Search results for: prior and posterior distribution
1455 FACTS Based Stabilization for Smart Grid Applications
Authors: Adel M. Sharaf, Foad H. Gandoman
Abstract:
Nowadays, Photovoltaic-PV Farms/ Parks and large PV-Smart Grid Interface Schemes are emerging and commonly utilized in Renewable Energy distributed generation. However, PVhybrid- Dc-Ac Schemes using interface power electronic converters usually has negative impact on power quality and stabilization of modern electrical network under load excursions and network fault conditions in smart grid. Consequently, robust FACTS based interface schemes are required to ensure efficient energy utilization and stabilization of bus voltages as well as limiting switching/fault onrush current condition. FACTS devices are also used in smart grid- Battery Interface and Storage Schemes with PV-Battery Storage hybrid systems as an elegant alternative to renewable energy utilization with backup battery storage for electric utility energy and demand side management to provide needed energy and power capacity under heavy load conditions. The paper presents a robust interface PV-Li-Ion Battery Storage Interface Scheme for Distribution/Utilization Low Voltage Interface using FACTS stabilization enhancement and dynamic maximum PV power tracking controllers. Digital simulation and validation of the proposed scheme is done using MATLAB/Simulink software environment for Low Voltage- Distribution/Utilization system feeding a hybrid Linear-Motorized inrush and nonlinear type loads from a DC-AC Interface VSC-6- pulse Inverter Fed from the PV Park/Farm with a back-up Li-Ion Storage Battery.
Keywords: AC FACTS, Smart grid, Stabilization, PV-Battery Storage, Switched Filter-Compensation (SFC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32471454 The Performance Improvement of Automatic Modulation Recognition Using Simple Feature Manipulation, Analysis of the HOS, and Voted Decision
Authors: Heroe Wijanto, Sugihartono, Suhartono Tjondronegoro, Kuspriyanto
Abstract:
The use of High Order Statistics (HOS) analysis is expected to provide so many candidates of features that can be selected for pattern recognition. More candidates of the feature can be extracted using simple manipulation through a specific mathematical function prior to the HOS analysis. Feature extraction method using HOS analysis combined with Difference to the Nth-Power manipulation has been examined in application for Automatic Modulation Recognition (AMR) to perform scheme recognition of three digital modulation signal, i.e. QPSK-16QAM-64QAM in the AWGN transmission channel. The simulation results is reported when the analysis of HOS up to order-12 and the manipulation of Difference to the Nth-Power up to N = 4. The obtained accuracy rate of AMR using the method of Simple Decision obtained 90% in SNR > 10 dB in its classifier, while using the method of Voted Decision is 96% in SNR > 2 dB.Keywords: modulation, automatic modulation recognition, feature analysis, feature manipulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21201453 Adaptive Kalman Filter for Noise Estimation and Identification with Bayesian Approach
Authors: Farhad Asadi, S. Hossein Sadati
Abstract:
Bayesian approach can be used for parameter identification and extraction in state space models and its ability for analyzing sequence of data in dynamical system is proved in different literatures. In this paper, adaptive Kalman filter with Bayesian approach for identification of variances in measurement parameter noise is developed. Next, it is applied for estimation of the dynamical state and measurement data in discrete linear dynamical system. This algorithm at each step time estimates noise variance in measurement noise and state of system with Kalman filter. Next, approximation is designed at each step separately and consequently sufficient statistics of the state and noise variances are computed with a fixed-point iteration of an adaptive Kalman filter. Different simulations are applied for showing the influence of noise variance in measurement data on algorithm. Firstly, the effect of noise variance and its distribution on detection and identification performance is simulated in Kalman filter without Bayesian formulation. Then, simulation is applied to adaptive Kalman filter with the ability of noise variance tracking in measurement data. In these simulations, the influence of noise distribution of measurement data in each step is estimated, and true variance of data is obtained by algorithm and is compared in different scenarios. Afterwards, one typical modeling of nonlinear state space model with inducing noise measurement is simulated by this approach. Finally, the performance and the important limitations of this algorithm in these simulations are explained.
