Search results for: real time virtual learning.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9369

Search results for: real time virtual learning.

8559 Knowledge Management and e-Learning –An Agent-Based Approach

Authors: Teodora Bakardjieva, Galya Gercheva

Abstract:

In this paper an open agent-based modular framework for personalized and adaptive curriculum generation in e-learning environment is proposed. Agent-based approaches offer several potential advantages over alternative approaches. Agent-based systems exhibit high levels of flexibility and robustness in dynamic or unpredictable environments by virtue of their intrinsic autonomy. The presented framework enables integration of different types of expert agents, various kinds of learning objects and user modeling techniques. It creates possibilities for adaptive e-learning process. The KM e-learning system is in a process of implementation in Varna Free University and will be used for supporting the educational process at the University.

Keywords: agents, e-Learning, knowledge management, knowledge sharing, artificial intelligence

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2165
8558 Information Delivery and Advanced Traffic Information Systems in Istanbul

Authors: Kevser Simsek, Rahime Gunay

Abstract:

In this paper, we focused primarily on Istanbul data that is gathered by using intelligent transportation systems (ITS), and considered the developments in traffic information delivery and future applications that are being planned for implementation. Since traffic congestion is increasing and travel times are becoming less consistent and less predictable, traffic information delivery has become a critical issue. Considering the fuel consumption and wasted time in traffic, advanced traffic information systems are becoming increasingly valuable which enables travelers to plan their trips more accurately and easily.

Keywords: Data Fusion, Istanbul, ITS, Real Time Information, Traffic Information, Travel Time, Urban Mobility

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040
8557 Prediction of Research Topics Using Ensemble of Best Predictors from Similar Dataset

Authors: Indra Budi, Rizal Fathoni Aji, Agus Widodo

Abstract:

Prediction of future research topics by using time series analysis either statistical or machine learning has been conducted previously by several researchers. Several methods have been proposed to combine the forecasting results into single forecast. These methods use fixed combination of individual forecast to get the final forecast result. In this paper, quite different approach is employed to select the forecasting methods, in which every point to forecast is calculated by using the best methods used by similar validation dataset. The dataset used in the experiment is time series derived from research report in Garuda, which is an online sites belongs to the Ministry of Education in Indonesia, over the past 20 years. The experimental result demonstrates that the proposed method may perform better compared to the fix combination of predictors. In addition, based on the prediction result, we can forecast emerging research topics for the next few years.

Keywords: Combination, emerging topics, ensemble, forecasting, machine learning, prediction, research topics, similarity measure, time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121
8556 An E-learning System Architecture based on Cloud Computing

Authors: Md. Anwar Hossain Masud, Xiaodi Huang

Abstract:

The massive proliferation of affordable computers, Internet broadband connectivity and rich education content has created a global phenomenon in which information and communication technology (ICT) is being used to transform education. Therefore, there is a need to redesign the educational system to meet the needs better. The advent of computers with sophisticated software has made it possible to solve many complex problems very fast and at a lower cost. This paper introduces the characteristics of the current E-Learning and then analyses the concept of cloud computing and describes the architecture of cloud computing platform by combining the features of E-Learning. The authors have tried to introduce cloud computing to e-learning, build an e-learning cloud, and make an active research and exploration for it from the following aspects: architecture, construction method and external interface with the model.

Keywords: Architecture, Cloud Computing, E-learning, Information Technology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11069
8555 Customer Churn Prediction: A Cognitive Approach

Authors: Damith Senanayake, Lakmal Muthugama, Laksheen Mendis, Tiroshan Madushanka

Abstract:

Customer churn prediction is one of the most useful areas of study in customer analytics. Due to the enormous amount of data available for such predictions, machine learning and data mining have been heavily used in this domain. There exist many machine learning algorithms directly applicable for the problem of customer churn prediction, and here, we attempt to experiment on a novel approach by using a cognitive learning based technique in an attempt to improve the results obtained by using a combination of supervised learning methods, with cognitive unsupervised learning methods.

