Search results for: finite volume method
32283 Thermal Analysis of the Fuse with Unequal Fuse Links Using Finite Element Method
Authors: Adrian T.Pleşca
Abstract:
In this paper a three dimensional thermal model of high breaking capacity fuse with unequal fuse links is proposed for both steady-state or transient conditions. The influence of ambient temperature and electric current on the temperature distribution inside the fuse, has been investigated. A thermal analysis of the unbalanced distribution of the electric current through the fuse elements and their influence on fuse link temperature rise, has been performed. To validate the three dimensional thermal model, some experimental tests have been done. There is a good correlation between experimental and simulation results.Keywords: Electric fuse, fuse links, temperature distribution, thermal analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 281132282 Symmetrical In-Plane Resonant Gyroscope with Decoupled Modes
Authors: Shady Sayed, Samer Wagdy, Ahmed Badawy, Moutaz M. Hegaze
Abstract:
A symmetrical single mass resonant gyroscope is discussed in this paper. The symmetrical design allows matched resonant frequencies for driving and sensing vibration modes, which leads to amplifying the sensitivity of the gyroscope by the mechanical quality factor of the sense mode. It also achieves decoupled vibration modes for getting a low zero-rate output shift and more stable operation environment. A new suspension beams design is developed to get a symmetrical gyroscope with matched and decoupled modes at the same time. Finite element simulations are performed using ANSYS software package to verify the theoretical calculations. The gyroscope is fabricated from aluminum alloy 2024 substrate, the measured drive and sense resonant frequencies of the fabricated model are matched and equal 81.4 Hz with 5.7% error from the simulation results.Keywords: Decoupled mode shapes, resonant sensor, symmetrical gyroscope, finite element simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 113532281 Performance Study of Scraped Surface Heat Exchanger with Helical Ribbons
Abstract:
In this work, numerical simulations were carried out using a specific CFD code in order to study the performance of an innovative Scraped Surface Heat Exchanger (SSHE) with helical ribbons for Bingham fluids (threshold fluids). The resolution of three-dimensional form of the conservation equations (continuity, momentum and energy equations) was carried out basing on the finite volume method (FVM). After studying the effect of dimensionless numbers (axial Reynolds, rotational Reynolds and Oldroyd numbers) on the hydrodynamic and thermal behaviors within SSHE, a parametric study was developed, by varying the width of the helical ribbon, the clearance between the stator wall and the tip of the ribbon and the number of turns of the helical ribbon, in order to improve the heat transfer inside the exchanger. The effect of these geometrical numbers on the hydrodynamic and thermal behaviors was discussed.Keywords: Heat transfer, helical ribbons, hydrodynamic behavior, parametric study, scraped surface heat exchanger, thermal behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 125032280 Design and Performance Analysis of a Hydro-Power Rim-Driven Superconducting Synchronous Generator
Authors: A. Hassannia, S. Ramezani
Abstract:
The technology of superconductivity has developed in many power system devices such as transmission cable, transformer, current limiter, motor and generator. Superconducting wires can carry high density current without loss, which is the capability that is used to design the compact, lightweight and more efficient electrical machines. Superconducting motors have found applications in marine and air propulsion systems as well as superconducting generators are considered in low power hydraulic and wind generators. This paper presents a rim-driven superconducting synchronous generator for hydraulic power plant. The rim-driven concept improves the performance of hydro turbine. Furthermore, high magnetic field that is produced by superconducting windings allows replacing the rotor core. As a consequent, the volume and weight of the machine is decreased significantly. In this paper, a 1 MW coreless rim-driven superconducting synchronous generator is designed. Main performance characteristics of the proposed machine are then evaluated using finite elements method and compared to an ordinary similar size synchronous generator.
Keywords: Coreless machine, electrical machine design, hydraulic generator, rim-driven machine, superconducting generator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 97032279 Effect of Load Orientation on the Stability of a Three-Lobe Bearing Supporting Rigid and Flexible Rotors
Authors: G. Bhushan
Abstract:
Multilobe bearings are found to be more stable than circular bearings. A three lobe bearing also possesses good stability characteristics. Sometimes the line of action of the load does not pass through the axis of a bearing and is shifted on either side by a few degrees. Load orientation is one of the factors that affect the stability of a three lobe bearing. The effect of load orientation on the stability of a three-lobe has been discussed in this paper. The results show that stability of a three-lobe bearing supporting either rigid or flexible rotor is increased for the positive values of load orientation i.e. when the load line is shifted in the opposite direction of rotation.