Keywords: adaptive filtering, Bayesian approach Kalman filtering approach, variance tracking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6191452 A Review on Soft Computing Technique in Intrusion Detection System
Authors: Noor Suhana Sulaiman, Rohani Abu Bakar, Norrozila Sulaiman
Abstract:
Intrusion Detection System is significant in network security. It detects and identifies intrusion behavior or intrusion attempts in a computer system by monitoring and analyzing the network packets in real time. In the recent year, intelligent algorithms applied in the intrusion detection system (IDS) have been an increasing concern with the rapid growth of the network security. IDS data deals with a huge amount of data which contains irrelevant and redundant features causing slow training and testing process, higher resource consumption as well as poor detection rate. Since the amount of audit data that an IDS needs to examine is very large even for a small network, classification by hand is impossible. Hence, the primary objective of this review is to review the techniques prior to classification process suit to IDS data.Keywords: Intrusion Detection System, security, soft computing, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18641451 Determination of the Zinc Oxide and Boric Acid Optimum Molar Ratio on the Ultrasonic Synthesis of Zinc Borates
Authors: A. Ersan, A. S. Kipcak, M. Yildirim, A. M. Erayvaz, E. M. Derun, N. Tugrul, S. Piskin
Abstract:
Zinc borates are used as a multi-functional flame retardant additive for its high dehydration temperature. In this study, the method of ultrasonic mixing was used in the synthesis of zinc borates. The reactants of zinc oxide (ZnO) and boric acid (H3BO3) were used at the constant reaction parameters of 90°C reaction temperature and 55 min of reaction time. Several molar ratios of ZnO:H3BO3 (1:1, 1:2, 1:3, 1:4 and 1:5) were conducted for the determination of the optimum reaction ratio. Prior to synthesis the characterization of the synthesized zinc borates were made by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). From the results Zinc Oxide Borate Hydrate [Zn3B6O12.3.5H2O], were synthesized optimum at the molar ratio of 1:3, with a reaction efficiency of 95.2%.Keywords: Zinc borates, ultrasonic mixing, XRD, FT-IR, reaction efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19421450 Gaussian Process Model Identification Using Artificial Bee Colony Algorithm and Its Application to Modeling of Power Systems
Authors: Tomohiro Hachino, Hitoshi Takata, Shigeru Nakayama, Ichiro Iimura, Seiji Fukushima, Yasutaka Igarashi
Abstract:
This paper presents a nonparametric identification of continuous-time nonlinear systems by using a Gaussian process (GP) model. The GP prior model is trained by artificial bee colony algorithm. The nonlinear function of the objective system is estimated as the predictive mean function of the GP, and the confidence measure of the estimated nonlinear function is given by the predictive covariance of the GP. The proposed identification method is applied to modeling of a simplified electric power system. Simulation results are shown to demonstrate the effectiveness of the proposed method.
Keywords: Artificial bee colony algorithm, Gaussian process model, identification, nonlinear system, electric power system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15751449 Integrating Geographic Information into Diabetes Disease Management
Authors: Tsu-Yun Chiu, Tsung-Hsueh Lu, Tain-Junn Cheng
Abstract:
Background: Traditional chronic disease management did not pay attention to effects of geographic factors on the compliance of treatment regime, which resulted in geographic inequality in outcomes of chronic disease management. This study aims to examine the geographic distribution and clustering of quality indicators of diabetes care. Method: We first extracted address, demographic information and quality of care indicators (number of visits, complications, prescription and laboratory records) of patients with diabetes for 2014 from medical information system in a medical center in Tainan City, Taiwan, and the patients’ addresses were transformed into district- and village-level data. We then compared the differences of geographic distribution and clustering of quality of care indicators between districts and villages. Despite the descriptive results, rate ratios and 95% confidence intervals (CI) were estimated for indices of care in order to compare the quality of diabetes care among different areas. Results: A total of 23,588 patients with diabetes were extracted from the hospital data system; whereas 12,716 patients’ information and medical records were included to the following analysis. More than half of the subjects in this study were male and between 60-79 years old. Furthermore, the quality of diabetes care did indeed vary by geographical levels. Thru the smaller level, we could point out clustered areas more specifically. Fuguo Village (of Yongkang District) and Zhiyi Village (of Sinhua District) were found to be “hotspots” for nephropathy and cerebrovascular disease; while Wangliau Village and Erwang Village (of Yongkang District) would be “coldspots” for lowest proportion of ≥80% compliance to blood lipids examination. On the other hand, Yuping Village (in Anping District) was the area with the lowest proportion of ≥80% compliance to all laboratory examination. Conclusion: In spite of examining the geographic distribution, calculating rate ratios and their 95% CI could also be a useful and consistent method to test the association. This information is useful for health planners, diabetes case managers and other affiliate practitioners to organize care resources to the areas most needed.