Keywords: Growing Self Organizing Maps, Kernel Methods, Churn Prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2558
8554 Color Image Segmentation Using Competitive and Cooperative Learning Approach

Authors: Yinggan Tang, Xinping Guan

Abstract:

Color image segmentation can be considered as a cluster procedure in feature space. k-means and its adaptive version, i.e. competitive learning approach are powerful tools for data clustering. But k-means and competitive learning suffer from several drawbacks such as dead-unit problem and need to pre-specify number of cluster. In this paper, we will explore to use competitive and cooperative learning approach to perform color image segmentation. In competitive and cooperative learning approach, seed points not only compete each other, but also the winner will dynamically select several nearest competitors to form a cooperative team to adapt to the input together, finally it can automatically select the correct number of cluster and avoid the dead-units problem. Experimental results show that CCL can obtain better segmentation result.

Keywords: Color image segmentation, competitive learning, cluster, k-means algorithm, competitive and cooperative learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615
8553 Enhancing Experiential Learning in a Smart Flipped Classroom: A Case Study

Authors: Fahri Benli, Sitalakshmi Venkatraman, Ye Wei, Fiona Wahr

Abstract:

A flipped classroom which is a form of blended learning shifts the focus from a teacher-centered approach to a learner-centered approach. However, not all learners are ready to take the active role of knowledge and skill acquisition through a flipped classroom and they continue to delve in a passive mode of learning. This challenges educators in designing, scaffolding and facilitating in-class activities for students to have active learning experiences in a flipped classroom environment. Experiential learning theories have been employed by educators in the past in physical classrooms based on the principle that knowledge could be actively developed through direct experience. However, with more of online teaching witnessed recently, there are inherent limitations in designing and simulating an experiential learning activity for an online environment. In this paper, we explore enhancing experiential learning using smart digital tools that could be employed in a flipped classroom within a higher education setting. We present the use of smart collaborative tools online to enhance the experiential learning activity to teach higher-order cognitive concepts of business process modeling as a case study.

Keywords: Experiential learning, flipped classroom, smart software tools, online learning higher-order learning attributes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 433
8552 Innovation in Lean Thinking to Achieve Rapid Construction

Authors: Muhamad Azani Yahya, Vikneswaran Munikanan, Mohammed Alias Yusof

Abstract:

Lean thinking holds the potential for improving the construction sector, and therefore, it is a concept that should be adopted by construction sector players and academicians in the real industry. Bridging from that, a learning process for construction sector players regarding this matter should be the agenda in gaining the knowledge in preparation for their career. Lean principles offer opportunities for reducing lead times, eliminating non-value adding activities, reducing variability, and are facilitated by methods such as pull scheduling, simplified operations and buffer reduction. Thus, the drive for rapid construction, which is a systematic approach in enhancing efficiency to deliver a project using time reduction, while lean is the continuous process of eliminating waste, meeting or exceeding all customer requirements, focusing on the entire value stream and pursuing perfection in the execution of a constructed project. The methodology presented is shown to be valid through literature, interviews and questionnaire. The results show that the majority of construction sector players unfamiliar with lean thinking and they agreed that it can improve the construction process flow. With this background knowledge established and identified, best practices and recommended action are drawn.

Keywords: Construction improvement, rapid construction, time reduction, lean construction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1305
8551 Unsupervised Feature Learning by Pre-Route Simulation of Auto-Encoder Behavior Model

Authors: Youngjae Jin, Daeshik Kim

Abstract:

This paper describes a cycle accurate simulation results of weight values learned by an auto-encoder behavior model in terms of pre-route simulation. Given the results we visualized the first layer representations with natural images. Many common deep learning threads have focused on learning high-level abstraction of unlabeled raw data by unsupervised feature learning. However, in the process of handling such a huge amount of data, the learning method’s computation complexity and time limited advanced research. These limitations came from the fact these algorithms were computed by using only single core CPUs. For this reason, parallel-based hardware, FPGAs, was seen as a possible solution to overcome these limitations. We adopted and simulated the ready-made auto-encoder to design a behavior model in VerilogHDL before designing hardware. With the auto-encoder behavior model pre-route simulation, we obtained the cycle accurate results of the parameter of each hidden layer by using MODELSIM. The cycle accurate results are very important factor in designing a parallel-based digital hardware. Finally this paper shows an appropriate operation of behavior model based pre-route simulation. Moreover, we visualized learning latent representations of the first hidden layer with Kyoto natural image dataset.

