Search results for: Hydroforming deep drawing
477 Bayesian Deep Learning Algorithms for Classifying COVID-19 Images
Authors: I. Oloyede
Abstract:
The study investigates the accuracy and loss of deep learning algorithms with the set of coronavirus (COVID-19) images dataset by comparing Bayesian convolutional neural network and traditional convolutional neural network in low dimensional dataset. 50 sets of X-ray images out of which 25 were COVID-19 and the remaining 20 were normal, twenty images were set as training while five were set as validation that were used to ascertained the accuracy of the model. The study found out that Bayesian convolution neural network outperformed conventional neural network at low dimensional dataset that could have exhibited under fitting. The study therefore recommended Bayesian Convolutional neural network (BCNN) for android apps in computer vision for image detection.Keywords: BCNN, CNN, Images, COVID-19, Deep Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 871476 Prediction on Housing Price Based on Deep Learning
Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang
Abstract:
In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.
Keywords: Deep learning, convolutional neural network, LSTM, housing prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4990475 Malaria Parasite Detection Using Deep Learning Methods
Authors: Kaustubh Chakradeo, Michael Delves, Sofya Titarenko
Abstract:
Malaria is a serious disease which affects hundreds of millions of people around the world, each year. If not treated in time, it can be fatal. Despite recent developments in malaria diagnostics, the microscopy method to detect malaria remains the most common. Unfortunately, the accuracy of microscopic diagnostics is dependent on the skill of the microscopist and limits the throughput of malaria diagnosis. With the development of Artificial Intelligence tools and Deep Learning techniques in particular, it is possible to lower the cost, while achieving an overall higher accuracy. In this paper, we present a VGG-based model and compare it with previously developed models for identifying infected cells. Our model surpasses most previously developed models in a range of the accuracy metrics. The model has an advantage of being constructed from a relatively small number of layers. This reduces the computer resources and computational time. Moreover, we test our model on two types of datasets and argue that the currently developed deep-learning-based methods cannot efficiently distinguish between infected and contaminated cells. A more precise study of suspicious regions is required.Keywords: Malaria, deep learning, DL, convolution neural network, CNN, thin blood smears.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 655474 Deep Reinforcement Learning Approach for Trading Automation in the Stock Market
Authors: Taylan Kabbani, Ekrem Duman
Abstract:
Deep Reinforcement Learning (DRL) algorithms can scale to previously intractable problems. The automation of profit generation in the stock market is possible using DRL, by combining the financial assets price ”prediction” step and the ”allocation” step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. This work represents a DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem as a Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. We then solved the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm and achieved a 2.68 Sharpe ratio on the test dataset. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of DRL in financial markets over other types of machine learning and proves its credibility and advantages of strategic decision-making.
Keywords: Autonomous agent, deep reinforcement learning, MDP, sentiment analysis, stock market, technical indicators, twin delayed deep deterministic policy gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 524473 Metabolic Predictive Model for PMV Control Based on Deep Learning
Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon
Abstract:
In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.
Keywords: Deep learning, indoor quality, metabolism, predictive model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1193472 Personal Information Classification Based on Deep Learning in Automatic Form Filling System
Authors: Shunzuo Wu, Xudong Luo, Yuanxiu Liao
Abstract:
Recently, the rapid development of deep learning makes artificial intelligence (AI) penetrate into many fields, replacing manual work there. In particular, AI systems also become a research focus in the field of automatic office. To meet real needs in automatic officiating, in this paper we develop an automatic form filling system. Specifically, it uses two classical neural network models and several word embedding models to classify various relevant information elicited from the Internet. When training the neural network models, we use less noisy and balanced data for training. We conduct a series of experiments to test my systems and the results show that our system can achieve better classification results.Keywords: Personal information, deep learning, auto fill, NLP, document analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 861471 A Comparison of YOLO Family for Apple Detection and Counting in Orchards
Authors: Yuanqing Li, Changyi Lei, Zhaopeng Xue, Zhuo Zheng, Yanbo Long
Abstract:
In agricultural production and breeding, implementing automatic picking robot in orchard farming to reduce human labour and error is challenging. The core function of it is automatic identification based on machine vision. This paper focuses on apple detection and counting in orchards and implements several deep learning methods. Extensive datasets are used and a semi-automatic annotation method is proposed. The proposed deep learning models are in state-of-the-art YOLO family. In view of the essence of the models with various backbones, a multi-dimensional comparison in details is made in terms of counting accuracy, mAP and model memory, laying the foundation for realising automatic precision agriculture.