Keywords: Geocoding, chronic disease management, quality of diabetes care, rate ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9971448 Effect of Pretreatment Method on the Content of Phenolic Compounds, Vitamin C and Antioxidant Activity of Dried Dill
Authors: Ruta Galoburda, Zanda Kruma, Karina Ruse
Abstract:
Dill contains range of phytochemicals, such as vitamin C and polyphenols, which significantly contribute to their total antioxidant activity. The aim of the current research was to determine the best blanching method for processing of dill prior to microwave vacuum drying based on the content of phenolic compounds, vitamin C and free radical scavenging activity. Two blanching mediums were used – water and steam, and for part of the samples microwave pretreatment was additionally used. Evaluation of vitamin C, phenolic contents and scavenging of DPPH˙ radical in dried dill was performed. Blanching had an effect on all tested parameters and the blanching conditions are very important. After evaluation of the results, as the best method for dill pretreatment was established blanching at 90 °C for 30 seconds.
Keywords: blanching, microwave vacuum drying, TPC, vitamin C.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31041447 Effect of Scale on Slab Heat Transfer in a Walking Beam Type Reheating Furnace
Authors: Man Young Kim
Abstract:
In this work, the effects of scale on thermal behavior of the slab in a walking-beam type reheating furnace is studied by considering scale formation and growth in a furnace environment. Also, mathematical heat transfer model to predict the thermal radiation in a complex shaped reheating furnace with slab and skid buttons is developed with combined nongray WSGGM and blocked-off solution procedure. The model can attack the heat flux distribution within the furnace and the temperature distribution in the slab throughout the reheating furnace process by considering the heat exchange between the slab and its surroundings, including the radiant heat transfer among the slabs, the skids, the hot combustion gases and the furnace wall as well as the gas convective heat transfer in the furnace. With the introduction of the mathematical formulations validation of the present numerical model is conducted by calculating two example problems of blocked-off and nongray gas radiative heat transfer. After discussing the formation and growth of the scale on the slab surface, slab heating characteristics with scale is investigated in terms of temperature rise with time.
Keywords: Reheating Furnace, Scale, Steel Slab, Radiative Heat Transfer, WSGGM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43721446 Multi-objective Optimisation of Composite Laminates under Heat and Moisture Effects using a Hybrid Neuro-GA Algorithm
Authors: M. R. Ghasemi, A. Ehsani
Abstract:
In this paper, the optimum weight and cost of a laminated composite plate is seeked, while it undergoes the heaviest load prior to a complete failure. Various failure criteria are defined for such structures in the literature. In this work, the Tsai-Hill theory is used as the failure criterion. The theory of analysis was based on the Classical Lamination Theory (CLT). A newly type of Genetic Algorithm (GA) as an optimization technique with a direct use of real variables was employed. Yet, since the optimization via GAs is a long process, and the major time is consumed through the analysis, Radial Basis Function Neural Networks (RBFNN) was employed in predicting the output from the analysis. Thus, the process of optimization will be carried out through a hybrid neuro-GA environment, and the procedure will be carried out until a predicted optimum solution is achieved.Keywords: Composite Laminates, GA, Multi-objectiveOptimisation, Neural Networks, RBFNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16311445 Implied Adjusted Volatility by Leland Option Pricing Models: Evidence from Australian Index Options
Authors: Mimi Hafizah Abdullah, Hanani Farhah Harun, Nik Ruzni Nik Idris
Abstract:
With the implied volatility as an important factor in financial decision-making, in particular in option pricing valuation, and also the given fact that the pricing biases of Leland option pricing models and the implied volatility structure for the options are related, this study considers examining the implied adjusted volatility smile patterns and term structures in the S&P/ASX 200 index options using the different Leland option pricing models. The examination of the implied adjusted volatility smiles and term structures in the Australian index options market covers the global financial crisis in the mid-2007. The implied adjusted volatility was found to escalate approximately triple the rate prior the crisis.