Keywords: Thee-lobe bearing, load orientation, finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 177632278 Dynamic Soil-Structure Interaction Analysis of Reinforced Concrete Buildings
Authors: Abdelhacine Gouasmia, Abdelhamid Belkhiri, Allaeddine Athmani
Abstract:
The objective of this paper is to evaluate the effects of soil-structure interaction (SSI) on the modal characteristics and on the dynamic response of current structures. The objective is on the overall behaviour of a real structure of five storeys reinforced concrete (R/C) building typically encountered in Algeria. Sensitivity studies are undertaken in order to study the effects of frequency content of the input motion, frequency of the soil-structure system, rigidity and depth of the soil layer on the dynamic response of such structures. This investigation indicated that the rigidity of the soil layer is the predominant factor in soil-structure interaction and its increases would definitely reduce the deformation in the R/C structure. On the other hand, increasing the period of the underlying soil will cause an increase in the lateral displacements at story levels and create irregularity in the distribution of story shears. Possible resonance between the frequency content of the input motion and soil could also play an important role in increasing the structural response.Keywords: Direct method, finite element method, foundation, R/C frame, soil-structure interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 268032277 Failure Modes and Bearing Capacity Estimation for Strip Foundations in C-ɸ Soils: A Numerical Study
Authors: Paul Akagwu, Aaron Aboshio
Abstract:
In this study, typical c-ɸ soils subjected to loadings were assessed with a view to understand the general stress distribution and settlement behaviour of the soils under drained conditions. Numerical estimations of the non-dimensional bearing capacity factors, Nq and Nγ for varied angles of friction in the soil mass were obtained using PLAXIS. Ultimate bearing capacity values over a Ф range of 0-30 degrees were also computed and compared with analytical results obtained from the traditional simplified uncoupled approach of Terzaghi and Meyerhof. Results from the numerical study agree well with theoretical findings.Keywords: Bearing capacity factors, finite element method, safe bearing pressure, structure-soil interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 282732276 The Influence of Internal and External Damping on Turbocharger Stability
Authors: Zdeňka Rendlová
Abstract:
This paper presents the mathematical description of the high-speed rotating system taking into account the influence of internal and external damping. The mathematical model is obtained by using the finite element method. The analyzed system is an automotive turbocharger understood as a rotor-bearing system. The circular cross-section shaft is equipped with one compressor wheel, one turbine wheel and is supported by two floating ring bearings. Based on the model, the dynamical analysis of a turbocharger is performed and stability conditions are evaluated.
Keywords: External damping, internal damping, journal bearing, stability, turbocharger.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 253432275 Mathematical Reconstruction of an Object Image Using X-Ray Interferometric Fourier Holography Method
Authors: M. K. Balyan
Abstract:
The main principles of X-ray Fourier interferometric holography method are discussed. The object image is reconstructed by the mathematical method of Fourier transformation. The three methods are presented – method of approximation, iteration method and step by step method. As an example the complex amplitude transmission coefficient reconstruction of a beryllium wire is considered. The results reconstructed by three presented methods are compared. The best results are obtained by means of step by step method.
Keywords: Dynamical diffraction, hologram, object image, X-ray holography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 142632274 Ultrasonic Pulse Velocity Investigation of Polypropylene and Steel Fiber Reinforced Concrete
Authors: Erjola Reufi, Jozefita Marku, Thomas Bier
Abstract:
Ultrasonic pulse velocity (UPV) method has been shown for some time to provide a reliable means of estimating properties and offers a unique opportunity for direct, quick and safe control of building damaged by earthquake, fatigue, conflagration and catastrophic scenarios. On this investigation hybrid reinforced concrete has been investigated by UPV method. Hooked end steel fiber of length 50 and 30 mm was added to concrete in different proportion 0, 0.25, 0.5, and 1 % by the volume of concrete. On the other hand, polypropylene fiber of length 12, 6, 3 mm was added to concrete of 0.1, 0.2, and 0.4 % by the volume of concrete. Fifteen different mixture has been prepared to investigate the relation between compressive strength and UPV values and also to investigate on the effect of volume and type of fiber on UPV values.