Keywords: Auto-encoder, Behavior model simulation, Digital hardware design, Pre-route simulation, Unsupervised feature learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2689
8550 A Real-Time Bayesian Decision-Support System for Predicting Suspect Vehicle’s Intended Target Using a Sparse Camera Network

Authors: Payam Mousavi, Andrew L. Stewart, Huiwen You, Aryeh F. G. Fayerman

Abstract:

We present a decision-support tool to assist an operator in the detection and tracking of a suspect vehicle traveling to an unknown target destination. Multiple data sources, such as traffic cameras, traffic information, weather, etc., are integrated and processed in real-time to infer a suspect’s intended destination chosen from a list of pre-determined high-value targets. Previously, we presented our work in the detection and tracking of vehicles using traffic and airborne cameras. Here, we focus on the fusion and processing of that information to predict a suspect’s behavior. The network of cameras is represented by a directional graph, where the edges correspond to direct road connections between the nodes and the edge weights are proportional to the average time it takes to travel from one node to another. For our experiments, we construct our graph based on the greater Los Angeles subset of the Caltrans’s “Performance Measurement System” (PeMS) dataset. We propose a Bayesian approach where a posterior probability for each target is continuously updated based on detections of the suspect in the live video feeds. Additionally, we introduce the concept of ‘soft interventions’, inspired by the field of Causal Inference. Soft interventions are herein defined as interventions that do not immediately interfere with the suspect’s movements; rather, a soft intervention may induce the suspect into making a new decision, ultimately making their intent more transparent. For example, a soft intervention could be temporarily closing a road a few blocks from the suspect’s current location, which may require the suspect to change their current course. The objective of these interventions is to gain the maximum amount of information about the suspect’s intent in the shortest possible time. Our system currently operates in a human-on-the-loop mode where at each step, a set of recommendations are presented to the operator to aid in decision-making. In principle, the system could operate autonomously, only prompting the operator for critical decisions, allowing the system to significantly scale up to larger areas and multiple suspects. Once the intended target is identified with sufficient confidence, the vehicle is reported to the authorities to take further action. Other recommendations include a selection of road closures, i.e., soft interventions, or to continue monitoring. We evaluate the performance of the proposed system using simulated scenarios where the suspect, starting at random locations, takes a noisy shortest path to their intended target. In all scenarios, the suspect’s intended target is unknown to our system. The decision thresholds are selected to maximize the chances of determining the suspect’s intended target in the minimum amount of time and with the smallest number of interventions. We conclude by discussing the limitations of our current approach to motivate a machine learning approach, based on reinforcement learning in order to relax some of the current limiting assumptions.

Keywords: Autonomous surveillance, Bayesian reasoning, decision-support, interventions, patterns-of-life, predictive analytics, predictive insights.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 539
8549 A Formative Assessment Model within the Competency-Based-Approach for an Individualized E-learning Path

Authors: El Falaki Brahim, Khalidi Idrissi Mohammed, Bennani Samir

Abstract:

E-learning is not restricted to the use of new technologies for the online content, but also induces the adoption of new approaches to improve the quality of education. This quality depends on the ability of these approaches (technical and pedagogical) to provide an adaptive learning environment. Thus, the environment should include features that convey intentions and meeting the educational needs of learners by providing a customized learning path to acquiring a competency concerned In our proposal, we believe that an individualized learning path requires knowledge of the learner. Therefore, it must pass through a personalization of diagnosis to identify precisely the competency gaps to fill, and reduce the cognitive load To personalize the diagnosis and pertinently measure the competency gap, we suggest implementing the formative assessment in the e-learning environment and we propose the introduction of a pre-regulation process in the area of formative assessment, involving its individualization and implementation in e-learning.

Keywords: Competency-Based-Approach, E-learning, Formative assessment, learner model, Modeling, pre-regulation process

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121
8548 Online Collaboration Learning: A Way to Enhance Students' Achievement at Kingdom of Bahrain

Authors: Jaflah H. Al-Ammary

Abstract:

The increasing recognition of the need for education to be closely aligned with team playing, project based learning and problem solving approaches has increase the interest in collaborative learning among university and college instructors. Using online collaboration learning in learning can enhance the outcome and achievement of students as well as improve their communication, critical thinking and personnel skills. The current research aims at examining the effect of OCL on the student's achievement at Kingdom of Bahrain. Numbers of objectives were set to achieve the aim of the research include: investigating the current situation regarding the collaborative learning and OCL at the Kingdom of Bahrain by identifying the advantages and effectiveness of OCL as a learning tool over traditional learning, examining the factors that affect OCL as well as examining the impact of OCL on the student's achievement. To achieve these objectives, quantitative method was adopted. Two hundred and thirty one questionnaires were distributed to students in different local and private universities at Kingdom of Bahrain. The findings of the research show that most of the students prefer to use FTFCL in learning and that OCL is already adopted in some universities especially in University of Bahrain. Moreover, the most factors affecting the adopted OCL are perceived readiness, and guidance and support.