Keywords: Implied adjusted volatility, Financial crisis, Leland option pricing models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29451444 Machine Learning Facing Behavioral Noise Problem in an Imbalanced Data Using One Side Behavioral Noise Reduction: Application to a Fraud Detection
Authors: Salma El Hajjami, Jamal Malki, Alain Bouju, Mohammed Berrada
Abstract:
With the expansion of machine learning and data mining in the context of Big Data analytics, the common problem that affects data is class imbalance. It refers to an imbalanced distribution of instances belonging to each class. This problem is present in many real world applications such as fraud detection, network intrusion detection, medical diagnostics, etc. In these cases, data instances labeled negatively are significantly more numerous than the instances labeled positively. When this difference is too large, the learning system may face difficulty when tackling this problem, since it is initially designed to work in relatively balanced class distribution scenarios. Another important problem, which usually accompanies these imbalanced data, is the overlapping instances between the two classes. It is commonly referred to as noise or overlapping data. In this article, we propose an approach called: One Side Behavioral Noise Reduction (OSBNR). This approach presents a way to deal with the problem of class imbalance in the presence of a high noise level. OSBNR is based on two steps. Firstly, a cluster analysis is applied to groups similar instances from the minority class into several behavior clusters. Secondly, we select and eliminate the instances of the majority class, considered as behavioral noise, which overlap with behavior clusters of the minority class. The results of experiments carried out on a representative public dataset confirm that the proposed approach is efficient for the treatment of class imbalances in the presence of noise.Keywords: Machine learning, Imbalanced data, Data mining, Big data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11371443 Methodologies for Crack Initiation in Welded Joints Applied to Inspection Planning
Authors: Guang Zou, Kian Banisoleiman, Arturo González
Abstract:
Crack initiation and propagation threatens structural integrity of welded joints and normally inspections are assigned based on crack propagation models. However, the approach based on crack propagation models may not be applicable for some high-quality welded joints, because the initial flaws in them may be so small that it may take long time for the flaws to develop into a detectable size. This raises a concern regarding the inspection planning of high-quality welded joins, as there is no generally acceptable approach for modeling the whole fatigue process that includes the crack initiation period. In order to address the issue, this paper reviews treatment methods for crack initiation period and initial crack size in crack propagation models applied to inspection planning. Generally, there are four approaches, by: 1) Neglecting the crack initiation period and fitting a probabilistic distribution for initial crack size based on statistical data; 2) Extrapolating the crack propagation stage to a very small fictitious initial crack size, so that the whole fatigue process can be modeled by crack propagation models; 3) Assuming a fixed detectable initial crack size and fitting a probabilistic distribution for crack initiation time based on specimen tests; and, 4) Modeling the crack initiation and propagation stage separately using small crack growth theories and Paris law or similar models. The conclusion is that in view of trade-off between accuracy and computation efforts, calibration of a small fictitious initial crack size to S-N curves is the most efficient approach.
Keywords: Crack initiation, fatigue reliability, inspection planning, welded joints.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13981442 MITAutomatic ECG Beat Tachycardia Detection Using Artificial Neural Network
Authors: R. Amandi, A. Shahbazi, A. Mohebi, M. Bazargan, Y. Jaberi, P. Emadi, A. Valizade
Abstract:
The application of Neural Network for disease diagnosis has made great progress and is widely used by physicians. An Electrocardiogram carries vital information about heart activity and physicians use this signal for cardiac disease diagnosis which was the great motivation towards our study. In our work, tachycardia features obtained are used for the training and testing of a Neural Network. In this study we are using Fuzzy Probabilistic Neural Networks as an automatic technique for ECG signal analysis. As every real signal recorded by the equipment can have different artifacts, we needed to do some preprocessing steps before feeding it to our system. Wavelet transform is used for extracting the morphological parameters of the ECG signal. The outcome of the approach for the variety of arrhythmias shows the represented approach is superior than prior presented algorithms with an average accuracy of about %95 for more than 7 tachy arrhythmias.Keywords: Fuzzy Logic, Probabilistic Neural Network, Tachycardia, Wavelet Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22901441 Applying Gibbs Sampler for Multivariate Hierarchical Linear Model
Authors: Satoshi Usami
Abstract:
Among various HLM techniques, the Multivariate Hierarchical Linear Model (MHLM) is desirable to use, particularly when multivariate criterion variables are collected and the covariance structure has information valuable for data analysis. In order to reflect prior information or to obtain stable results when the sample size and the number of groups are not sufficiently large, the Bayes method has often been employed in hierarchical data analysis. In these cases, although the Markov Chain Monte Carlo (MCMC) method is a rather powerful tool for parameter estimation, Procedures regarding MCMC have not been formulated for MHLM. For this reason, this research presents concrete procedures for parameter estimation through the use of the Gibbs samplers. Lastly, several future topics for the use of MCMC approach for HLM is discussed.