Keywords: Compressive strength, polypropylene fiber, steel fiber, ultrasonic pulse velocity, volume, type of fiber.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 193032273 Numerical Simulation of Cavitation and Aeration in Discharge Gated Tunnel of a Dam Based on the VOF Method
Authors: Razieh Jalalabadi, Norouz Mohammad Nouri
Abstract:
Cavitation, usually known as a destructive phenomenon, involves turbulent unsteady two-phase flow. Having such features, cavitating flows have been turned to a challenging topic in numerical studies and many researches are being done for better understanding of bubbly flows and proposing solutions to reduce its consequent destructive effects. Aeration may be regarded as an effective protection against cavitation erosion in many hydraulic structures, like gated tunnels. The paper concerns numerical simulation of flow in discharge gated tunnel of a dam using ing RNG k -ε model coupled with the volume of fluid (VOF) method and the zone which is susceptible of cavitation inception in the tunnel is predicted. In the second step, a vent is considered in the mentioned zone for aeration and the numerical simulation is done again to study the effects of aeration. The results show that aeration is an impressively useful method to exclude cavitation in mentioned tunnels.Keywords: Aeration, Cavitation, Two-phase flow, TurbulentFlow, Volume of Fluid (VOF) method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 219232272 Advanced Model for Calculation of the Neutral Axis Shifting and the Wall Thickness Distribution in Rotary Draw Bending Processes
Abstract:
Rotary draw bending is a method which is being used in tube forming. In the tube bending process, the neutral axis moves towards the inner arc and the wall thickness distribution changes for tube’s cross section. Thinning takes place in the outer arc of the tube (extrados) due to the stretching of the material, whereas thickening occurs in the inner arc of the tube (intrados) due to the comparison of the material. The calculations of the wall thickness distribution, neutral axis shifting, and strain distribution have not been accurate enough, so far. The previous model (the geometrical model) describes the neutral axis shifting and wall thickness distribution. The geometrical of the tube, bending radius and bending angle are considered in the geometrical model, while the influence of the material properties of the tube forming are ignored. The advanced model is a modification of the previous model using material properties that depends on the correction factor. The correction factor is a purely empirically determined factor. The advanced model was compared with the Finite element simulation (FE simulation) using a different bending factor (Bf =bending radius/ diameter of the tube), wall thickness (Wf = diameter of the tube/ wall thickness), and material properties (strain hardening exponent). Finite element model of rotary draw bending has been performed in PAM-TUBE program (version: 2012). Results from the advanced model resemble the FE simulation and the experimental test.
Keywords: Rotary draw bending, material properties, neutral axis shifting, wall thickness distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 391732271 The Explanation for Dark Matter and Dark Energy
Authors: Richard Lewis
Abstract:
The following assumptions of the Big Bang theory are challenged and found to be false: the cosmological principle, the assumption that all matter formed at the same time and the assumption regarding the cause of the cosmic microwave background radiation. The evolution of the universe is described based on the conclusion that the universe is finite with a space boundary. This conclusion is reached by ruling out the possibility of an infinite universe or a universe which is finite with no boundary. In a finite universe, the centre of the universe can be located with reference to our home galaxy (The Milky Way) using the speed relative to the Cosmic Microwave Background (CMB) rest frame and Hubble's law. This places our home galaxy at a distance of approximately 26 million light years from the centre of the universe. Because we are making observations from a point relatively close to the centre of the universe, the universe appears to be isotropic and homogeneous but this is not the case. The CMB is coming from a source located within the event horizon of the universe. There is sufficient mass in the universe to create an event horizon at the Schwarzschild radius. Galaxies form over time due to the energy released by the expansion of space. Conservation of energy must consider total energy which is mass (+ve) plus energy (+ve) plus spacetime curvature (-ve) so that the total energy of the universe is always zero. The predominant position of galaxy formation moves over time from the centre of the universe towards the boundary so that today the majority of new galaxy formation is taking place beyond our horizon of observation at 14 billion light years.
Keywords: Cosmic microwave background, dark energy, dark matter, evolution of the universe.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 90532270 Convergence Analysis of the Generalized Alternating Two-Stage Method
Authors: Guangbin Wang, Liangliang Li, Fuping Tan
Abstract:
In this paper, we give the generalized alternating twostage method in which the inner iterations are accomplished by a generalized alternating method. And we present convergence results of the method for solving nonsingular linear systems when the coefficient matrix of the linear system is a monotone matrix or an H-matrix.
Keywords: Generalized alternating two-stage method, linear system, convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 125932269 New Newton's Method with Third-order Convergence for Solving Nonlinear Equations
Authors: Osama Yusuf Ababneh
Abstract:
For the last years, the variants of the Newton-s method with cubic convergence have become popular iterative methods to find approximate solutions to the roots of non-linear equations. These methods both enjoy cubic convergence at simple roots and do not require the evaluation of second order derivatives. In this paper, we present a new Newton-s method based on contra harmonic mean with cubically convergent. Numerical examples show that the new method can compete with the classical Newton's method.