Keywords: Collaborative learning, perceived readiness, student achievement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2297
8547 Improving Listening Comprehension for EFL Pre-Intermediate Students through a Blended Learning Strategy

Authors: Heba Mustafa Abdullah

Abstract:

The research aimed at examining the effect of using a suggested blended learning (BL) strategy on developing EFL pre- intermediate students. The study adopted the quasi-experimental design. The sample of the research consisted of a group of 26 EFL pre- intermediate students. Tools of the study included a listening comprehension checklist and a pre-post listening comprehension test. Results were discussed in relation to several factors that affected the language learning process. Finally, the research provided beneficial contributions in relation to manipulating BL strategy with respect to language learning process in general and oral language learning in particular.

Keywords: Blended learning, English as a foreign language, listening comprehension, oral language instruction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2402
8546 A Novel Fuzzy Logic Based Controller to Adjust the Brightness of the Television Screen with Respect to Surrounding Light

Authors: A. V. Sai Balasubramanian, N. Ravi Shankar, S. Subbaraman, R. Rengaraj

Abstract:

One of the major cause of eye strain and other problems caused while watching television is the relative illumination between the screen and its surrounding. This can be overcome by adjusting the brightness of the screen with respect to the surrounding light. A controller based on fuzzy logic is proposed in this paper. The fuzzy controller takes in the intensity of light surrounding the screen and the present brightness of the screen as input. The output of the fuzzy controller is the grid voltage corresponding to the required brightness. This voltage is given to CRT and brightness is controller dynamically. For the given test system data, different de-fuzzifier methods have been implemented and the results are compared. In order to validate the effectiveness of the proposed approach, a fuzzy controller has been designed by obtaining a test data from a real time system. The simulations are performed in MATLAB and are verified with standard system data. The proposed approach can be implemented for real time applications.

Keywords: Fuzzy controller, Grid voltage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2784
8545 Testing Loaded Programs Using Fault Injection Technique

Authors: S. Manaseer, F. A. Masooud, A. A. Sharieh

Abstract:

Fault tolerance is critical in many of today's large computer systems. This paper focuses on improving fault tolerance through testing. Moreover, it concentrates on the memory faults: how to access the editable part of a process memory space and how this part is affected. A special Software Fault Injection Technique (SFIT) is proposed for this purpose. This is done by sequentially scanning the memory of the target process, and trying to edit maximum number of bytes inside that memory. The technique was implemented and tested on a group of programs in software packages such as jet-audio, Notepad, Microsoft Word, Microsoft Excel, and Microsoft Outlook. The results from the test sample process indicate that the size of the scanned area depends on several factors. These factors are: process size, process type, and virtual memory size of the machine under test. The results show that increasing the process size will increase the scanned memory space. They also show that input-output processes have more scanned area size than other processes. Increasing the virtual memory size will also affect the size of the scanned area but to a certain limit.

Keywords: Complex software systems, Error detection, Fault tolerance, Injection and testing methodology, Memory faults, Process and virtual memory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
8544 Automatic Detection of Suicidal Behaviors Using an RGB-D Camera: Azure Kinect

Authors: Maha Jazouli

Abstract:

Suicide is one of the leading causes of death among prisoners, both in Canada and internationally. In recent years, rates of attempts of suicide and self-harm suicide have increased, with hangings being the most frequently used method. The objective of this article is to propose a method to automatically detect suicidal behaviors in real time. We present a gesture recognition system that consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using machine learning algorithms (MLA). Tests show that the proposed system gives satisfactory results. This smart video surveillance system can help assist staff responsible for the safety and health of inmates by alerting them when suicidal behavior is detected, which helps reduce mortality rates and save lives.

Keywords: Suicide detection, Kinect Azure, RGB-D camera, SVM, gesture recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 447
8543 A Retrospective Analysis of a Professional Learning Community: How Teachers- Capacities Shaped It

Authors: S.Pancucci

Abstract:

The purpose of this paper is to describe the process of setting up a learning community within an elementary school in Ontario, Canada. The description is provided through reflection and examination of field notes taken during the yearlong training and implementation process. Specifically the impact of teachers- capacity on the creation of a learning community was of interest. This paper is intended to inform and add to the debate around the tensions that exist in implementing a bottom-up professional development model like the learning community in a top-down organizational structure. My reflections of the process illustrate that implementation of the learning community professional development model may be difficult and yet transformative in the professional lives of the teachers, students, and administration involved in the change process. I conclude by suggesting the need for a new model of professional development that requires a transformative shift in power dynamics and a shift in the view of what constitutes effective professional learning.