Keywords: Gibbs sampler, Hierarchical Linear Model, Markov Chain Monte Carlo, Multivariate Hierarchical Linear Model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18671440 The Effect of Prior Characteristic on Perceived Prosocial Content in Media
Authors: Pawit Monkolprasit, Proud Arunrangsiwed
Abstract:
It was important to understand the impact of media in young adolescents. The animated film, Khun Tong Dang the Inspirations (2015), was purposefully created for teaching young children to have a positive personal trait. The current study used this film as the case study. The objective is to understand the relationship between the good characteristic of movie audiences and their perception of the good characteristic of a movie character. One-hundred students from various age ranges responded to quantitative questionnaires. The questions included their age, gender, perception about their own personal traits, perception about their experiences with others, and perception about the bravery, intelligence, and gratefulness of the character. It was found that a good personal trait has a strong relationship with the perception of bravery, intelligence, and gratefulness of the character.
Keywords: Impact of media, children, personal trait, prosocial content.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11741439 A Probabilistic Optimization Approach for a Gas Processing Plant under Uncertain Feed Conditions and Product Requirements
Authors: G. Mesfin, M. Shuhaimi
Abstract:
This paper proposes a new optimization techniques for the optimization a gas processing plant uncertain feed and product flows. The problem is first formulated using a continuous linear deterministic approach. Subsequently, the single and joint chance constraint models for steady state process with timedependent uncertainties have been developed. The solution approach is based on converting the probabilistic problems into their equivalent deterministic form and solved at different confidence levels Case study for a real plant operation has been used to effectively implement the proposed model. The optimization results indicate that prior decision has to be made for in-operating plant under uncertain feed and product flows by satisfying all the constraints at 95% confidence level for single chance constrained and 85% confidence level for joint chance constrained optimizations cases.Keywords: Butane, Feed composition, LPG, Productspecification, Propane.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13981438 Anti-Money Laundering Requirements – Perceived Effectiveness
Authors: C. C. Huang, M. S. Amirrudin, N. A. Ahamad Noruddin, R. Othman
Abstract:
Anti-money laundering is commonly recognized as a set of procedures, laws or regulations designed to reduce the practice of generating income through illegal actions. In Malaysia, the government and law enforcement agencies have stepped up their capacities and efforts to curb money laundering since 2001. One of these measures was the enactment of the Anti-Money Laundering Act (AMLA) in 2001. The implementation costs on anti-money laundering requirements (AMLR) can be burdensome to those who are involved in enforcing them. The objective of this paper is to explore the perceived effectiveness of AMLR from the enforcement agencies- perspective. This is a preliminary study whose findings will help to give direction for further AML research in Malaysia. In addition, the results of this study provide empirical evidences on the perceived effectiveness of AMLR prior to further investigations on barriers and improvements of the implementation of the anti-money laundering regime in Malaysia.Keywords: Anti-money laundering, anti-money laundering requirements, perceived effectiveness, enforcement agencies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23921437 Using Ultrasonic and Infrared Sensors for Distance Measurement
Authors: Tarek Mohammad
Abstract:
The amplitude response of infrared (IR) sensors depends on the reflectance properties of the target. Therefore, in order to use IR sensor for measuring distances accurately, prior knowledge of the surface must be known. This paper describes the Phong Illumination Model for determining the properties of a surface and subsequently calculating the distance to the surface. The angular position of the IR sensor is computed as normal to the surface for simplifying the calculation. Ultrasonic (US) sensor can provide the initial information on distance to obtain the parameters for this method. In addition, the experimental results obtained by using LabView are discussed. More care should be taken when placing the objects from the sensors during acquiring data since the small change in angle could show very different distance than the actual one. Since stereo camera vision systems do not perform well under some environmental conditions such as plain wall, glass surfaces, or poor lighting conditions, the IR and US sensors can be used additionally to improve the overall vision systems of mobile robots.Keywords: Distance Measurement, Infrared sensor, Surface properties, Ultrasonic sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 150141436 A Novel Neighborhood Defined Feature Selection on Phase Congruency Images for Recognition of Faces with Extreme Variations
