic HEMTs Using Genetic Algorithms

Authors: Mazhar B. Tayel, Amr H. Yassin

Abstract:

A proposed small-signal model parameters for a pseudomorphic high electron mobility transistor (PHEMT) is presented. Both extrinsic and intrinsic circuit elements of a smallsignal model are determined using genetic algorithm (GA) as a stochastic global search and optimization tool. The parameters extraction of the small-signal model is performed on 200-μm gate width AlGaAs/InGaAs PHEMT. The equivalent circuit elements for a proposed 18 elements model are determined directly from the measured S- parameters. The GA is used to extract the parameters of the proposed small-signal model from 0.5 up to 18 GHz.

Keywords: PHEMT, Genetic Algorithms, small signal modeling, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262
4726 Discriminant Analysis as a Function of Predictive Learning to Select Evolutionary Algorithms in Intelligent Transportation System

Authors: Jorge A. Ruiz-Vanoye, Ocotlán Díaz-Parra, Alejandro Fuentes-Penna, Daniel Vélez-Díaz, Edith Olaco García

Abstract:

In this paper, we present the use of the discriminant analysis to select evolutionary algorithms that better solve instances of the vehicle routing problem with time windows. We use indicators as independent variables to obtain the classification criteria, and the best algorithm from the generic genetic algorithm (GA), random search (RS), steady-state genetic algorithm (SSGA), and sexual genetic algorithm (SXGA) as the dependent variable for the classification. The discriminant classification was trained with classic instances of the vehicle routing problem with time windows obtained from the Solomon benchmark. We obtained a classification of the discriminant analysis of 66.7%.

Keywords: Intelligent transportation systems, data-mining techniques, evolutionary algorithms, discriminant analysis, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
4725 Evolutionary Design of Polynomial Controller

Authors: R. Matousek, S. Lang, P. Minar, P. Pivonka

Abstract:

In the control theory one attempts to find a controller that provides the best possible performance with respect to some given measures of performance. There are many sorts of controllers e.g. a typical PID controller, LQR controller, Fuzzy controller etc. In the paper will be introduced polynomial controller with novel tuning method which is based on the special pole placement encoding scheme and optimization by Genetic Algorithms (GA). The examples will show the performance of the novel designed polynomial controller with comparison to common PID controller.

Keywords: Evolutionary design, Genetic algorithms, PID controller, Pole placement, Polynomial controller

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2158
4724 Application of Feed-Forward Neural Networks Autoregressive Models with Genetic Algorithm in Gross Domestic Product Prediction

Authors: E. Giovanis

Abstract:

In this paper we present a Feed-Foward Neural Networks Autoregressive (FFNN-AR) model with genetic algorithms training optimization in order to predict the gross domestic product growth of six countries. Specifically we propose a kind of weighted regression, which can be used for econometric purposes, where the initial inputs are multiplied by the neural networks final optimum weights from input-hidden layer of the training process. The forecasts are compared with those of the ordinary autoregressive model and we conclude that the proposed regression-s forecasting results outperform significant those of autoregressive model. Moreover this technique can be used in Autoregressive-Moving Average models, with and without exogenous inputs, as also the training process with genetics algorithms optimization can be replaced by the error back-propagation algorithm.

Keywords: Autoregressive model, Feed-Forward neuralnetworks, Genetic Algorithms, Gross Domestic Product

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
4723 Intuition Operator: Providing Genomes with Reason

Authors: Grigorios N. Beligiannis, Georgios A. Tsirogiannis, Panayotis E. Pintelas

Abstract:

In this contribution, the use of a new genetic operator is proposed. The main advantage of using this operator is that it is able to assist the evolution procedure to converge faster towards the optimal solution of a problem. This new genetic operator is called ''intuition'' operator. Generally speaking, one can claim that this operator is a way to include any heuristic or any other local knowledge, concerning the problem, that cannot be embedded in the fitness function. Simulation results show that the use of this operator increases significantly the performance of the classic Genetic Algorithm by increasing the convergence speed of its population.