Keywords: Third-order convergence, non-linear equations, root finding, iterative method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 296432268 Information Gain Ratio Based Clustering for Investigation of Environmental Parameters Effects on Human Mental Performance
Authors: H. Mehdi, Kh. S. Karimov, A. A. Kavokin
Abstract:
Methods of clustering which were developed in the data mining theory can be successfully applied to the investigation of different kinds of dependencies between the conditions of environment and human activities. It is known, that environmental parameters such as temperature, relative humidity, atmospheric pressure and illumination have significant effects on the human mental performance. To investigate these parameters effect, data mining technique of clustering using entropy and Information Gain Ratio (IGR) K(Y/X) = (H(X)–H(Y/X))/H(Y) is used, where H(Y)=-ΣPi ln(Pi). This technique allows adjusting the boundaries of clusters. It is shown that the information gain ratio (IGR) grows monotonically and simultaneously with degree of connectivity between two variables. This approach has some preferences if compared, for example, with correlation analysis due to relatively smaller sensitivity to shape of functional dependencies. Variant of an algorithm to implement the proposed method with some analysis of above problem of environmental effects is also presented. It was shown that proposed method converges with finite number of steps.Keywords: Clustering, Correlation analysis, EnvironmentalParameters, Information Gain Ratio, Mental Performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 182432267 Numerical and Experimental Stress Analysis of Stiffened Cylindrical Composite Shell under Transverse end Load
Authors: J. Arashmehr, G. H. Rahimi, S.F.Rasouli
Abstract:
Grid composite structures have many applications in aerospace industry in which deal with transverse loadings abundantly. In present paper a stiffened composite cylindrical shell with clamped-free boundary condition under transverse end load experimentally and numerically was studied. Some electrical strain gauges were employed to measure the strains. Also a finite element analysis was done for validation of experimental result. The FEM software used was ANSYS11. In addition, the results between stiffened composite shell and unstiffened composite shell were compared. It was observed that intersection of two stiffeners has an important effect in decrease of stress in the shell. Fairly good agreements were observed between the numerical and the measured results. According to recent studies about grid composite structures, it should be noted that any investigation like this research has not been reported.
Keywords: Grid composite structure, Transverse loadings, Strain measurement, Finite element analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 222332266 Calculation of Heating Load for an Apartment Complex with Unit Building Method
Authors: Ju-Seok Kim, Sun-Ae Moon, Tae-Gu Lee, Seung-Jae Moon, Jae-Heon Lee
Abstract:
As a simple to method estimate the plant heating energy capacity of an apartment complex, a new load calculation method has been proposed. The method which can be called as unit building method, predicts the heating load of the entire complex instead of summing up that of each apartment belonging to complex. Comparison of the unit heating load for various floor sizes between the present method and conventional approach shows a close agreement with dynamic load calculation code. Some additional calculations are performed to demonstrate it-s application examples.Keywords: Unit Building Method, Unit Heating Load, TFMLoad.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 343932265 Denosing ECG using Translation Invariant Multiwavelet
Authors: Jeong Yup Han, Su Kyung Lee, Hong Bae Park
Abstract:
In this paper, we propose a method to reduce the various kinds of noise while gathering and recording the electrocardiogram (ECG) signal. Because of the defects of former method in the noise elimination of ECG signal, we use translation invariant (TI) multiwavelet denoising method to the noise elimination. The advantage of the proposed method is that it may not only remain the geometrical characteristics of the original ECG signal and keep the amplitudes of various ECG waveforms efficiently, but also suppress impulsive noise to some extent. The simulation results indicate that the proposed method are better than former removing noise method in aspects of remaining geometrical characteristics of ECG signal and the signal-to-noise ratio (SNR).Keywords: ECG, TI multiwavelet, denoise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 176832264 An Eulerian Numerical Method and its Application to Explosion Problems
Authors: Li Hao, Yan Zhang, Jingan Cui
Abstract:
The Eulerian numerical method is proposed to analyze the explosion in tunnel. Based on this method, an original software M-MMIC2D is developed by Cµ program language. With this software, the explosion problem in the tunnel with three expansion-chambers is numerically simulated, and the results are found to be in full agreement with the observed experimental data.Keywords: Eulerian method, numerical simulation, shock wave, tunnel
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 145432263 Active Fiber Composites for Smart Damping of Doubly Curved Laminated Shells
Authors: Saroj Kumar Sarangi, M. C. Ray
Abstract:
This paper deals with the analysis of active constrained layer damping (ACLD) of doubly curved laminated composite shells using active fiber composite (AFC) materials. The constraining layer of the ACLD treatment has been considered to be made of the AFC materials. A three dimensional energy based finite element model of the smart doubly curved laminated composite shell integrated with a patch of such ACLD treatment has been developed to demonstrate the performance of the patch on enhancing the damping characteristics of the doubly curved laminated composite shells. Particular emphasis has been placed on studying the effect of variation of piezoelectric fiber orientation angle in the constraining AFC layer on the control authority of the ACLD patch.