Authors: Satyanadh Gundimada, Vijayan K Asari
Abstract:
A novel feature selection strategy to improve the recognition accuracy on the faces that are affected due to nonuniform illumination, partial occlusions and varying expressions is proposed in this paper. This technique is applicable especially in scenarios where the possibility of obtaining a reliable intra-class probability distribution is minimal due to fewer numbers of training samples. Phase congruency features in an image are defined as the points where the Fourier components of that image are maximally inphase. These features are invariant to brightness and contrast of the image under consideration. This property allows to achieve the goal of lighting invariant face recognition. Phase congruency maps of the training samples are generated and a novel modular feature selection strategy is implemented. Smaller sub regions from a predefined neighborhood within the phase congruency images of the training samples are merged to obtain a large set of features. These features are arranged in the order of increasing distance between the sub regions involved in merging. The assumption behind the proposed implementation of the region merging and arrangement strategy is that, local dependencies among the pixels are more important than global dependencies. The obtained feature sets are then arranged in the decreasing order of discriminating capability using a criterion function, which is the ratio of the between class variance to the within class variance of the sample set, in the PCA domain. The results indicate high improvement in the classification performance compared to baseline algorithms.
Keywords: Discriminant analysis, intra-class probability distribution, principal component analysis, phase congruency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18501435 Dosimetric Comparison of aSi1000 EPID and ImatriXX 2-D Array System for Volumetric Modulated Arc and Intensity Modulated Radiotherapy Patient Specific Quality Assurance
Authors: Jayesh K., Ganesh T., Suganthi D., Mohan R., Rakesh C. J., Sarojkumar D. M., Jacob S. J.
Abstract:
Prior to the use of detectors, characteristics comparison study was performed and baseline established. In patient specific QA, the portal dosimetry mean values of area gamma, average gamma and maximum gamma were 1.02, 0.31 and 1.31 with standard deviation of 0.33, 0.03 and 0.14 for IMRT and the corresponding values were 1.58, 0.48 and 1.73 with standard deviation of 0.31, 0.06 and 0.66 for VMAT. With ImatriXX 2-D array system, on an average 99.35% of the pixels passed the criteria of 3%-3 mm gamma with standard deviation of 0.24 for dynamic IMRT. For VMAT, the average value was 98.16% with a standard deviation of 0.86. The results showed that both the systems can be used in patient specific QA measurements for IMRT and VMAT. The values obtained with the portal dosimetry system were found to be relatively more consistent compared to those obtained with ImatriXX 2-D array system.Keywords: Gamma, IMRT, QA, TPS, VMAT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25781434 Solid Particle Erosion of Heat Treated TNB-V4 at Ambient and Elevated Temperatures
Authors: Muhammad Naveed, Richard Stechow, Sebastian Bolz, Katharina Hobusch, Sabine Weiß
Abstract:
Solid particle erosion has been identified as a critical wear phenomenon which takes place during operation of aeroengines in dusty environment. The present work discusses the erosion behavior of Ti-44.5Al-6.25Nb-0.8Mo-0.1B alloy (TNB-V4) which finds its application in low pressure gas turbines and can be used for high pressure compressors too. Prior to the erosion tests, the alloy was heat treated to improve the mechanical properties. Afterwards, specimens were eroded at impact angles of 30° and 90° at room and high temperatures (100 °C-400 °C). Volume loss and erosion behavior are studied through gravimetric analysis, whereas erosion mechanisms are characterized through scanning electron microscopy. The results indicate a clear difference in the erosion mechanism for different impact angles. The influence of the test temperature on the erosion behavior of the alloy is also discussed in the present contribution.