Keywords: Genetic algorithms, intuition operator, reasonable genomes, complex search space, nonlinear fitness functions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
4722 Multiple Sequence Alignment Using Optimization Algorithms

Authors: M. F. Omar, R. A. Salam, R. Abdullah, N. A. Rashid

Abstract:

Proteins or genes that have similar sequences are likely to perform the same function. One of the most widely used techniques for sequence comparison is sequence alignment. Sequence alignment allows mismatches and insertion/deletion, which represents biological mutations. Sequence alignment is usually performed only on two sequences. Multiple sequence alignment, is a natural extension of two-sequence alignment. In multiple sequence alignment, the emphasis is to find optimal alignment for a group of sequences. Several applicable techniques were observed in this research, from traditional method such as dynamic programming to the extend of widely used stochastic optimization method such as Genetic Algorithms (GAs) and Simulated Annealing. A framework with combination of Genetic Algorithm and Simulated Annealing is presented to solve Multiple Sequence Alignment problem. The Genetic Algorithm phase will try to find new region of solution while Simulated Annealing can be considered as an alignment improver for any near optimal solution produced by GAs.

Keywords: Simulated annealing, genetic algorithm, sequence alignment, multiple sequence alignment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2409
4721 Finding Sparse Features in Face Detection Using Genetic Algorithms

Authors: H. Sagha, S. Kasaei, E. Enayati, M. Dehghani

Abstract:

Although Face detection is not a recent activity in the field of image processing, it is still an open area for research. The greatest step in this field is the work reported by Viola and its recent analogous is Huang et al. Both of them use similar features and also similar training process. The former is just for detecting upright faces, but the latter can detect multi-view faces in still grayscale images using new features called 'sparse feature'. Finding these features is very time consuming and inefficient by proposed methods. Here, we propose a new approach for finding sparse features using a genetic algorithm system. This method requires less computational cost and gets more effective features in learning process for face detection that causes more accuracy.

Keywords: Face Detection, Genetic Algorithms, Sparse Feature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
4720 PSS and SVC Controller Design by Chaos and PSO Algorithms to Enhancing the Power System Stability

Authors: Saeed jalilzadeh, Mohammad Reza Safari Tirtashi, Mohsen Sadeghi

Abstract:

this paper focuses on designing of PSS and SVC controller based on chaos and PSO algorithms to improve the stability of power system. Single machine infinite bus (SMIB) system with SVC located at the terminal of generator has been considered to evaluate the proposed controllers where both SVC and PSS have the same controller. The coefficients of PSS and SVC controller have been optimized by chaos and PSO algorithms. Finally the system with proposed controllers has been simulated for the special disturbance in input power of generator, and then the dynamic responses of generator have been presented. The simulation results showed that the system composed with recommended controller has outstanding operation in fast damping of oscillations of power system.

Keywords: PSS, CHAOS, PSO, Stability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
4719 Optimization of Bit Error Rate and Power of Ad-hoc Networks Using Genetic Algorithm

Authors: Anjana Choudhary

Abstract:

The ad hoc networks are the future of wireless technology as everyone wants fast and accurate error free information so keeping this in mind Bit Error Rate (BER) and power is optimized in this research paper by using the Genetic Algorithm (GA). The digital modulation techniques used for this paper are Binary Phase Shift Keying (BPSK), M-ary Phase Shift Keying (M-ary PSK), and Quadrature Amplitude Modulation (QAM). This work is implemented on Wireless Ad Hoc Networks (WLAN). Then it is analyze which modulation technique is performing well to optimize the BER and power of WLAN.

Keywords: Bit Error Rate, Genetic Algorithm, Power, Phase Shift Keying, Quadrature Amplitude Modulation, Signal to Noise Ratio, Wireless Ad Hoc Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3117
4718 A Survey of Various Algorithms for Vlsi Physical Design

Authors: Rajine Swetha R, B. Shekar Babu, Sumithra Devi K.A

Abstract:

Electronic Systems are the core of everyday lives. They form an integral part in financial networks, mass transit, telephone systems, power plants and personal computers. Electronic systems are increasingly based on complex VLSI (Very Large Scale Integration) integrated circuits. Initial electronic design automation is concerned with the design and production of VLSI systems. The next important step in creating a VLSI circuit is Physical Design. The input to the physical design is a logical representation of the system under design. The output of this step is the layout of a physical package that optimally or near optimally realizes the logical representation. Physical design problems are combinatorial in nature and of large problem sizes. Darwin observed that, as variations are introduced into a population with each new generation, the less-fit individuals tend to extinct in the competition of basic necessities. This survival of fittest principle leads to evolution in species. The objective of the Genetic Algorithms (GA) is to find an optimal solution to a problem .Since GA-s are heuristic procedures that can function as optimizers, they are not guaranteed to find the optimum, but are able to find acceptable solutions for a wide range of problems. This survey paper aims at a study on Efficient Algorithms for VLSI Physical design and observes the common traits of the superior contributions.