Keywords: Active constrained layer damping, Active fibercomposites, Finite element modeling, First order shear deformationtheory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163732262 Numerical Analysis of Laminar Flow around Square Cylinders with EHD Phenomenon
Authors: M. Salmanpour, O. Nourani Zonouz
Abstract:
In this research, a numerical simulation of an Electrohydrodynamic (EHD) actuator’s effects on the flow around a square cylinder by using a finite volume method has been investigated. This is one of the newest ways for controlling the fluid flows. Two plate electrodes are flush-mounted on the surface of the cylinder and one wire electrode is placed on the line with zero angle of attack relative to the stagnation point and excited with DC power supply. The discharge produces an electric force and changes the local momentum behaviors in the fluid layers. For this purpose, after selecting proper domain and boundary conditions, the electric field relating to the problem has been analyzed and then the results in the form of electrical body force have been entered in the governing equations of fluid field (Navier-Stokes equations). The effect of ionic wind resulted from the Electrohydrodynamic actuator, on the velocity, pressure and the wake behind cylinder has been considered. According to the results, it is observed that the fluid flow accelerates in the nearest wall of the frontal half of the cylinder and the pressure difference between frontal and hinder cylinder is increased.
Keywords: CFD, corona discharge, electro hydrodynamics, flow around square cylinders.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 87832261 Note on the Necessity of the Patch Test
Authors: Rado Flajs, Miran Saje
Abstract:
We present a simple nonconforming approximation of the linear two–point boundary value problem which violates patch test requirements. Nevertheless the solutions, obtained from these type of approximations, converge to the exact solution.
Keywords: Generalized patch test, Irons' patch test, nonconforming finite element, convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 155032260 Improvement of Load Carrying Capacity of an RCC T-Beam Bridge Longitudinal Girder by Replacing Steel Bars with SMA Bars
Authors: N. K. Paul, S. Saha
Abstract:
An innovative three dimensional finite element model has beed developed and tested under two point loading system to examine the structural behavior of the longitudinal reinforced concrete Tee-beam bridge girder, reinforcing with steel and shape memory alloy bars respectively. 25% of steel bars are replaced with superelastic Shape Memory Alloy bars in this study. Finite element analysis is performed using ANSYS 11.0 program. Experimentally a model of steel reinforced girder has been casted and its load deflection responses are checked with ANSYS analysis. A comparison of load carrying capacity for the model between steel RC girder and the girder combined reinforcement with SMA and steel are also performed.
Keywords: Shape memory alloy, bridge girder, ANSYS, load-deflection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 88832259 Wavelet Based Identification of Second Order Linear System
Authors: Sudipta Majumdar, Harish Parthasarathy
Abstract:
In this paper, a wavelet based method is proposed to identify the constant coefficients of a second order linear system and is compared with the least squares method. The proposed method shows improved accuracy of parameter estimation as compared to the least squares method. Additionally, it has the advantage of smaller data requirement and storage requirement as compared to the least squares method.Keywords: Least squares method, linear system, system identification, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157532258 The Homotopy Analysis Method for Solving Discontinued Problems Arising in Nanotechnology
Authors: Hassan Saberi-Nik, Mahin Golchaman
Abstract:
This paper applies the homotopy analysis method method to a nonlinear differential-difference equation arising in nanotechnology. Continuum hypothesis on nanoscales is invalid, and a differential-difference model is considered as an alternative approach to describing discontinued problems. Comparison of the approximate solution with the exact one reveals that the method is very effective.