Keywords: Solid particle erosion, gamma TiAl, TNB-V4, high temperature erosion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15181433 On-line Speech Enhancement by Time-Frequency Masking under Prior Knowledge of Source Location
Authors: Min Ah Kang, Sangbae Jeong, Minsoo Hahn
Abstract:
This paper presents the source extraction system which can extract only target signals with constraints on source localization in on-line systems. The proposed system is a kind of methods for enhancing a target signal and suppressing other interference signals. But, the performance of proposed system is superior to any other methods and the extraction of target source is comparatively complete. The method has a beamforming concept and uses an improved time-frequency (TF) mask-based BSS algorithm to separate a target signal from multiple noise sources. The target sources are assumed to be in front and test data was recorded in a reverberant room. The experimental results of the proposed method was evaluated by the PESQ score of real-recording sentences and showed a noticeable speech enhancement.
Keywords: Beam forming, Non-stationary noise reduction, Source separation, TF mask.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20221432 Distributed Coverage Control by Robot Networks in Unknown Environments Using a Modified EM Algorithm
Authors: Mohammadhosein Hasanbeig, Lacra Pavel
Abstract:
In this paper, we study a distributed control algorithm for the problem of unknown area coverage by a network of robots. The coverage objective is to locate a set of targets in the area and to minimize the robots’ energy consumption. The robots have no prior knowledge about the location and also about the number of the targets in the area. One efficient approach that can be used to relax the robots’ lack of knowledge is to incorporate an auxiliary learning algorithm into the control scheme. A learning algorithm actually allows the robots to explore and study the unknown environment and to eventually overcome their lack of knowledge. The control algorithm itself is modeled based on game theory where the network of the robots use their collective information to play a non-cooperative potential game. The algorithm is tested via simulations to verify its performance and adaptability.Keywords: Distributed control, game theory, multi-agent learning, reinforcement learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9731431 Evaluation and Preparation of Crystal Modifications of Artesunate: In vivo Studies
Abstract:
Five crystal modifications of water insoluble artesunate were generated by recrystallizing it from various solvents with improved physicochemical properties. These generated crystal forms were characterized to select the most potent and soluble form. SEM of all the forms showed changes in external shape leading them to be different morphologically. DSC thermograms of Form III and Form V showed broad endotherm peaks at 83.04oC and 76.96oC prior to melting fusion of drug respectively. Calculated weight loss in TGA revealed that Form III and Form V are methanol and acetone solvates respectively. However, few additional peaks were appeared in XRPD pattern in these two solvate forms. All forms exhibit exothermic behavior in buffer and two solvates display maximum ease of molecular release from the lattice. Methanol and acetone solvates were found to be most soluble forms and exhibited higher antimalarial efficacy showing higher survival rate (83.3%) after 30 days.