Keywords: Agricultural object detection, Deep learning, machine vision, YOLO family.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1099470 COSMO-RS Prediction for Choline Chloride/Urea Based Deep Eutectic Solvent: Chemical Structure and Application as Agent for Natural Gas Dehydration
Authors: Tayeb Aissaoui, Inas M. AlNashef
Abstract:
In recent years, green solvents named deep eutectic solvents (DESs) have been found to possess significant properties and to be applicable in several technologies. Choline chloride (ChCl) mixed with urea at a ratio of 1:2 and 80 °C was the first discovered DES. In this article, chemical structure and combination mechanism of ChCl: urea based DES were investigated. Moreover, the implementation of this DES in water removal from natural gas was reported. Dehydration of natural gas by ChCl:urea shows significant absorption efficiency compared to triethylene glycol. All above operations were retrieved from COSMOthermX software. This article confirms the potential application of DESs in gas industry.Keywords: COSMO-RS, deep eutectic solvents, dehydration, natural gas, structure, organic salt.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773469 Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification
Authors: Megha Gupta, Nupur Prakash
Abstract:
Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.
Keywords: comparative analysis, convolutional neural networks, deep learning, plant disease identification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 638468 A Multi-Feature Deep Learning Algorithm for Urban Traffic Classification with Limited Labeled Data
Authors: Rohan Putatunda, Aryya Gangopadhyay
Abstract:
Acoustic sensors, if embedded in smart street lights, can help in capturing the activities (car honking, sirens, events, traffic, etc.) in cities. Needless to say, the acoustic data from such scenarios are complex due to multiple audio streams originating from different events, and when decomposed to independent signals, the amount of retrieved data volume is small in quantity which is inadequate to train deep neural networks. So, in this paper, we address the two challenges: a) separating the mixed signals, and b) developing an efficient acoustic classifier under data paucity. So, to address these challenges, we propose an architecture with supervised deep learning, where the initial captured mixed acoustics data are analyzed with Fast Fourier Transformation (FFT), followed by filtering the noise from the signal, and then decomposed to independent signals by fast independent component analysis (Fast ICA). To address the challenge of data paucity, we propose a multi feature-based deep neural network with high performance that is reflected in our experiments when compared to the conventional convolutional neural network (CNN) and multi-layer perceptron (MLP).
Keywords: FFT, ICA, vehicle classification, multi-feature DNN, CNN, MLP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 431467 Mechanical Behavior of Deep-Drawn Cups with Aluminum/Duralumin Multi-Layered Clad Structures
Authors: Hideaki Tsukamoto, Yoshiki Komiya, Hisashi Sato, Yoshimi Watanabe
Abstract:
This study aims to investigate mechanical behavior of deep-drawn cups consisting of aluminum (A1050)/ duralumin (A2017) multi-layered clad structures with micro- and macro-scale functional gradients. Such multi-layered clad structures are possibly used for a new type of crash-boxes in automobiles to effectively absorb the impact forces generated when automobiles having collisions. The effect of heat treatments on microstructure, compositional gradient, micro hardness in 2 and 6-layered aluminum/ duralumin clad structures, which were fabricated by hot rolling, have been investigated. Impact compressive behavior of deep-drawn cups consisting of such aluminum/ duralumin clad structures has been also investigated in terms of energy absorption and maximum force. Deep-drawn cups consisting of 6-layerd clad structures with microand macro-scale functional gradients exhibit superior properties in impact compressive tests.Keywords: Crash box, functionally graded material (FGM), Impact compressive property, Multi-layered clad structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130466 A Deep-Learning Based Prediction of Pancreatic Adenocarcinoma with Electronic Health Records from the State of Maine
Authors: Xiaodong Li, Peng Gao, Chao-Jung Huang, Shiying Hao, Xuefeng B. Ling, Yongxia Han, Yaqi Zhang, Le Zheng, Chengyin Ye, Modi Liu, Minjie Xia, Changlin Fu, Bo Jin, Karl G. Sylvester, Eric Widen
Abstract:
Predicting the risk of Pancreatic Adenocarcinoma (PA) in advance can benefit the quality of care and potentially reduce population mortality and morbidity. The aim of this study was to develop and prospectively validate a risk prediction model to identify patients at risk of new incident PA as early as 3 months before the onset of PA in a statewide, general population in Maine. The PA prediction model was developed using Deep Neural Networks, a deep learning algorithm, with a 2-year electronic-health-record (EHR) cohort. Prospective results showed that our model identified 54.35% of all inpatient episodes of PA, and 91.20% of all PA that required subsequent chemoradiotherapy, with a lead-time of up to 3 months and a true alert of 67.62%. The risk assessment tool has attained an improved discriminative ability. It can be immediately deployed to the health system to provide automatic early warnings to adults at risk of PA. It has potential to identify personalized risk factors to facilitate customized PA interventions.