Keywords: Homotopy analysis method, differential-difference, nanotechnology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 197832257 Design and Optimization for a Compliant Gripper with Force Regulation Mechanism
Authors: Nhat Linh Ho, Thanh-Phong Dao, Shyh-Chour Huang, Hieu Giang Le
Abstract:
This paper presents a design and optimization for a compliant gripper. The gripper is constructed based on the concept of compliant mechanism with flexure hinge. A passive force regulation mechanism is presented to control the grasping force a micro-sized object instead of using a sensor force. The force regulation mechanism is designed using the planar springs. The gripper is expected to obtain a large range of displacement to handle various sized objects. First of all, the statics and dynamics of the gripper are investigated by using the finite element analysis in ANSYS software. And then, the design parameters of the gripper are optimized via Taguchi method. An orthogonal array L9 is used to establish an experimental matrix. Subsequently, the signal to noise ratio is analyzed to find the optimal solution. Finally, the response surface methodology is employed to model the relationship between the design parameters and the output displacement of the gripper. The design of experiment method is then used to analyze the sensitivity so as to determine the effect of each parameter on the displacement. The results showed that the compliant gripper can move with a large displacement of 213.51 mm and the force regulation mechanism is expected to be used for high precision positioning systems.
Keywords: Flexure hinge, compliant mechanism, compliant gripper, force regulation mechanism, Taguchi method, response surface methodology, design of experiment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161332256 Effect of Stiffeners on the Behavior of Slender Built up Steel I-Beams
Authors: M. E. Abou-Hashem El Dib, M. K. Swailem, M. M. Metwally, A. I. El Awady
Abstract:
This paper presents the effect of stiffeners on the behavior of slender steel I-beams. Nonlinear three dimensional finite element models are developed to represent the stiffened steel I-beams. The well established finite element (ANSYS 13.0) program is used to simulate the geometric and material nonlinear nature of the problem. Verification is achieved by comparing the obtained numerical results with the results of previous published experimental work. The parameters considered in the analysis are the horizontal stiffener's position and the horizontal stiffener's dimensions as well as the number of vertical stiffeners. The studied dimensions of the horizontal stiffeners include the stiffener width, the stiffener thickness and the stiffener length. The results of the achieved numerical parametric study for slender steel I-beams show the significant effect of stiffeners on the beam behavior and its failure load.Keywords: Steel I-beams, local buckling, slender, stiffener, thin walled section.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166632255 Backcalculation of HMA Stiffness Based On Finite Element Model
Authors: Md Rashadul Islam, Umme Amina Mannan, Rafiqul A. Tarefder
Abstract:
Stiffness of Hot Mix Asphalt (HMA) in flexible pavement is largely dependent of temperature, mode of testing and age of pavement. Accurate measurement of HMA stiffness is thus quite challenging. This study determines HMA stiffness based on Finite Element Model (FEM) and validates the results using field data. As a first step, stiffnesses of different layers of a pavement section on Interstate 40 (I-40) in New Mexico were determined by Falling Weight Deflectometer (FWD) test. Pavement temperature was not measured at that time due to lack of temperature probe. Secondly, a FE model is developed in ABAQUS. Stiffness of the base, subbase and subgrade were taken from the FWD test output obtained from the first step. As HMA stiffness largely varies with temperature it was assigned trial and error approach. Thirdly, horizontal strain and vertical stress at the bottom of the HMA and temperature at different depths of the pavement were measured with installed sensors on the whole day on December 25th, 2012. Fourthly, outputs of FEM were correlated with measured stress-strain responses. After a number of trials a relationship was developed between the trial stiffness of HMA and measured mid-depth HMA temperature. At last, the obtained relationship between stiffness and temperature is verified by further FWD test when pavement temperature was recorded. A promising agreement between them is observed. Therefore, conclusion can be drawn that linear elastic FEM can accurately predict the stiffness and the structural response of flexible pavement.
Keywords: Asphalt pavement, falling weight deflectometer test, field instrumentation, finite element model, horizontal strain, temperature probes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 241632254 Electromagnetic Flow Meter Efficiency
Authors: Andrey D. Andreev, Ilona I. Iatcheva, Dimitar N. Karastoyanov, Rumena D. Stancheva
Abstract:
A study of electromagnetic flow meter is presented in the paper. Comparison has been made between the analytical and the numerical results by the use of FEM numerical analysis (Quick Field 5.6) for determining polarization voltage through the circle cross section of the polarization transducer. Exciting and geometrical parameters increasing its effectiveness has been examined. The aim is to obtain maximal output signal. The investigations include different variants of the magnetic flux density distribution around the tube: homogeneous field of magnitude Bm, linear distribution with maximal value Bm and trapezium distribution conserving the same exciting magnetic energy as the homogeneous field.
Keywords: Effectiveness, electromagnetic flow meter, finite element method, polarization voltage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2310