Keywords: Learning community model, professionaldevelopment, teacher capacity, teacher leadership.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
8542 Bayesian Network Model for Students- Laboratory Work Performance Assessment: An Empirical Investigation of the Optimal Construction Approach

Authors: Ifeyinwa E. Achumba, Djamel Azzi, Rinat Khusainov

Abstract:

There are three approaches to complete Bayesian Network (BN) model construction: total expert-centred, total datacentred, and semi data-centred. These three approaches constitute the basis of the empirical investigation undertaken and reported in this paper. The objective is to determine, amongst these three approaches, which is the optimal approach for the construction of a BN-based model for the performance assessment of students- laboratory work in a virtual electronic laboratory environment. BN models were constructed using all three approaches, with respect to the focus domain, and compared using a set of optimality criteria. In addition, the impact of the size and source of the training, on the performance of total data-centred and semi data-centred models was investigated. The results of the investigation provide additional insight for BN model constructors and contribute to literature providing supportive evidence for the conceptual feasibility and efficiency of structure and parameter learning from data. In addition, the results highlight other interesting themes.

Keywords: Bayesian networks, model construction, parameterlearning, structure learning, performance index, model comparison.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
8541 Intelligent Agent Approach to the Control of Critical Infrastructure Networks

Authors: James D. Gadze, Niki Pissinou, Kia Makki

Abstract:

In this paper we propose an intelligent agent approach to control the electric power grid at a smaller granularity in order to give it self-healing capabilities. We develop a method using the influence model to transform transmission substations into information processing, analyzing and decision making (intelligent behavior) units. We also develop a wireless communication method to deliver real-time uncorrupted information to an intelligent controller in a power system environment. A combined networking and information theoretic approach is adopted in meeting both the delay and error probability requirements. We use a mobile agent approach in optimizing the achievable information rate vector and in the distribution of rates to users (sensors). We developed the concept and the quantitative tools require in the creation of cooperating semiautonomous subsystems which puts the electric grid on the path towards intelligent and self-healing system.

Keywords: Mobile agent, power system operation and control, real time, wireless communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
8540 A Real Time Expert System for Decision Support in Nuclear Power Plants

Authors: Andressa dos Santos Nicolau, João P. da S.C Algusto, Claudio Márcio do N. A. Pereira, Roberto Schirru

Abstract:

In case of abnormal situations, the nuclear power plant (NPP) operators must follow written procedures to check the condition of the plant and to classify the type of emergency. In this paper, we proposed a Real Time Expert System in order to improve operator’s performance in case of transient or accident with reactor shutdown. The expert system’s knowledge is based on the sequence of events (SoE) of known accident and two emergency procedures of the Brazilian Pressurized Water Reactor (PWR) NPP and uses two kinds of knowledge representation: rule and logic trees. The results show that the system was able to classify the response of the automatic protection systems, as well as to evaluate the conditions of the plant, diagnosing the type of occurrence, recovery procedure to be followed, indicating the shutdown root cause, and classifying the emergency level.

Keywords: Emergence procedure, expert system, operator support, PWR nuclear power plant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1136
8539 Distance Transmission Line Protection Based on Radial Basis Function Neural Network

Authors: Anant Oonsivilai, Sanom Saichoomdee

Abstract:

To determine the presence and location of faults in a transmission by the adaptation of protective distance relay based on the measurement of fixed settings as line impedance is achieved by several different techniques. Moreover, a fast, accurate and robust technique for real-time purposes is required for the modern power systems. The appliance of radial basis function neural network in transmission line protection is demonstrated in this paper. The method applies the power system via voltage and current signals to learn the hidden relationship presented in the input patterns. It is experiential that the proposed technique is competent to identify the particular fault direction more speedily. System simulations studied show that the proposed approach is able to distinguish the direction of a fault on a transmission line swiftly and correctly, therefore suitable for the real-time purposes.