Keywords: Artesunate, Crystal modifications, in vivo studies, Recrystallization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33231430 A Hybrid Radial-Based Neuro-GA Multiobjective Design of Laminated Composite Plates under Moisture and Thermal Actions
Authors: Mohammad Reza Ghasemi, Ali Ehsani
Abstract:
In this paper, the optimum weight and cost of a laminated composite plate is seeked, while it undergoes the heaviest load prior to a complete failure. Various failure criteria are defined for such structures in the literature. In this work, the Tsai-Hill theory is used as the failure criterion. The theory of analysis was based on the Classical Lamination Theory (CLT). A newly type of Genetic Algorithm (GA) as an optimization technique with a direct use of real variables was employed. Yet, since the optimization via GAs is a long process, and the major time is consumed through the analysis, Radial Basis Function Neural Networks (RBFNN) was employed in predicting the output from the analysis. Thus, the process of optimization will be carried out through a hybrid neuro-GA environment, and the procedure will be carried out until a predicted optimum solution is achieved.Keywords: Composite Laminates, GA, Multi-objectiveOptimization, Neural Networks, RBFNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14661429 Comparison of Detrending Methods in Spectral Analysis of Heart Rate Variability
Authors: Liping Li, Changchun Liu, Ke Li, Chengyu Liu
Abstract:
Non-stationary trend in R-R interval series is considered as a main factor that could highly influence the evaluation of spectral analysis. It is suggested to remove trends in order to obtain reliable results. In this study, three detrending methods, the smoothness prior approach, the wavelet and the empirical mode decomposition, were compared on artificial R-R interval series with four types of simulated trends. The Lomb-Scargle periodogram was used for spectral analysis of R-R interval series. Results indicated that the wavelet method showed a better overall performance than the other two methods, and more time-saving, too. Therefore it was selected for spectral analysis of real R-R interval series of thirty-seven healthy subjects. Significant decreases (19.94±5.87% in the low frequency band and 18.97±5.78% in the ratio (p<0.001)) were found. Thus the wavelet method is recommended as an optimal choice for use.Keywords: empirical mode decomposition, heart rate variability, signal detrending, smoothness priors, wavelet
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20691428 Thermo-mechanical Deformation Behavior of Functionally Graded Rectangular Plates Subjected to Various Boundary Conditions and Loadings
Authors: Mohammad Talha, B. N. Singh
Abstract:
This paper deals with the thermo-mechanical deformation behavior of shear deformable functionally graded ceramicmetal (FGM) plates. Theoretical formulations are based on higher order shear deformation theory with a considerable amendment in the transverse displacement using finite element method (FEM). The mechanical properties of the plate are assumed to be temperaturedependent and graded in the thickness direction according to a powerlaw distribution in terms of the volume fractions of the constituents. The temperature field is supposed to be a uniform distribution over the plate surface (XY plane) and varied in the thickness direction only. The fundamental equations for the FGM plates are obtained using variational approach by considering traction free boundary conditions on the top and bottom faces of the plate. A C0 continuous isoparametric Lagrangian finite element with thirteen degrees of freedom per node have been employed to accomplish the results. Convergence and comparison studies have been performed to demonstrate the efficiency of the present model. The numerical results are obtained for different thickness ratios, aspect ratios, volume fraction index and temperature rise with different loading and boundary conditions. Numerical results for the FGM plates are provided in dimensionless tabular and graphical forms. The results proclaim that the temperature field and the gradient in the material properties have significant role on the thermo-mechanical deformation behavior of the FGM plates.
Keywords: Functionally graded material, higher order shear deformation theory, finite element method, independent field variables.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23341427 Real Time Object Tracking in H.264/ AVC Using Polar Vector Median and Block Coding Modes
Authors: T. Kusuma, K. Ashwini
Abstract:
This paper presents a real time video surveillance system which is capable of tracking multiple real time objects using Polar Vector Median (PVM) and Block Coding Modes (BCM) with Global Motion Compensation (GMC). This strategy works in the packed area and furthermore utilizes the movement vectors and BCM from the compressed bit stream to perform real time object tracking. We propose to do this in view of the neighboring Motion Vectors (MVs) using a method called PVM. Since GM adds to the object’s native motion, for accurate tracking, it is important to remove GM from the MV field prior to further processing. The proposed method is tested on a number of standard sequences and the results show its advantages over some of the current modern methods.
Keywords: Block coding mode, global motion compensation, object tracking, polar vector median, video surveillance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7481426 Exploring SSD Suitable Allocation Schemes Incompliance with Workload Patterns
Authors: Jae Young Park, Hwansu Jung, Jong Tae Kim
Abstract:
In the Solid-State-Drive (SSD) performance, whether the data has been well parallelized is an important factor. SSD parallelization is affected by allocation scheme and it is directly connected to SSD performance. There are dynamic allocation and static allocation in representative allocation schemes. Dynamic allocation is more adaptive in exploiting write operation parallelism, while static allocation is better in read operation parallelism. Therefore, it is hard to select the appropriate allocation scheme when the workload is mixed read and write operations. We simulated conditions on a few mixed data patterns and analyzed the results to help the right choice for better performance. As the results, if data arrival interval is long enough prior operations to be finished and continuous read intensive data environment static allocation is more suitable. Dynamic allocation performs the best on write performance and random data patterns.
Keywords: Dynamic allocation, NAND Flash based SSD, SSD parallelism, static allocation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993