Keywords: Cancer prediction, deep learning, electronic health records, pancreatic adenocarcinoma.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 846465 Development and Assessment of the Competence Creativity Applied to Technical Drawing
Authors: Maria J. Garcia-Garcia, Concepcion Gonzalez-Garcia, Gabriel A. Dorado, Luis J. Fernandez
Abstract:
The results obtained after incorporating the competence “creativity" to the subject Technical Drawing of the first course of the Degree in Forestry, Technical University of Madrid, are presented in this study.At first, learning activities which could serve two functions at the same time -developing students- creativity and developing other specific competences of the subject- were considered. Besides, changes in the assessment procedure were made and a method which analyzes two aspects of the assessment of the competence creativity was established. On the one hand, the products are evaluated by analyzing the outcomes obtained by students in the essays suggested and by establishing a parameter to assess the creativity expressed in those essays. On the other, an assessment of the student is directly carried out through a psychometric test which has been previously chosen by the team.Moreover, these results can be applied to similar or could be of general application.
Keywords: assessment competence, assessment creativity, creativity, generic competences
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559464 Facial Emotion Recognition with Convolutional Neural Network Based Architecture
Authors: Koray U. Erbas
Abstract:
Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.
Keywords: Convolutional Neural Network, Deep Learning, Deep Learning Based FER, Facial Emotion Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1370463 Optimizing Voltage Parameter of Deep Brain Stimulation for Parkinsonian Patients by Modeling
Authors: M. Sadeghi, A.H. Jafari, S.M.P. Firoozabadi
Abstract:
Deep Brain Stimulation or DBS is the second solution for Parkinson's Disease. Its three parameters are: frequency, pulse width and voltage. They must be optimized to achieve successful treatment. Nowadays it is done clinically by neurologists and there is not certain numerical method to detect them. The aim of this research is to introduce simulation and modeling of Parkinson's Disease treatment as a computational procedure to select optimum voltage. We recorded finger tremor signals of some Parkinsonian patients under DBS treatment at constant frequency and pulse width but variable voltages; then, we adapted a new model to fit these data. The optimum voltages obtained by data fitting results were the same as neurologists- commented voltages, which means modeling can be used as an engineering method to select optimum stimulation voltages.Keywords: modeling, Deep Brain Stimulation, Parkinson'sdisease, tremor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783462 Single-Camera Basketball Tracker through Pose and Semantic Feature Fusion
Authors: Adrià Arbués-Sangüesa, Coloma Ballester, Gloria Haro
Abstract:
Tracking sports players is a widely challenging scenario, specially in single-feed videos recorded in tight courts, where cluttering and occlusions cannot be avoided. This paper presents an analysis of several geometric and semantic visual features to detect and track basketball players. An ablation study is carried out and then used to remark that a robust tracker can be built with Deep Learning features, without the need of extracting contextual ones, such as proximity or color similarity, nor applying camera stabilization techniques. The presented tracker consists of: (1) a detection step, which uses a pretrained deep learning model to estimate the players pose, followed by (2) a tracking step, which leverages pose and semantic information from the output of a convolutional layer in a VGG network. Its performance is analyzed in terms of MOTA over a basketball dataset with more than 10k instances.Keywords: Basketball, deep learning, feature extraction, single-camera, tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 698461 Toward Understanding and Testing Deep Learning Information Flow in Deep Learning-Based Android Apps
Authors: Jie Zhang, Qianyu Guo, Tieyi Zhang, Zhiyong Feng, Xiaohong Li
Abstract:
The widespread popularity of mobile devices and the development of artificial intelligence (AI) have led to the widespread adoption of deep learning (DL) in Android apps. Compared with traditional Android apps (traditional apps), deep learning based Android apps (DL-based apps) need to use more third-party application programming interfaces (APIs) to complete complex DL inference tasks. However, existing methods (e.g., FlowDroid) for detecting sensitive information leakage in Android apps cannot be directly used to detect DL-based apps as they are difficult to detect third-party APIs. To solve this problem, we design DLtrace, a new static information flow analysis tool that can effectively recognize third-party APIs. With our proposed trace and detection algorithms, DLtrace can also efficiently detect privacy leaks caused by sensitive APIs in DL-based apps. Additionally, we propose two formal definitions to deal with the common polymorphism and anonymous inner-class problems in the Android static analyzer. Using DLtrace, we summarize the non-sequential characteristics of DL inference tasks in DL-based apps and the specific functionalities provided by DL models for such apps. We conduct an empirical assessment with DLtrace on 208 popular DL-based apps in the wild and found that 26.0% of the apps suffered from sensitive information leakage. Furthermore, DLtrace outperformed FlowDroid in detecting and identifying third-party APIs. The experimental results demonstrate that DLtrace expands FlowDroid in understanding DL-based apps and detecting security issues therein.
Keywords: Mobile computing, deep learning apps, sensitive information, static analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 596460 The Effection of Different Culturing Proportion of Deep Sea Water(DSW) to Surface Sea Water(SSW) in Reductive Ability and Phenolic Compositions of Sargassum Cristaefolium
Authors: H. L. Ku, K. C. Yang, S. Y. Jhou, S. C. Lee, C. S. Lin
Abstract:
Characterized as rich mineral substances, low temperature, few bacteria, and stability with numerous implementation aspects on aquaculture, food, drinking, and leisure, the deep sea water (DSW) development has become a new industry in the world. It has been report that marine algae contain various biologically active compounds. This research focued on the affections in cultivating Sagrassum cristaefolium with different concentration of deep sea water(DSW) and surface sea water(SSW). After two and four weeks, the total phenolic contents were compared in Sagrassum cristaefolium culturing with different ways, and the reductive activity of them was also be tried with potassium ferricyanide. Those fresh seaweeds were dried with oven and were ground to powder. Progressively, the marine algae we cultured was extracted by water under the condition with heating them at 90Ôäâ for 1hr.The total phenolic contents were be executed using Folin–Ciocalteu method. The results were explaining as follows: the highest total phenolic contents and the best reductive ability of all could be observed on the 1/4 proportion of DSW to SSW culturing in two weeks. Furthermore, the 1/2 proportion of DSW to SSW also showed good reductive ability and plentiful phenolic compositions. Finally, we confirmed that difference proportion of DSW and SSW is the major point relating to ether the total phenolic components or the reductive ability in the Sagrassum cristaefolium. In the future, we will use this way to mass production the marine algae or other micro algae on industry applications.Keywords: deep sea water(DSW), surface sea water(SSW), phenolic contents, reductive ability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618459 Native Point Defects in ZnO
Authors: A. M. Gsiea, J. P. Goss, P. R. Briddon, Ramadan. M. Al-habashi, K. M. Etmimi, Khaled. A. S. Marghani
Abstract:
Using first-principles methods based on density functional theory and pseudopotentials, we have performed a details study of native defects in ZnO. Native point defects are unlikely to be cause of the unintentional n-type conductivity. Oxygen vacancies, which considered most often been invoked as shallow donors, have high formation energies in n-type ZnO, in edition are a deep donors. Zinc interstitials are shallow donors, with high formation energies in n-type ZnO, and thus unlikely to be responsible on their own for unintentional n-type conductivity under equilibrium conditions, as well as Zn antisites which have higher formation energies than zinc interstitials. Zinc vacancies are deep acceptors with low formation energies for n-type and in which case they will not play role in p-type coductivity of ZnO. Oxygen interstitials are stable in the form of electrically inactive split interstitials as well as deep acceptors at the octahedral interstitial site under n-type conditions. Our results may provide a guide to experimental studies of point defects in ZnO.