Keywords: radial basis function neural network, transmission lines protection, relaying, power system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2363
8538 Undergraduates Learning Preferences: A Comparison of Science, Technology and Social Science Academic Disciplines in Relations to Teaching Designs and Strategies

Authors: Salina Budin, Shaira Ismail

Abstract:

Students learn effectively in a learning environment with a suitable teaching approach that matches their learning preferences. The main objective of the study is to examine the learning preferences amongst the students in the Science and Technology (S&T), and Social Science (SS) fields of study at the Universiti Teknologi Mara (UiTM), Pulau Pinang. The measurement instrument is based on the Dunn and Dunn Learning Styles which measure five elements of learning styles; environmental, sociological, emotional, physiological and psychological. Questionnaires are distributed amongst undergraduates in the Faculty of Mechanical Engineering and Faculty of Business Management. The respondents comprise of 131 diploma students of the Faculty of Mechanical Engineering and 111 degree students of the Faculty of Business Management. The results indicate that, both S&T and SS students share a similar learning preferences on the environmental aspect, emotional preferences, motivational level, learning responsibility, persistent level in learning and learning structure. Most of the S&T students are concluded as analytical learners and the majority of SS students are global learners. Both S&T and SS students are concluded as visual learners, preferred to be in an active mobility in a relaxing and enjoying mode with some light of refreshments during the learning process and exhibited reflective characteristics in learning. Obviously, the S&T students are considered as left brain dominant, whereas the SS students are right brain dominant. The findings highlighted that both categories of students exhibited similar learning preferences except on psychological preferences.

Keywords: Learning preferences, Dunn and Dunn learning style, teaching approach, science and technology, social science.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1387
8537 Understanding How Money Laundering and Financing of Terrorism Are Conducted through the Real Estate Sector in the Middle East and North Africa Region

Authors: Haytham Yassine

Abstract:

This research seeks to identify how money laundering activities are executed through the real estate sector. This article provides academics with literature on the topic and provides scholars, and practitioners with a better understanding of the risks and challenges involved. Data are gathered through survey in the Middle East and North Africa region and review of the available research. The results of the analysis will help identifying the factors attracting criminals to the real estate sector and develop an understanding of the methods used to launder illicit funds through this sector and the indicators of suspicion for reporting entities. Further analysis reveals the risks posed by money laundering and terrorist financing on the real estate sector and challenges facing states in this regard.

Keywords: Money laundering, terrorism financing, real estate sector, Middle East and North Africa.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 992
8536 Improving Classification in Bayesian Networks using Structural Learning

Authors: Hong Choon Ong

Abstract:

Naïve Bayes classifiers are simple probabilistic classifiers. Classification extracts patterns by using data file with a set of labeled training examples and is currently one of the most significant areas in data mining. However, Naïve Bayes assumes the independence among the features. Structural learning among the features thus helps in the classification problem. In this study, the use of structural learning in Bayesian Network is proposed to be applied where there are relationships between the features when using the Naïve Bayes. The improvement in the classification using structural learning is shown if there exist relationship between the features or when they are not independent.

Keywords: Bayesian Network, Classification, Naïve Bayes, Structural Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2598
8535 Towards End-To-End Disease Prediction from Raw Metagenomic Data

Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker

Abstract:

Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.

Keywords: Metagenomics, phenotype prediction, deep learning, embeddings, multiple instance learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 909
8534 Business Skills Laboratory in Action: Combining a Practice Enterprise Model and an ERP-Simulation to a Comprehensive Business Learning Environment

Authors: Karoliina Nisula, Samuli Pekkola

Abstract:

Business education has been criticized for being too theoretical and distant from business life. Different types of experiential learning environments ranging from manual role-play to computer simulations and enterprise resource planning (ERP) systems have been used to introduce the realistic and practical experience into business learning. Each of these learning environments approaches business learning from a different perspective. The implementations tend to be individual exercises supplementing the traditional courses. We suggest combining them into a business skills laboratory resembling an actual workplace. In this paper, we present a concrete implementation of an ERP-supported business learning environment that is used throughout the first year undergraduate business curriculum. We validate the implementation by evaluating the learning outcomes through the different domains of Bloom’s taxonomy. We use the role-play oriented practice enterprise model as a comparison group. Our findings indicate that using the ERP simulation improves the poor and average students’ lower-level cognitive learning. On the affective domain, the ERP-simulation appears to enhance motivation to learn as well as perceived acquisition of practical hands-on skills.