Keywords: Genetic Algorithms, Physical Design, VLSI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
4717 Parallel Distributed Computational Microcontroller System for Adaptive Antenna Downlink Transmitter Power Optimization

Authors: K. Prajindra Sankar, S.K. Tiong, S.P. Johnny Koh

Abstract:

This paper presents a tested research concept that implements a complex evolutionary algorithm, genetic algorithm (GA), in a multi-microcontroller environment. Parallel Distributed Genetic Algorithm (PDGA) is employed in adaptive beam forming technique to reduce power usage of adaptive antenna at WCDMA base station. Adaptive antenna has dynamic beam that requires more advanced beam forming algorithm such as genetic algorithm which requires heavy computation and memory space. Microcontrollers are low resource platforms that are normally not associated with GAs, which are typically resource intensive. The aim of this project was to design a cooperative multiprocessor system by expanding the role of small scale PIC microcontrollers to optimize WCDMA base station transmitter power. Implementation results have shown that PDGA multi-microcontroller system returned optimal transmitted power compared to conventional GA.

Keywords: Microcontroller, Genetic Algorithm, Adaptiveantenna, Power optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785
4716 Development of Heterogeneous Parallel Genetic Simulated Annealing Using Multi-Niche Crowding

Authors: Z. G. Wang, M. Rahman, Y. S. Wong, K. S. Neo

Abstract:

In this paper, a new hybrid of genetic algorithm (GA) and simulated annealing (SA), referred to as GSA, is presented. In this algorithm, SA is incorporated into GA to escape from local optima. The concept of hierarchical parallel GA is employed to parallelize GSA for the optimization of multimodal functions. In addition, multi-niche crowding is used to maintain the diversity in the population of the parallel GSA (PGSA). The performance of the proposed algorithms is evaluated against a standard set of multimodal benchmark functions. The multi-niche crowding PGSA and normal PGSA show some remarkable improvement in comparison with the conventional parallel genetic algorithm and the breeder genetic algorithm (BGA).

Keywords: Crowding, genetic algorithm, parallel geneticalgorithm, simulated annealing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587
4715 Genetic Algorithms and Kernel Matrix-based Criteria Combined Approach to Perform Feature and Model Selection for Support Vector Machines

Authors: A. Perolini

Abstract:

Feature and model selection are in the center of attention of many researches because of their impact on classifiers- performance. Both selections are usually performed separately but recent developments suggest using a combined GA-SVM approach to perform them simultaneously. This approach improves the performance of the classifier identifying the best subset of variables and the optimal parameters- values. Although GA-SVM is an effective method it is computationally expensive, thus a rough method can be considered. The paper investigates a joined approach of Genetic Algorithm and kernel matrix criteria to perform simultaneously feature and model selection for SVM classification problem. The purpose of this research is to improve the classification performance of SVM through an efficient approach, the Kernel Matrix Genetic Algorithm method (KMGA).

Keywords: Feature and model selection, Genetic Algorithms, Support Vector Machines, kernel matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
4714 Relay Node Placement for Connectivity Restoration in Wireless Sensor Networks Using Genetic Algorithms

Authors: Hanieh Tarbiat Khosrowshahi, Mojtaba Shakeri

Abstract:

Wireless Sensor Networks (WSNs) consist of a set of sensor nodes with limited capability. WSNs may suffer from multiple node failures when they are exposed to harsh environments such as military zones or disaster locations and lose connectivity by getting partitioned into disjoint segments. Relay nodes (RNs) are alternatively introduced to restore connectivity. They cost more than sensors as they benefit from mobility, more power and more transmission range, enforcing a minimum number of them to be used. This paper addresses the problem of RN placement in a multiple disjoint network by developing a genetic algorithm (GA). The problem is reintroduced as the Steiner tree problem (which is known to be an NP-hard problem) by the aim of finding the minimum number of Steiner points where RNs are to be placed for restoring connectivity. An upper bound to the number of RNs is first computed to set up the length of initial chromosomes. The GA algorithm then iteratively reduces the number of RNs and determines their location at the same time. Experimental results indicate that the proposed GA is capable of establishing network connectivity using a reasonable number of RNs compared to the best existing work.