Keywords: DFT, Native, n-Type, ZnO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4547458 An Intelligent Baby Care System Based on IoT and Deep Learning Techniques
Authors: Chinlun Lai, Lunjyh Jiang
Abstract:
Due to the heavy burden and pressure of caring for infants, an integrated automatic baby watching system based on IoT smart sensing and deep learning machine vision techniques is proposed in this paper. By monitoring infant body conditions such as heartbeat, breathing, body temperature, sleeping posture, as well as the surrounding conditions such as dangerous/sharp objects, light, noise, humidity and temperature, the proposed system can analyze and predict the obvious/potential dangerous conditions according to observed data and then adopt suitable actions in real time to protect the infant from harm. Thus, reducing the burden of the caregiver and improving safety efficiency of the caring work. The experimental results show that the proposed system works successfully for the infant care work and thus can be implemented in various life fields practically.Keywords: Baby care system, internet of things, deep learning, machine vision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901457 Modeling of a Stewart Platform for Analyzing One Directional Dynamics for Spacecraft Docking Operations
Authors: Leonardo Herrera, Shield B. Lin, Stephen J. Montgomery-Smith, Ziraguen O. Williams
Abstract:
A one-directional dynamic model of a Stewart Platform was developed to assist NASA in analyzing the dynamic response in spacecraft docking operations. A simplified mechanical drawing was created, capturing the physical structure's main features. A simplified schematic diagram was developed into a lumped mass model from the mechanical drawing. Three differential equations were derived according to the schematic diagram. A Simulink diagram was created using MATLAB to represent the three equations. System parameters, including spring constants and masses, are derived in detail from the physical system. The model can be used for further analysis via computer simulation in predicting dynamic response in its main docking direction, i.e., up-and-down motion.
Keywords: Stewart platform, docking operation, spacecraft, spring constant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67456 Automatic Number Plate Recognition System Based on Deep Learning
Authors: T. Damak, O. Kriaa, A. Baccar, M. A. Ben Ayed, N. Masmoudi
Abstract:
In the last few years, Automatic Number Plate Recognition (ANPR) systems have become widely used in the safety, the security, and the commercial aspects. Forethought, several methods and techniques are computing to achieve the better levels in terms of accuracy and real time execution. This paper proposed a computer vision algorithm of Number Plate Localization (NPL) and Characters Segmentation (CS). In addition, it proposed an improved method in Optical Character Recognition (OCR) based on Deep Learning (DL) techniques. In order to identify the number of detected plate after NPL and CS steps, the Convolutional Neural Network (CNN) algorithm is proposed. A DL model is developed using four convolution layers, two layers of Maxpooling, and six layers of fully connected. The model was trained by number image database on the Jetson TX2 NVIDIA target. The accuracy result has achieved 95.84%.
Keywords: Automatic number plate recognition, character segmentation, convolutional neural network, CNN, deep learning, number plate localization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1286455 Research on the Influence of Emotional Labor Strategy used by Public Transportation Employee on Service Satisfaction
Authors: Ming-Hsiung Wu, Yu-Hsi Yuan
Abstract:
The aim of the research is to understand whether the accuracy of customer detection of employee emotional labor strategy would influence the overall service satisfaction. From path analysis, it was found that employee-s positive emotions positively influenced service quality. Service quality in turn influenced Customer detection of employee emotional deep action strategy and Customer detection of employee emotional surface action strategy. Lastly, Customer detection of employee emotional deep action strategy and Customer detection of employee emotional surface action strategy positively influenced service satisfaction. Based on the analysis results, suggestions are proposed to provide reference for human resource management and use in relative fields.