Keywords: Business simulations, experiential learning, ERP systems, learning environments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1149
8533 A New Approach for Counting Passersby Utilizing Space-Time Images

Authors: A. Elmarhomy, S. Karungaru, K. Terada

Abstract:

Understanding the number of people and the flow of the persons is useful for efficient promotion of the institution managements and company-s sales improvements. This paper introduces an automated method for counting passerby using virtualvertical measurement lines. The process of recognizing a passerby is carried out using an image sequence obtained from the USB camera. Space-time image is representing the human regions which are treated using the segmentation process. To handle the problem of mismatching, different color space are used to perform the template matching which chose automatically the best matching to determine passerby direction and speed. A relation between passerby speed and the human-pixel area is used to distinguish one or two passersby. In the experiment, the camera is fixed at the entrance door of the hall in a side viewing position. Finally, experimental results verify the effectiveness of the presented method by correctly detecting and successfully counting them in order to direction with accuracy of 97%.

Keywords: counting passersby, virtual-vertical measurement line, passerby speed, space-time image

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412
8532 Incorporating Multiple Supervised Learning Algorithms for Effective Intrusion Detection

Authors: Umar Albalawi, Sang C. Suh, Jinoh Kim

Abstract:

As internet continues to expand its usage with an  enormous number of applications, cyber-threats have significantly  increased accordingly. Thus, accurate detection of malicious traffic in  a timely manner is a critical concern in today’s Internet for security.  One approach for intrusion detection is to use Machine Learning (ML)  techniques. Several methods based on ML algorithms have been  introduced over the past years, but they are largely limited in terms of  detection accuracy and/or time and space complexity to run. In this  work, we present a novel method for intrusion detection that  incorporates a set of supervised learning algorithms. The proposed  technique provides high accuracy and outperforms existing techniques  that simply utilizes a single learning method. In addition, our  technique relies on partial flow information (rather than full  information) for detection, and thus, it is light-weight and desirable for  online operations with the property of early identification. With the  mid-Atlantic CCDC intrusion dataset publicly available, we show that  our proposed technique yields a high degree of detection rate over 99%  with a very low false alarm rate (0.4%). 

 

Keywords: Intrusion Detection, Supervised Learning, Traffic Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2033
8531 Dual-Network Memory Model for Temporal Sequences

Authors: Motonobu Hattori, Rina Suzuki

Abstract:

In neural networks, when new patters are learned by a network, they radically interfere with previously stored patterns. This drawback is called catastrophic forgetting. We have already proposed a biologically inspired dual-network memory model which can much reduce this forgetting for static patterns. In this model, information is first stored in the hippocampal network, and thereafter, it is transferred to the neocortical network using pseudopatterns. Because temporal sequence learning is more important than static pattern learning in the real world, in this study, we improve our conventional  dual-network memory model so that it can deal with temporal sequences without catastrophic forgetting. The computer simulation results show the effectiveness of the proposed dual-network memory model.  

Keywords: Catastrophic forgetting, dual-network, temporal sequences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
8530 Efficacy of Recovery Tech Virtual Reality Rehabilitation System for Shoulder Impingement Syndrome

Authors: Kasra Afsahi, Maryam Soheilifar, Nazanin Vahed, Omid Seyed Esmaeili, S. Hossein Hosseini

Abstract:

The most common cause of shoulder pain occurs when rotator cuff tendons become trapped under the bony area in the shoulder. This pilot study was performed to evaluate the feasibility of Virtual Reality based rehabilitation of shoulder impingement syndrome in athletes. Three consecutive patients with subacromial impingement syndrome were enrolled. The participants were rehabilitated for 5 times a week for 4 weeks, 20 sessions in total (with duration of each session being 60 minutes). In addition to the conventional rehabilitation program, a 10-minute game-based virtual reality exercise was administered. Primary outcome measures were range of motion evaluated with goniometer, pain sensation, disability intensity using ‘The Disabilities of the Arm, Shoulder and Hand Questionnaire’, muscle strength using ‘dynamometer’; pain threshold with 'algometer' and level of satisfaction. There were significant improvements in the range of motion, pain sensation, disability, pain threshold and muscle strength compared to basis (P < 0.05). There were no major adverse effects. This study showed the usefulness of VR therapy as an adjunct to conventional physiotherapy in improving function in patients with shoulder impingement syndrome.

Keywords: Shoulder impingement syndrome, VR therapy, feasibility, rehabilitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 401