Keywords: Connectivity restoration, genetic algorithms, multiple-node failure, relay nodes, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1104
4713 Optimal Control Problem, Quasi-Assignment Problem and Genetic Algorithm

Authors: Omid S. Fard, Akbar H. Borzabadi

Abstract:

In this paper we apply one of approaches in category of heuristic methods as Genetic Algorithms for obtaining approximate solution of optimal control problems. The firs we convert optimal control problem to a quasi Assignment Problem by defining some usual characters as defined in Genetic algorithm applications. Then we obtain approximate optimal control function as an piecewise constant function. Finally the numerical examples are given.

Keywords: Optimal control, Integer programming, Genetic algorithm, Discrete approximation, Linear programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293
4712 Binary Programming for Manufacturing Material and Manufacturing Process Selection Using Genetic Algorithms

Authors: Saleem Z. Ramadan

Abstract:

The material selection problem is concerned with the determination of the right material for a certain product to optimize certain performance indices in that product such as mass, energy density, and power-to-weight ratio. This paper is concerned about optimizing the selection of the manufacturing process along with the material used in the product under performance indices and availability constraints. In this paper, the material selection problem is formulated using binary programming and solved by genetic algorithm. The objective function of the model is to minimize the total manufacturing cost under performance indices and material and manufacturing process availability constraints.

Keywords: Optimization, Material selection, Process selection, Genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599
4711 A Self Adaptive Genetic Based Algorithm for the Identification and Elimination of Bad Data

Authors: A. A. Hossam-Eldin, E. N. Abdallah, M. S. El-Nozahy

Abstract:

The identification and elimination of bad measurements is one of the basic functions of a robust state estimator as bad data have the effect of corrupting the results of state estimation according to the popular weighted least squares method. However this is a difficult problem to handle especially when dealing with multiple errors from the interactive conforming type. In this paper, a self adaptive genetic based algorithm is proposed. The algorithm utilizes the results of the classical linearized normal residuals approach to tune the genetic operators thus instead of making a randomized search throughout the whole search space it is more likely to be a directed search thus the optimum solution is obtained at very early stages(maximum of 5 generations). The algorithm utilizes the accumulating databases of already computed cases to reduce the computational burden to minimum. Tests are conducted with reference to the standard IEEE test systems. Test results are very promising.

Keywords: Bad Data, Genetic Algorithms, Linearized Normal residuals, Observability, Power System State Estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1346
4710 Multiobjective Optimal Power Flow Using Hybrid Evolutionary Algorithm

Authors: Alawode Kehinde O., Jubril Abimbola M. Komolafe Olusola A.

Abstract:

This paper solves the environmental/ economic dispatch power system problem using the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and its hybrid with a Convergence Accelerator Operator (CAO), called the NSGA-II/CAO. These multiobjective evolutionary algorithms were applied to the standard IEEE 30-bus six-generator test system. Several optimization runs were carried out on different cases of problem complexity. Different quality measure which compare the performance of the two solution techniques were considered. The results demonstrated that the inclusion of the CAO in the original NSGA-II improves its convergence while preserving the diversity properties of the solution set.

Keywords: optimal power flow, multiobjective power dispatch, evolutionary algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2268
4709 Enhanced Particle Swarm Optimization Approach for Solving the Non-Convex Optimal Power Flow

Authors: M. R. AlRashidi, M. F. AlHajri, M. E. El-Hawary

Abstract:

An enhanced particle swarm optimization algorithm (PSO) is presented in this work to solve the non-convex OPF problem that has both discrete and continuous optimization variables. The objective functions considered are the conventional quadratic function and the augmented quadratic function. The latter model presents non-differentiable and non-convex regions that challenge most gradient-based optimization algorithms. The optimization variables to be optimized are the generator real power outputs and voltage magnitudes, discrete transformer tap settings, and discrete reactive power injections due to capacitor banks. The set of equality constraints taken into account are the power flow equations while the inequality ones are the limits of the real and reactive power of the generators, voltage magnitude at each bus, transformer tap settings, and capacitor banks reactive power injections. The proposed algorithm combines PSO with Newton-Raphson algorithm to minimize the fuel cost function. The IEEE 30-bus system with six generating units is used to test the proposed algorithm. Several cases were investigated to test and validate the consistency of detecting optimal or near optimal solution for each objective. Results are compared to solutions obtained using sequential quadratic programming and Genetic Algorithms.