Keywords: Emotional labor, Emotional deep action strategy, Emotional surface action strategy, Service satisfaction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595454 On the Difference between Cultural and Religious Identities: A Case Study of Christianity and Islam in Some African and Asian Countries
Authors: Mputu Ngandu Simon
Abstract:
Culture and religion are two of the most significant markers of an individual or group`s identity. Religion finds its expression in a given culture and culture is the costume in which a religion is dressed. In other words, there is a crucial relationship between religion and culture which should not be ignored. On the one hand, religion influences the way in which a culture is consumed. A person`s consumption of a certain cultural practice is influenced by his/her religious identity. On the other hand, the cultural identity plays an important role on how a religion is practiced by its adherents. Some cultural practices become more credible when interpreted in religious terms just as religious doctrines and dogmas need cultural interpretation to be understood by a given people, in a given context. This relationship goes so deep that sometimes the boundaries between culture and religion become blurred and people end up mixing religion and culture. In some cases, the two are considered to be one and the same thing. However, despite this apparent sameness, religion and culture are two distinct aspects of identity and they should always be considered as such. One results from knowledge while the other has beliefs as its foundation. This paper explores the difference between cultural and religious identities by drawing from existing literature on this topic as a whole, before applying that knowledge to two specific case studies: Christianity among San people of Botswana, Namibia, Angola, Zambia, Lesotho, Zimbabwe, and South Africa, and Islam in Somalia, Kenya, Ethiopia, Djibouti and Iran.
Keywords: Belief, identity, knowledge, culture, religion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 496453 A Chaotic Study on Tremor Behavior of Parkinsonian Patients under Deep Brain Stimulation
Authors: M. Sadeghi, A.H. Jafari, S.M.P. Firoozabadi
Abstract:
Deep Brain Stimulation or DBS is a surgical treatment for Parkinson-s Disease with three stimulation parameters: frequency, pulse width, and voltage. The parameters should be selected appropriately to achieve effective treatment. This selection now, performs clinically. The aim of this research is to study chaotic behavior of recorded tremor of patients under DBS in order to present a computational method to recognize stimulation optimum voltage. We obtained some chaotic features of tremor signal, and discovered embedding space of it has an attractor, and its largest Lyapunov exponent is positive, which show tremor signal has chaotic behavior, also we found out, in optimal voltage, entropy and embedding space variance of tremor signal have minimum values in comparison with other voltages. These differences can help neurologists recognize optimal voltage numerically, which leads to reduce patients' role and discomfort in optimizing stimulation parameters and to do treatment with high accuracy.
Keywords: Chaos, Deep Brain Stimulation, Parkinson's Disease, Stimulation Parameters, tremor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826452 Improved Rare Species Identification Using Focal Loss Based Deep Learning Models
Authors: Chad Goldsworthy, B. Rajeswari Matam
Abstract:
The use of deep learning for species identification in camera trap images has revolutionised our ability to study, conserve and monitor species in a highly efficient and unobtrusive manner, with state-of-the-art models achieving accuracies surpassing the accuracy of manual human classification. The high imbalance of camera trap datasets, however, results in poor accuracies for minority (rare or endangered) species due to their relative insignificance to the overall model accuracy. This paper investigates the use of Focal Loss, in comparison to the traditional Cross Entropy Loss function, to improve the identification of minority species in the “255 Bird Species” dataset from Kaggle. The results show that, although Focal Loss slightly decreased the accuracy of the majority species, it was able to increase the F1-score by 0.06 and improve the identification of the bottom two, five and ten (minority) species by 37.5%, 15.7% and 10.8%, respectively, as well as resulting in an improved overall accuracy of 2.96%.