Keywords: Particle Swarm Optimization, Optimal Power Flow, Economic Dispatch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2368
4708 Robust FACTS Controller Design Employing Modern Heuristic Optimization Techniques

Authors: A.K.Balirsingh, S.C.Swain, S. Panda

Abstract:

Recently, Genetic Algorithms (GA) and Differential Evolution (DE) algorithm technique have attracted considerable attention among various modern heuristic optimization techniques. Since the two approaches are supposed to find a solution to a given objective function but employ different strategies and computational effort, it is appropriate to compare their performance. This paper presents the application and performance comparison of DE and GA optimization techniques, for flexible ac transmission system (FACTS)-based controller design. The design objective is to enhance the power system stability. The design problem of the FACTS-based controller is formulated as an optimization problem and both the PSO and GA optimization techniques are employed to search for optimal controller parameters. The performance of both optimization techniques has been compared. Further, the optimized controllers are tested on a weekly connected power system subjected to different disturbances, and their performance is compared with the conventional power system stabilizer (CPSS). The eigenvalue analysis and non-linear simulation results are presented and compared to show the effectiveness of both the techniques in designing a FACTS-based controller, to enhance power system stability.

Keywords: Differential Evolution, Flexible AC TransmissionSystems (FACTS), Genetic Algorithm, Low Frequency Oscillations, Single-machine Infinite Bus Power System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791
4707 Enhanced Traveling Salesman Problem Solving by Genetic Algorithm Technique (TSPGA)

Authors: Buthainah Fahran Al-Dulaimi, Hamza A. Ali

Abstract:

The well known NP-complete problem of the Traveling Salesman Problem (TSP) is coded in genetic form. A software system is proposed to determine the optimum route for a Traveling Salesman Problem using Genetic Algorithm technique. The system starts from a matrix of the calculated Euclidean distances between the cities to be visited by the traveling salesman and a randomly chosen city order as the initial population. Then new generations are then created repeatedly until the proper path is reached upon reaching a stopping criterion. This search is guided by a solution evaluation function.

Keywords: Genetic algorithms, traveling salesman problem solving, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2559
4706 A Matlab / Simulink Based Tool for Power Electronic Circuits

Authors: Abdulatif A. M. Shaban

Abstract:

Transient simulation of power electronic circuits is of considerable interest to the designer. The switching nature of the devices used permits development of specialized algorithms which allow a considerable reduction in simulation time compared to general purpose simulation algorithms. This paper describes a method used to simulate a power electronic circuits using the SIMULINK toolbox within MATLAB software. Theoretical results are presented provides the basis of transient analysis of a power electronic circuits.

Keywords: Modelling, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5542
4705 Design of Gravity Dam by Genetic Algorithms

Authors: Farzin Salmasi

Abstract:

The design of a gravity dam is performed through an interactive process involving a preliminary layout of the structure followed by a stability and stress analysis. This study presents a method to define the optimal top width of gravity dam with genetic algorithm. To solve the optimization task (minimize the cost of the dam), an optimization routine based on genetic algorithms (GAs) was implemented into an Excel spreadsheet. It was found to perform well and GA parameters were optimized in a parametric study. Using the parameters found in the parametric study, the top width of gravity dam optimization was performed and compared to a gradient-based optimization method (classic method). The accuracy of the results was within close proximity. In optimum dam cross section, the ratio of is dam base to dam height is almost equal to 0.85, and ratio of dam top width to dam height is almost equal to 0.13. The computerized methodology may provide the help for computation of the optimal top width for a wide range of height of a gravity dam.

Keywords: Chromosomes, dam, genetic algorithm, globaloptimum, preliminary layout, stress analysis, theoretical profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4334