Keywords: Convolutional neural networks, data imbalance, deep learning, focal loss, species classification, wildlife conservation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419451 Digital Homeostasis: Tangible Computing as a Multi-Sensory Installation
Authors: Andrea Macruz
Abstract:
This paper explores computation as a process for design by examining how computers can become more than an operative strategy in a designer's toolkit. It documents this, building upon concepts of neuroscience and Antonio Damasio's Homeostasis Theory, which is the control of bodily states through feedback intended to keep conditions favorable for life. To do this, it follows a methodology through algorithmic drawing and discusses the outcomes of three multi-sensory design installations, which culminated from a course in an academic setting. It explains both the studio process that took place to create the installations and the computational process that was developed, related to the fields of algorithmic design and tangible computing. It discusses how designers can use computational range to achieve homeostasis related to sensory data in a multi-sensory installation. The outcomes show clearly how people and computers interact with different sensory modalities and affordances. They propose using computers as meta-physical stabilizers rather than tools.
Keywords: Antonio Damasio, emotional feedback, algorithmic drawing, homeostasis, multi-sensory installation, neuroscience.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 366450 Applying Hybrid Graph Drawing and Clustering Methods on Stock Investment Analysis
Authors: Mouataz Zreika, Maria Estela Varua
Abstract:
Stock investment decisions are often made based on current events of the global economy and the analysis of historical data. Conversely, visual representation could assist investors’ gain deeper understanding and better insight on stock market trends more efficiently. The trend analysis is based on long-term data collection. The study adopts a hybrid method that combines the Clustering algorithm and Force-directed algorithm to overcome the scalability problem when visualizing large data. This method exemplifies the potential relationships between each stock, as well as determining the degree of strength and connectivity, which will provide investors another understanding of the stock relationship for reference. Information derived from visualization will also help them make an informed decision. The results of the experiments show that the proposed method is able to produced visualized data aesthetically by providing clearer views for connectivity and edge weights.Keywords: Clustering, force-directed, graph drawing, stock investment analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595449 Characteristics of Wall Thickness Increase in Pipe Reduction Process using Planetary Rolls
Authors: Yuji Kotani, Shunsuke Kanai, Hisaki Watari
Abstract:
In recent years, global warming has become a worldwide problem. The reduction of carbon dioxide emissions is a top priority for many companies in the manufacturing industry. In the automobile industry as well, the reduction of carbon dioxide emissions is one of the most important issues. Technology to reduce the weight of automotive parts improves the fuel economy of automobiles, and is an important technology for reducing carbon dioxide. Also, even if this weight reduction technology is applied to electric automobiles rather than gasoline automobiles, reducing energy consumption remains an important issue. Plastic processing of hollow pipes is one important technology for realizing the weight reduction of automotive parts. Ohashi et al. [1],[2] present an example of research on pipe formation in which a process was carried out to enlarge a pipe diameter using a lost core, achieving the suppression of wall thickness reduction and greater pipe expansion than hydroforming. In this study, we investigated a method to increase the wall thickness of a pipe through pipe compression using planetary rolls. The establishment of a technology whereby the wall thickness of a pipe can be controlled without buckling the pipe is an important technology for the weight reduction of products. Using the finite element analysis method, we predicted that it would be possible to increase the compression of an aluminum pipe with a 3mm wall thickness by approximately 20%, and wall thickness by approximately 20% by pressing the hollow pipe with planetary rolls.Keywords: Pipe-Forming, Wall Thickness, Finite-element-method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2984448 Influence of Wall Stiffness and Embedment Depth on Excavations Supported by Cantilever Walls
Authors: Muhammad Naseem Baig, Abdul Qudoos Khan, Jamal Ali
Abstract:
Ground deformations in deep excavations are affected by wall stiffness and pile embedment ratio. This paper presents the findings of a parametric study of a 64-ft deep excavation in mixed stiff soil conditions supported by cantilever pile wall. A series of finite element analysis has been carried out in Plaxis 2D by varying the pile embedment ratio and wall stiffness. It has been observed that maximum wall deflections decrease by increasing the embedment ratio up to 1.50; however, any further increase in pile length does not improve the performance of the wall. Similarly, increasing wall stiffness reduces the wall deformations and affects the deflection patterns of the wall. The finite element analysis results are compared with the field data of 25 case studies of cantilever walls. Analysis results fall within the range of normalized wall deflections of the 25 case studies. It has been concluded that deep excavations can be supported by cantilever walls provided the system stiffness is increased significantly.
Keywords: Excavations, support systems, wall stiffness, cantilever walls.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 443